
1

Dynamic Virtual Chunks: On Supporting Efficient
Accesses to Compressed Scientific Data

Dongfang Zhao, Kan Qiao, Jian Yin, Ioan Raicu

Abstract—Data compression could ameliorate the I/O pressure of data-intensive scientific applications. Unfortunately, the conventional
wisdom of naively applying data compression to the file or block brings the dilemma between efficient random accesses and high
compression ratios. File-level compression barely supports efficient random accesses to the compressed data: any retrieval request need
trigger the decompression from the beginning of the compressed file. Block-level compression provides flexible random accesses to the
compressed blocks, but introduces extra overhead when applying the compressor to each and every block that results in a degraded
overall compression ratio. This paper extends our prior work that introduces virtual chunks offering efficient random accesses to the
compressed scientific data without sacrificing the compression ratio. Virtual chunks are logical blocks pointed at by appended references
without breaking the physical continuity of the file content. These references allow the decompression to start from an arbitrary position
(efficient random accesses), while no per-block overhead is introduced because the file’s physical entirety is retained (high compression
ratio). One limitation of virtual chunk is it only supports static references. This paper presents the algorithms, analysis, and evaluations
of dynamic virtual chunks to deal with the cases where the references are updated dynamically.

Keywords—File compression, distributed file systems, parallel file systems, big data, data-intensive computing, scientific computing

F

1 INTRODUCTION

A S modern scientific applications are becoming data-
intensive [1, 2], one effective approach to relieve the

I/O bottleneck of the underlying storage system is data
compression. For instance, it is optional to apply lossless
compressors (e.g. LZO [3], bzip2 [4]) to the input or
output files in the Hadoop file system (HDFS) [5], or even
lossy compressors [6, 7] at the high-level I/O middleware
such as HDF5 [8], NetCDF [9], and GRIB [10]. HDF was
originally developed as a general set of file formats at
the National Center for Supercomputing Applications
(NCSA). NetCDF is a set of self-described libraries for
data formats that is hosted at the University Corporation
for Atmospheric Research (UCAR). GRIB is the de facto
data format for meteorology that is standardized by the
World Meteorological Organization (WMO). By investing
computational time on compression and decompression,
we hope to significantly reduce the file size and conse-
quently the I/O time to offset the computational cost.

State-of-the-art compression mechanisms of parallel
and distributed file systems apply the compressor to the

• D. Zhao and K. Qiao are with the Department of Computer Science,
Illinois Institute of Technology, Chicago, IL, 60616.
Email: {dzhao8, kqiao}@iit.edu

• J. Yin is with the Division of Mathematics & Computer Science, Pacific
Northwest National Laboratory, Richland, WA 99354.
Email: jian.yin@pnnl.gov

• I. Raicu is with the Department of Computer Science, Illinois Institute of
Technology, Chicago, IL 60616, as well as the Mathematics and Computer
Science Division, Argonne National Laboratory, Argonne, IL 60439.
Email: iraicu@cs.iit.edu

data either at the file-level or block-level1, and leave
important factors (e.g. computational overhead, com-
pression ratio, workload’s I/O pattern) to the underlying
compression algorithms. Such approaches have the fol-
lowing limitations.

First, file-level compression is criticized for its signif-
icant overhead for random accesses: the decompression
needs to start from the very beginning of the compressed
file even though the client might only be requesting a
few bytes at an arbitrary position in the file. As a case
in point, one of the most commonly used operations in
climate research is to retrieve the latest temperature of a
particular location. The compressed data set is typically
in terms of hundreds of gigabytes; nevertheless scientists
would need to decompress the entire compressed file
to only access the last temperature reading. This wastes
both the scientist’s valuable time and scarce computing
resources.

Second, the deficiency of block-level compression
stems from its additional compression overhead on each
block; the overall overhead aggregated from many blocks
in a large file easily exceeds the file-level-compression
counterpart. To see this, think about a simple scenario
that a 64MB (the default chunk size in HDFS [5]) file to be
compressed with 4:1 ratio and 4KB overhead (e.g. header,
metadata, and so forth). The resultant compressed file
(i.e. after file-level compression) is

64MB

4
+ 4KB = 16.004MB

If the file is split into 64KB-blocks each of which is

1. The “chunk”, e.g. in HDFS, is really a file from the work node’s
perspective. So “chunk-level” is not listed here.

2

applied with the same compressor, the compressed file
would be (assuming the overhead is also 4KB)

64MB

4
+ 4KB× 1K = 20MB

Therefore we spend

(20MB− 16.004MB)

16.004MB
≈ 25%

more space in block-level compression.
This paper introduces virtual chunks (VC) that aim

to better employ existing compression algorithms in
parallel and distributed file systems, and to eventually
improve the I/O performance of random data accesses in
scientific applications and high-performance computing
(HPC) systems. The key idea of virtual chunks is: we do
not break the original file into physical chunks or blocks,
but append a small number of references to the end of
file. Each of these references points to a specific block
that is considered as a boundary of the virtual chunk.
Because the physical entirety (or block continuity) of the
original file is retained, the compression overhead and
compression ratio keep comparable to those of file-level
compression. With these additional references, a random
file access need not decompress the entire file from the
beginning, but could arbitrarily jump onto a reference
close to the requested data and start the decompression
from there. Therefore, virtual chunks achieve the best of
both file- and block-level compression: high compression
ratio and efficient random access.

