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ABSTRACT

The emerging applications for large graphs in big data sci-
ence and social networks has led to the development of nu-
merous parallel or distributed graph processing applications.
The need for faster manipulation of graphs has driven the
need to scale across large core counts and many parallel ma-
chines. While distributed memory parallel systems continue
to be used for high performance computing, some smaller
systems make use of shared memory (SMP) and larger core
counts. We have implemented a graph processing frame-
work for shared memory systems capable of scaling past 48
parallel cores. This system leverages and scale to large core
counts and provide a framework for later incorporating dis-
tributed processing across multiple nodes.
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1. INTRODUCTION

FemtoGraph is a graph processing application which will use
a vertex-centric approach. This approach involves calling
a function in the context of a vertex for each and every
vertex. This function can modify or read from edges and
other vertices. Computation occurs in intervals or steps,
with some form of communication between steps. Vertex-
centric algorithms can be either synchronous, meaning every
vertex function must finish before the next step begins, or
asynchronous, which means that the next step can begin in
the context of one vertex immediately. [1]

FemtoGraph is based off of the pregel model. Pregel is
a vertex-centric graph processing model. [5] Pregel is syn-
chronous, with computation occurring in steps called su-
persteps. There is a messaging system for sending data and
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state to vertices in the next superstep, but not to any vertex
in the current superstep. In each step, vertices can do com-
putations, modify neighbor vertices and edges, send mes-
sages to vertices in the next superstep, and vote to halt,
meaning it cannot run its compute function until it receives
a message or all vertices have voted to halt. When all ver-
tices have voted to halt, the simulation ends. [5]

2. RELATED WORK

One of the main similar applications in this area is GraphLab.
GraphLab is another vertex-centric graph processing frame-
work that can either run on a single node using shared mem-
ory, or as a distributed application. GraphLab is the sim-
plest to compare to FemtoGraph as it can run with shared

memory without the harsh overhead of frameworks like Hadoop

or Spark. GraphLab is asynchronous, which gives it the edge
of not having to wait for the fist superstep to complete be-
fore starting the next superstep. [6] Graphlab was the main
point of comparison of FemtoGraph

3. IMPLEMENTATION

FemtoGraph is implemented in C++ using parts of the Boost
C++ library. There are 3 main parts vertex storage, the
message queue, and the compute function. Vertex storage
also stores edges and uses an adjacency list using C++ vec-
tors. The message queue is implemented using Boost lock-
free queues, [7] one for each vertex. The compute function is
a user defined function that is run in the context of each ver-
tex during a pregel superstep. Update functions are called
in parallel with a user defined number of threads.

4. DIFFICULTIES ENCOUNTERED

In the pregel model for graph processing, the main bottle-
neck encountered when scaling to many cores is the mes-
sage queue. The message queue and the vertex storage are
the only two data structures accessed from multiple threads.
Vertices are not modified enough to warrant anything more
than simple mutex based locking. The message queue, made
clear by profiling with the callgrind function call analysis
tool, is accessed at a very high rate from vertex compute
functions from all threads. This can lead to race conditions,
slowdowns, and deadlocks. A mutex based locking system
resulted in an extreme slowdown to the point where the sys-
tem scaled in reverse (Figure 1).
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Figure 1: FemtoGraph scaling using mutex based
message queue
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Figure 2: FemtoGraph in comparison to GraphLab
on a single node

S. SOLUTION

My main solution for the message queue was to use a vec-
tor of Boost::lockfree queues for the message queue. [7] The
vector was used to presort messages by vertex in order to
minimize compute time sorting message when they were re-
ceived. Adding new vertices still requires a mutex, as the
vector is not lockfree. This mutex is not a problem for the
algorithms that I tested, as they spend most of their time
updating current vertices. The lockfree queues minimize the
total bottleneck in the message queue.

6. RESULTS

We compared FemtoGraph and GraphLab on running Pager-
ank on a large Stanford SNAP graph (Figure 2). The graph
used was the Wikipedia Talk Network, a directed graph
based off of discussion about Wikipedia article edits with
2394385 Vertices and 5021410 edges. [2] The final version of
FemtoGraph is capable of scaling to 48 cores on a single large
system. At 28 cores, it begins to overtake graphlab in terms
of runtime. GraphLab scales very weakly, only increasing in
performace below 20 cores. After 20 cores, GraphLab scales
in reverse (Figure 3). In the case of both applications, only
compute time was counted. reading in data and initializing
graphs were outside of the measured data.

7. CONCLUSION

FemtoGraph is a lightweight, single node graph process-
ing system capable of scaling to large core counts and out-
performing some of the current graph processing standards.
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Figure 3: Graphlab scaling performance

FemtoGraph shows that the pregel model performs well un-
der shared memory situations at scale.
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