Virtual chunks might raise concerns about the cost
of the additional references: they are not free, and take
extra storage space, hurting both the overall compression
ratio and the end-to-end I/O time (at least when writing
files with VC enabled). We argue, and will justify in
Section 2.3 and Section 3.1, that it would not be an
issue if the number of additional reference is wisely
chosen. It would definitely not be a good choice to store
a reference for each and every original data entry: the
resultant “compressed file” would become significantly
larger than its original size, making data compression
meaningless. Few references do not make sense either
since the whole point of virtual chunks is to provide a
finer granularity for efficient random accesses; as an ex-
treme example, a single reference makes VC-compression
degenerate to simple file-level compression. Therefore,
the number of additional references must be balanced
between compression ratio and compression granularity
(i.e. size of virtual chunks, or number of references).
We will present theoretical analyses (Section 2.3) and
experimental results (Section 3.1) to justify that the space
overhead from the additional reference is negligible in
terms of end-to-end I/O performance.

This paper is an extension of our prior work [11, 12]
that advances the understanding of the system support
for data-intensive scientific applications in the following
perspectives:

• Proposal of virtual chunk mechanism to flexibly apply
the conventional compression algorithm to parallel and
distributed file systems to improve random data accesses
while retaining high compression ratios

• Design of procedures to manipulate virtual chunks,
and provide theoretical analysis on how to set up the
parameters to achieve the optimal performance

• Implementation of virtual chunks in a production par-
allel file system GPFS [13] and a distributed file system
FusionFS [14, 15]

• Evaluations of virtual chunks with real-world scientific
data (e.g. GCRM [16], SDSS [17]) at large scale, on
up to 1024 cores on a leadership-class supercomputer
(Intrepid [18])

One limitation of equidistant virtual chunks is that it
only supports static references, which is not be always
the case in practice. To this end, this paper extends
static VC to a more general form, namely dynamic VC.
In other words, this journal extension makes VC more
practical without the constraint of equidistant references
(i.e., uniformly distributed).

If the I/O pattern is uniformly distributed, dynamic
VC is essentially degraded to static VC. All the study of
static VC is also applicable to dynamic VC, as long as
the I/O distribution is uniform. However, it is obviously
more desirable to allow users to be able to specify an
arbitrary distribution. Therefore, in addition to the study
on static virtual chunks this paper makes more contribu-
tions from the angle of supporting dynamic changes to
virtual chunks:

• We devise the procedures to update virtual chunks
(Section 2.6)

• We analyze the benefit of dynamic virtual chunks over
the original static version (Section 2.7)

• We evaluate dynamic virtual chunks in a large param-
eter space (Section 3.4)

The remainder of this paper mainly focuses on the pre-
sentation and evaluation of employing virtual chunks in
compressible file systems. In Section 2, we analyze how
to wisely choose the number of references to append,
discuss where to store these references, formalize the
procedures to leverage virtual chunks in sequential and
random data accesses, describe how to update virtual
chunks, and analyze the potential I/O improvement of
dynamic virtual chunks. Section 3 describes two forms
of implementation of virtual chunks: a middleware on a
parallel file system (GPFS [13]) and a built-in module in a
distributed file system (FusionFS [14, 15]). Large-scale ex-
periments at up to 1,024-cores show that virtual chunks
improve I/O performance by up to 2X on real-world
scientific applications, such as climate data GCRM [16]
and astronomy data SDSS [17]. In Section 4, we discuss
the limitations and open questions of virtual chunks.
Section 5 reviews previous work on storage systems, I/O
performance, and data compression. We finally conclude
this paper in Section 6.

3

2 VIRTUAL CHUNKING

Virtual chunking is applicable as long as the compression
algorithm is splittable. To make matters more concrete,
we illustrate how virtual chunks work with an splittable
XOR-based delta compression [19] that is applied to par-
allel scientific applications. The idea of XOR-based delta
compression is straightforward: calculating the XOR dif-
ference between every pair of adjacent data entries in the
input file, so that only the very first data entry needs to
be stored together with the XOR differences. This XOR
compression proves to be highly effective for scientific
data like climate temperatures, because the large volume
of numerical values change marginally in the neighbor-
ing spatial and temporal area. Therefore, storing the large
number of small XOR differences instead of the original
data entries could significantly shrink the size of the
compressed file.

Fig. 1. Compression and decompression with two virtual
chunks

Figure 1 shows an original file of eight data entries,
and two references to Data 0 and Data 4. That is, we
have two virtual chunks of Data 0 – 3 and Data 4 – 7,
respectively. In the compressed file, we store seven deltas
and two references. When users need to read Data 7, we
first copy the nearest upper reference (Ref 1 in this case)
to the beginning of the restored file, then incrementally
XOR the restored data and the deltas, until we reach the
end position of the requested data. In this example, we
roughly save half of the I/O time during the random
file read by avoiding reading and decompressing the
first half of the file. It should be noted that this is an
oversimplified example to only illustrate the key idea
of our proposed approach; in practice, data could be
significantly more complicated.

For clear presentation of the following algorithms to
be discussed, we assume the original file data can be
represented as a list D = 〈d1, d2, . . . , dn〉. Since there are
n data entries, we have n − 1 encoded data elements,

denoted by the list X = 〈x1, x2, . . . , xn−1〉 where

xi = di XOR di+1, for 1 ≤ i ≤ n− 1

We assume there are k references (i.e. original data
entries) that the k virtual chunks start with. The k ref-
erences are represented by a list D′ = 〈dc1 , dc2 , . . . , dck〉,
where for any 1 ≤ i ≤ k−1 we have ci ≤ ci+1. Notice that
we need c1 = 1, because it is the basis from where the
XOR could be applied to the original data D. We define
L = n

k , the length of a virtual chunk if the references are
equidistant. The number in the pair of square brackets
[] after a list variable indicates the index of the scalar
element. For example D′[i] denotes the ith reference in
the reference list D′. This should not be confused with
dci , which represents the ci-th element in the original
data list D. The sublist starting at s and ending at t of a
list D is represented as Ds,t.

In the following sections, we will discuss the de-
sign tradeoff and some analytics of virtual chunking.
If not otherwise stated, we assume virtual chunks are
distributed in an equidistant manner, i.e. static virtual
chunks. Section 2.6 and Section 2.7 will particularly study
dynamic virtual chunks where the reference could be
positioned arbitrarily.

2.1 Storing References
We have considered two strategies on where to store the
references: (1) put all references together (either in the
beginning or in the end); (2) keep the reference in-place
to indicate the boundary, i.e. spread out the references
in the compressed file. Current design takes the first
strategy that stores the references together at the end of
the compressed file, as explained in the following.

The in-place references offer two limited benefits.
Firstly, it saves space of (k − 1) encoded data entries
(recall that k is the total number of references). For exam-
ple, Delta 4 would not be needed in Figure 1. Secondly,
it avoids the computation on locating the lowest upper
reference at the end of the compressed file. For the first
benefit, the space saving is insignificant because encoded
data are typically much smaller than the original ones,
not to mention this gain is factored by a relatively small
number of references (k − 1) compared with the total
number of data entries (n). The second benefit on saving
the computation time is also limited because the CPU
time on locating the reference is marginal compared to
compressing the data entries.

The in-place method has a critical drawback that may
not be so obvious: it introduces significant overhead
when decompressing a large portion of data spanning
over multiple logical chunks. To see this, let us imagine
in Figure 1 that Ref 0 is above Delta 1 and Ref 1 is
in the place of Delta 4. If the user requests the entire
file, then the file system needs to read two raw data
entries: Ref 0 (i.e. Data 0) and Ref 1 (i.e. Data 4). Note
that Data 0 and Data 4 are original data entries, and are
typically much larger than the deltas. Thus, reading these

4

in-place references would take significantly more time
than reading the deltas, especially when the requested
data include a large number of virtual chunks. This issue
does not exist in our current design where all references
are stored together at the end of file: the user only needs
to retrieve one reference (i.e. Ref 0 in this case).

2.2 Compression with VC
We assume the underlying compression algorithm used
by VC (for example, XOR compression) is comprised
of a pass of processing two consecutive data points.
This is not always the case, yet greatly simplifies the
mathematical notation in the following discussion whose
validity is not affected by this simplification. We will
discuss the applicability of virtual chunks in more details
in Section 4.1. In the rest of this section we will use
encode() and decode() to indicate the compression
and decompression of two consecutive data points, re-
spectively.

The procedure to compress a file with multiple refer-
ences is described in Algorithm 1. The first phase of the
virtual-chunk compression is to encode the data entries
of the original file, as shown in Lines 1 – 3. The second
phase appends k references to the end of the compressed
file, as shown in Lines 4 – 6.

Algorithm 1 VC Compress
Input: The original data D = 〈d1, · · · , dn〉
Output: The encoded data X , and the reference list D′

1: for (int i = 1; i < n; i++) do
2: X[i] ← encode(di, di+1)
3: end for
4: for (int j = 1; j < k; j++) do
5: D′[j]← D[1 + (j − 1) ∗ L]
6: end for

The time complexity of Algorithm 1 is O(n). Lines 1
– 3 obviously take O(n) to compress the file. Lines 4 –
6 are also bounded by O(n) since there cannot be more
than n references in the procedure.

2.3 Optimal Number of References
The current section answers this question: how many
references should we append to the compressed file, in
order to maximize the end-to-end I/O performance?

In general, more references consume more storage
space, implying longer time to write the compressed data
to storage. As an extreme example, making a reference
to each data entry of the original file is not a good
idea: the resulted compressed file is actually larger than
the original file. On the other hand, however, more
references yield a better chance of a closer lowest upper
reference from the requested data, which in turn speeds
up the decompression for random accesses. Thus, we
want to find the number of references that has a good

balance between compression and decompression, and
ultimately achieves the minimal overall time.

Despite many possible access patterns and scenarios,
in this paper we are particularly interested in finding
the number of references that results in the minimal I/O
time in the worst case: for data write, the entire file is
compressed and written to the disk; for data read, the
last data entry is requested. That is, the decompression
starts from the beginning of the file and processes until
the last data entry. The following analysis is focused on
this scenario, and assumes the references are equidistant.

A few more parameters for the analysis are listed in
Table 1. We denote the read and the write bandwidth
for the underlying file system by Br and Bw, respec-
tively. Different weights are assigned to input Wi and
output Wo to reflect the access patterns. For example if
a file is written once and then read for 10 times in an
application, then it makes sense to assign more weight
to the file read (Wi) than the file write (Wo). S indicates
the size of the original file to be compressed. R is the
compression ratio, so the compressed file size is S

R . D
denotes the computational time spent on decompressing
the requested data, which should be distinguished from
the overall decompression time (D plus the I/O time).

TABLE 1
Virtual chunk parameters

Variable Description
Br Read Bandwidth
Bw Write Bandwidth
Wi Weight of File Read
Wo Weight of File Write
S Original File Size
R Compression Ratio
D Computational Time of Decompression

The overall time difference between conventional
single-reference compression and our proposed multi-
reference compression comes from only the I/O but not
the computation. This is because the computational time
spent in compression is independent on the number of
references. The assumption is that when comparing both
cases, we need to apply the same compression algorithm
that takes the same computation time.

Let tc indicate the time difference between multiple
references and a single reference, we have

tc =
(k − 1) · S ·Wo

n ·Bw
(1)

where k denotes the number of references and n denotes
the total number of data points, respectively.

Similarly, to calculate the potential gain during decom-
pression with multiple references, td indicating the time
difference in decompression between multiple references

5

and a single reference, is calculated as follows:

td =
(k − 1) · S ·Wi

k ·R ·Br
+

(k − 1) ·D ·Wi

k
(2)

The first term of the above equation represents the
time difference on the I/O part, and the second term
represents the computational part.

To minimize the overall end-to-end I/O time, we want
to maximize the following function (i.e. gain minus cost):

F (k) = td − tc (3)

Note that the I/O time is from the client’s (or, user’s)
perspective. Technically, it includes both the computa-
tional and I/O time of the (de)compression. By taking
the derivative on k (suppose k̂ is continuous) and solving
the following equation

d

dk̂
(F (k̂)) =

S ·Wi

R ·Br · k̂2
+
D ·Wi

k̂2
− S ·Wo

Bw · n
= 0, (4)

we have

k̂ =

√
n · Bw

Br
· Wi

Wo
· (1
R

+
D ·Br
S

) (5)

To make sure k̂ reaches the global maximum, we can
take the second-order derivative on k̂:

d2

dk̂2
(F (k̂)) = − S ·Wi

R ·Br · k̂3
− D ·Wi

k̂3
< 0 (6)

since all parameters are positive real numbers. Because
the second-order derivative is always negative, we are
guaranteed that the local optimal k̂ is really a global
maximum.

Since k is an integer, the optimal k is given as:

argmax
k

F (k) =

{
bk̂c if F (bk̂c) > F (dk̂e)
dk̂e otherwise

(7)

where bxc denotes the largest previous integer of x
and dxe denotes the smallest following integer of x,
respectively.

Therefore the optimal number of references kopt is:

kopt =

{
bk̂c if F (bk̂c) > F (dk̂e)
dk̂e otherwise

(8)

where

k̂ =

√
n · Bw

Br
· Wi

Wo
· (1
R

+
D ·Br
S

) (9)

and

F (x) =
(x− 1) · S ·Wi

x ·R ·Br
+
(x− 1) ·D ·Wi

x
− (x− 1) · S ·Wo

n ·Bw
(10)

Note that the last term D·Br

S in Eq. 9 really says the
ratio of D over S

Br
. That is, the ratio of the computational

time over the I/O time. If we assume the computational
portion during decompression is significantly smaller

than the I/O time (i.e. D·Br

S ≈ 0), the compression ratio
is not extremely high (i.e. 1

R ≈ 1), the read and write
throughput are comparable (i.e. Bw

Br
≈ 1), and the input

and output weight are comparable (i.e. Wi

Wo
≈ 1), then a

simplified version of Eq. 9 can be stated as:

k̂ =
√
n (11)

suggesting that the optimal number of references be
roughly the square root of the total number of data
entries.

2.4 Random Read
This section presents the decompression procedure when
a request of random read comes in. Before that, we de-
scribe a subroutine that is useful for the decompression
procedure and more procedures to be discussed in later
sections. The subroutine is presented in Algorithm 2,
called DecompList. It is not surprising for this algo-
rithm to have inputs such as encoded data X , and the
starting and ending positions (s and t) of the requested
range, while the latest reference no later than s (i.e. ds′)
might be less intuitive. In fact, ds′ is not supposed to
be specified from a direct input, but calculated in an ad-
hoc manner for different scenarios. We will see this in the
complete procedure for random read later in this section.

Algorithm 2 DecompList
Input: The start position s, the end position t, the latest

reference no later than s as ds′ , the encoded data list
X = 〈x1, x2, . . . , xn−1〉

Output: The original data between s and t as Ds,t

1: prev ← ds′
2: for i = s′ to t do
3: if i ≥ s then
4: Ds,t[i− s]← prev
5: end if
6: prev ← encode(prev, xi)
7: end for

In Algorithm 2, Line 1 stores the reference in a tem-
porary variable as a base value. Then Lines 2 – 7 de-
compress the data by increasingly applying the decode
function between the previous original value and the
current encoded value. If the decompressed value lands
in the requested range, it is also stored in the return list.

Now we are ready to describe the random read proce-
dure to read an arbitrary data entry from the compressed
file. Recall that in static virtual chunks, all references
are equidistant. Therefore, given the start position s
we could calculate its closest and latest reference index
s′ = LastRef(s) where :

LastRef(x) =

{
x
L + 1 if 0 6= x MOD L
x
L otherwise (12)

So we only need to plug Eq. 12 to Algorithm 2. Also

6

note that we only use Algorithm 2 to retrieve a single
data point, therefore we can set t = s in the procedure.

The time complexity of random read is O(L), since it
needs to decompress as much as a virtual chunk to re-
trieve the requested data entry. If a batch of read requests
comes in, a preprocessing step (e.g. sorting the positions
to be read) can be applied so that decompressing a
virtual chunk would serve multiple requests.

It should be clear that the above discussion assumes
the references are equidistant, i.e. static virtual chunks.
And that is why we could easily calculate s′ by Eq. 12. It
needs a more complex procedure for dynamic references
that will be discussed in Section 2.6.

2.5 Random Write

The procedure of random write (i.e. modify a random
data entry) is more complicated than the case of random
read. In fact, the first step of random write is to locate the
affected virtual chunk, which shares a similar procedure
of random read. Then the original value of the to-be-
modified data entry is restored from the starting refer-
ence of the virtual chunk. In general, two encoded values
need to be updated: the requested data entry and the one
after it. There are two trivial cases when the updated data
entry is the first or the last. If the requested data entry is
the first one of the file, we only need to update the first
reference and the encoded data after it. This is because
the first data entry always serves as the first reference as
well. If the requested data entry is the last one of the file,
then we just load the last reference and decode the virtual
chunk till the end of file. In the following discussion,
we consider the general case excluding the above two
scenarios. Note that, if the requested data entry happens
to be a reference, it needs to be updated as well with the
new value.

For XOR-based delta compression, modifying one
original data point changes two deltas in the compressed
file: (1) the delta between the modified data point and the
one before it, and (2) the delta between the modified data
point and the one after it. The procedure of updating
an arbitrary data point is described in Algorithm 3. The
latest reference no later than the updated position q is
calculated in Line 1, per Eq. 12. Then Line 2 reuses
Algorithm 2 to restore three original data entries in the
original file. They include the data entry to be modified,
and the two adjacent ones to it. Line 3 and Line 4 re-
compress this range with the new value v. Lines 5 – 7
check if the modified value happens to be one of the
references. If so, the reference is updated as well.

The time complexity is O(L), since all lines take
constant time, except that Line 2 takes O(L). If there
are multiple update requests to the file, i.e. batch of
requests, we can sort the requests so that one single
pass of restoring a virtual chunk could potentially update
multiple data entries being requested.

Algorithm 3 VC Write
Input: The index of the data entry to be modified q, the

new value v, encoded data X = 〈x1, x2, · · · , xn−1〉,
and the reference list D′ = 〈d1, d2, · · · , dk〉

Output: Modified X
1: s′ ← LastRef(q)
2: 〈dq−1, dq, dq+1〉 ← DecompList(q − 1, q + 1, ds′ , X)
3: xq−1 ← encode(dq−1, v)
4: xq ← encode(v, dq+1)
5: if 0 = (q − 1) MOD L then
6: D′[qL + 1]← v
7: end if

2.6 Updating VC
If the access pattern does not follow the uniform distri-
bution, and this information is exposed to users, then it
makes sense to specify more references (i.e. finer granu-
larity of virtual chunks) for the subset that is more fre-
quently accessed. This is because more references make
random accesses more efficient with a shorter distance
(and less computation) from the closest reference, in
general. The assumption of equidistant reference, thus,
does not hold any more in the following discussion.

While a self-adjustable mechanism to update the ref-
erence positions is ongoing at this point, this paper
expects that the users would specify the distribution of
the reference density in a configuration file, or more
likely a rule such as a decay function [20]. For those users
who are really familiar with their data, a function that
adjusts any particular range of data with an arbitrary
number of references is also desirable. That is, the second
type of users would need to access a lower level of
reference manipulations. Note that, the specifications and
distributions required by the first type of users could
be implemented by the functions for the second type of
users. Therefore, we decide to expose the interface to
allow users (i.e. the second type of users) to control the
finer granularity of reference adjustment. It should be
fairly straightforward for the first type of users to meet
their needs by extending the provided interfaces.

Before discussing the procedure to update the refer-
ences, we will first describe some auxiliary functions.
The FindRef function finds the latest reference no later
than the given data index. It takes two inputs: the list
of references and a data index, then applies a binary
search to return the closest reference that is not later than
the input data index. Since this only trivially extends
the standard binary search, we do not give the formal
algorithm in this paper. This procedure takes O(log k)
time, where k is the list length of all the references.
Then we define the FindSublist function that extends
FindRef with two input data indexes s and t such that
1 ≤ s ≤ t ≤ n and the return value as a sublist D′s′,t′
such that s′ = FindRef(D′, s) and t′ = FindRef(D′, t).

To make the virtual chunks adjustable we will in-
troduce the RefUpdate procedure that allows users to

7

specify a linear transform of the existing virtual chunks
within a particular range. Not surprisingly, this pro-
cedure requires more computation and possibly more
parsing time if the updating rules are specified in a user-
defined configuration file. This tradeoff between perfor-
mance and flexibility is highly application-dependent.
Thanks to the RefUpdate procedure, it is relatively
straightforward to extend the file operations described
in the static virtual chunks to their dynamic parities.

We assume there are m disjoint subsets of D that will
be updated with a new number of references. Users are
expected to specify the following parameters: the starting
and ending position of a subset (si, ti), as well as the
coefficients in the linear transform αi and βi, where 1 ≤
i ≤ m. Note that both si and ti are the distances from
the beginning of D where 1 ≤ si < ti ≤ n.

In the updating procedure, a sublist of D′, namely
D′′ = 〈dcib , dcib+1

, . . . , dcie〉 is affected when the granularity
within this range is updated. Note that cib should be
the immediate precedent of si, and cie should be the
immediate precedent of ei. That is, there does not exist
such a b′ that b′ > b and cib′ ≤ si; and there does not
exist such an e′ that e′ > e and cie′ ≤ ti. α is a float
number meaning that we want α times as many as the
original number of virtual chunks between si and ti. β is
the constant adjustment in the linear transform. We also
compute a sublist D∗ where |D∗i | = αi|D′′i | + βi, which
will replace D′′i and then be inserted into D′. The list
Di = dcib , dcib+1, . . . , dcie (i.e. another sublist of D) is also
needed for the computation.

The procedure is presented in Algorithm 4. Lines 1 – 5
compute affected sublists of references D′′i and original
data entries Di for all the m requested updates. Lines 6
– 13 calculate the values of the affected or newly added
references in the compressed data. Line 14 updates the
reference values.

Algorithm 4 RefUpdate
Input: For 1 ≤ i ≤ m, (si, ti), αi, βi, D′, X .
Output: Modified D′.

1: for i = 1 to m do
2: D′′i ← FindSublist(si, ti, D′)
3: s′i ← FindRef(D′, si)
4: Di ← DecompList(si, ti, ds′i , X)
5: end for
6: for i = 1 to m do
7: for j = 0 to |Di| − 1 do
8: l←

⌊
|Di|

αi|D′′
i |+βi

⌋
9: if 0 = j MOD l then

10: Add dcib+j to D∗i .
11: end if
12: end for
13: end for
14: Replace D′′i by D∗i in D′ for 1 ≤ i ≤ m.

The time complexity of Algorithm 4 is as follows. In

m iterations, Lines 2 – 3 take O(m log k) in total. Line 4
takes at most O(n) in m iterations because each interval
(si, ti) is disjoint to others. Similarly, Lines 6 – 13 take
at most O(n) in m iterations. Line 14 also takes at most
O(n). So the overall time complexity is O(m log k + n).
In practice, Algorithm 4 would not be frequently called,
because users normally do not need to adjust the virtual
chunk granularity for every change to the data.

Once the references are updated, we cannot simply
locate the reference by dividing the total number of data
entries by the size of the virtual chunk as we did in
the static case. However, with the help of the FindRef
function, we can still retrieve the closest reference before
the given data index by a binary search. For example,
Line 1 of Algorithm 3 needs to be replaced by

s′ ← FindRef(D′, s)

if the references are not equidistant. Similarly, the
LastRef function call in the random read procedure
(Section 2.4) needs to be replaced by FindRef. The
time complexity of the dynamic-reference algorithms
(i.e. random read in Section 2.4 and random write in
Section 2.5) is O(L′ + log k), where L′ indicates the size
of the affected virtual chunk (not equidistant anymore)
and O(log k) represents the time of FindRef.

If a subset is frequently accessed, the rule of thumb is
to increase the reference density of this area. In this case,
L′ becomes small to indicate such fine granularity. It then
implies that the overall complexity would not become
significantly high even for frequent reference updates. So
the random read and random write are still flexibly and
efficiently maintained without much overhead compared
to the static case. Section 2.7 will provide a detailed
analysis on the potential I/O improvement by paying
such overhead.

2.7 I/O Improvement from Dynamic VC

This section analyzes the I/O benefit from dynamic
virtual chunks. As discussed in Section 2.6, updating
static virtual chunks into dynamic ones introduces the
overhead of adjusting the references (Algorithm 4). The
goal of paying this overhead is to place more references
to a frequently accessed subset of data.

To make a clear presentation, we make the follow-
ing assumptions. Suppose n is dividable by k (i.e.
n MOD k = 0), so that in the static setting all k virtual
chunks are of the same size L = n

k . We assume there
are two updates to the static references on (1, nc) and
(nc +1, n), respectively, where c is a integer to control the
boundary between the two portions. This c variable is
supposed to be significantly larger than one (i.e. c� 1),
and 1

c �
c−1
c . The first update has parameters α1, β1,

s1 = 1, t1 = n
c , and the second one has parameters α2, β2,

s2 = n
c +1, t2 = n. To make the dynamic case comparable

to the static virtual chunk, the total number of virtual

8

chunks after both updates is kept the same:

α1 ·
k

c
+ β1 + α2 ·

(c− 1) · k
c

+ β2 = k

On the other hand, we assume the smaller portion on
(1, nc) has a finer granularity of virtual chunks:

α1 ·
k

c
+ β1 � α2 ·

(c− 1) · k
c

+ β2

Finally, we assume there are f consecutive random I/Os
to be applied to the portion on (1, nc).

Without the two reference updates, the cost of f I/Os
is simply O(f · L), since each I/O can take up to O(L).
Now we consider the dynamic case. By our previous
analysis (Algorithm 4, Section 2.6), it takes O(m·log k+n)
to complete m updates if the references are already
updated for dynamic virtual chunks. In this scenario, we
only have two updates (m = 2) and the virtual chunks
before the updates are static (log k → 1) since Line 3 of
Algorithm 4 can be directly calculated by LastRef, and
the total cost of the updates is just O(n). Thus the total
cost of f I/Os in dynamic virtual chunks is

O(n+ f · log k + f · L ·
k
c

α1 · kc + β1
)

Note that the cost of static virtual chunks is O(f · L).
Therefore, to make the dynamic reference beneficial in
terms of the overall I/O performance, we need

f · L > n+ f · log k + f · L
k
c

α1 · kc + β1

or

L · (1−
k
c

α1 · kc + β1
)− log k >

n

f
(13)

In practice, the condition in Eq. 13 is easy to satisfy.
On the left hand side of Eq. 13, since the number of
references is significantly increased on (1, nc),

k
c

α1· kc +β1
is

significantly smaller than 1 so that L·(1−
k
c

α1· kc +β1
) is close

to L. Also note that log k is a lot smaller than L since it
is the logarithmic of the reference number. On the right
hand side, because we assume the portion on (1, nc) is
frequently accessed, easily making n

f smaller than the
left hand side.

3 EVALUATION

We have implemented a user-level compression mid-
dleware for GPFS [13] with the FUSE framework [21].
The compression logic is implemented in the vc write()
interface, which is the handler for catching the write
system calls. vc write() compresses the raw data, caches
it in the memory if possible, and writes the compressed
data into GPFS. The decompression logic is implemented
in the vc read() interface, similarly. When a read request

comes in, this function loads the compressed data (either
from the cache or the disk) into memory, applies the
decompression algorithm to the compressed data, and
passes the result to the end users.

The virtual chunk middleware is deployed on each
compute node as a mount point that refers to the re-
mote GPFS file system. This architecture enables a high
possibility of reusing the decompressed data, since the
decompressed data are cached in the local node. In fact,
prior work [22, 23] shows that caching plays a significant
impact to the overall performance of distributed and
parallel file systems. Because the original compressed file
is split into many logical chunks each of which can be
decompressed independently, it allows a more flexible
memory caching mechanism and parallel processing of
these logical chunks. We have implemented a LRU (Least
Recently Used) replacement policy for caching the inter-
mediate data.

We have also integrated virtual chunks into the Fu-
sionFS [15, 24] distributed file system. FusionFS is de-
signed to ultimately address the I/O bottleneck of con-
ventional high-performance computing systems, as the
state-of-the-art storage architecture would unlikely scale
to the next generation extreme-scale systems [25]. The
key feature of FusionFS is to fully exploit the available
resources and avoid any centralized component. That is,
each participating node plays three roles at the same
time: client, metadata server, and data server. Each node
is able to pull the global view of all the available files
by the single namespace implemented with a distributed
hash table [26], even though the metadata is physically
distributed on all the nodes. Each node stores parts of the
entire metadata and data at its local storage. Although
both metadata and data are fully distributed on all
nodes, the local metadata and data on the same node are
completely decoupled: the local data may or may not be
described by the local metadata. By decoupling metadata
and data, we are able to apply flexible strategies on
metadata management and data I/Os.

On each compute node, a virtual chunk component
is deployed on top of the data I/O implementation in
FusionFS. FusionFS itself has employed FUSE to support
POSIX, so there is no need for VC to implement FUSE
interfaces again. Instead, VC is implemented in the fu-
sionfs write() and the fusionfs read() interfaces. Although
the compression is implemented in the fusionfs write()
interface, the compressed file is not persisted into the
hard disk until the file is closed. This approach can
aggregate the small blocks into larger ones, and reduce
the number of I/Os to improve the end-to-end time.
In some scenarios, users are more concerned for the
high availability rather than the compressing time. In
that case, a fsync() could be called to the (partially)
compressed data to ensure these data are available at
the persistent storage in a timely manner, so that other
processes or nodes could start processing them.

The remainder of this section answers the following
questions:

9

1) How does the number of VC affect the compres-
sion ratio and sequential I/O time (Section 3.1)?

2) How does VC, as a middleware, improve the
GPFS [13] I/O throughput (Section 3.2)?

3) How does VC, as a built-in component, help to
improve the I/O throughput of FusionFS [14, 15]
(Section 3.3)?

4) How do the parameters affect the cost of updating
VC (Section 3.4)?

All experiments were repeated at least five times until
results became stable (i.e. within 5% margin of error); the
reported numbers are the average of all runs.

3.1 Compression Ratio

We show how virtual chunks affect the compression
ratio on the Global Cloud Resolving Model (GCRM)
data [16]. Note that climate data is a good example to
leverage the XOR-delta compression; however, selecting
the appropriate compression algorithm for a particular
data set is beyond the scope of this paper. GCRM consists
of single-precision float data of temperatures to analyze
cloud’s influence on the atmosphere and the global cli-
mate. In our experiment there are totally n = 3.2 million
data entries to be compressed with the aforementioned
XOR compressor. Each data entry comprises a row of 80
single-precision floats. Note that based on our previous
analysis in Section 2.3, the optimal number of references
should be set roughly to

√
n ≈ 1, 789 (Eq. 11, Section 2.3).

Thus we test up to 2,000 references, a bit more than the
theoretical optimum.

From 1 to 2,000 references, the compression ratio
change is reported in Table 2, together with the overall
wall time of the compression. As expected, the compres-
sion ratio decreases when more references are appended.
However, the degradation of compression ratio is almost
negligible: within 0.002 between 1 reference and 2000
references. These small changes to the compression ratios
then imply negligible differences of the wall time also:
within sub-seconds out of minutes. Thus, this experiment
demonstrates that adding a reasonable number of addi-
tional references, guided by the analysis in Section 2.3,
only introduces negligible overhead to the compression
process.

TABLE 2
Overhead of additional references

Number of
References

Compression
Ratio

Wall Time
(second)

1 1.4929 415.40
400 1.4926 415.47
800 1.4923 415.54
1200 1.4921 415.62
1600 1.4918 415.69
2000 1.4915 415.76

The reason of the negligible overhead is in fact due
to Eq. 9 (or Eq. 11 as a simplified version) discussed in
Section 2.3. The total number of data entries is about
quadratic to the optimal number of references, making
the cost of processing the additional references only
marginal to the overall compression procedure, partic-
ularly when the data size is large.

3.2 GPFS Middleware
We deployed the virtual chunk middleware on 1,024
cores (256 physical nodes) pointing to a 128-nodes
GPFS [13] file system on Intrepid [18], an IBM Blue
Gene/P supercomputer at Argonne National Laboratory.
Each Intrepid compute node has a quad-core PowerPC
450 processor (850MHz) and 2GB of RAM. One I/O node
exists for every 64 compute nodes, and the I/O time
measured in the following experiments is the end-to-
end time including the overhead on the I/O nodes. The
dataset is 244.25GB of the GCRM [16] climate data. Since
GPFS is a shared parallel file systems, when carrying out
our experiments we make sure there are no other I/O-
intensive jobs; This is achieved by asking each compute
node to write 1 GB data to GPFS shortly before the
experiments and the measured throughput is within
the range specified by the vendor as well as previous
measurements. Afterwards, we checked system logs to
guarantee there were no new jobs submitted during the
experimentation.

Since virtual chunk is implemented with FUSE [21]
that adds extra context switches when making I/O sys-
tem calls, we need to know how much overhead is in-
duced by FUSE. To measure the impact of this overhead,
the GCRM dataset is written to the original GPFS and
the GPFS+FUSE file system (without virtual chunks),
respectively. The difference is within 2.2%, which could
be best explained by the fact that in parallel file sys-
tems the bottleneck is on the networking rather than
the latency and bandwidth of the local disks. Since the
FUSE overhead on GPFS is smaller than 5%, we will not
distinguish both setups (original GPFS and FUSE+GPFS)
in the following discussion.

We test the virtual chunk middleware on GPFS with
two routine workloads: (1) the archival (i.e. write with
compression) of all the available data; and (2) the re-
trieval (i.e. read with decompression) of the latest tem-
perature, regarded as the worst-case scenario discussed
in Section 2.3. The I/O time, as well as the speedup over
the baseline of single-reference compression, is reported
in Figure 2(a). We observe that multiple references (400 –
2000) significantly reduce the original I/O time from 501s
to 383s, and reach the peak performance at 800-references
with 31% (1.3X) improvement.

An interesting observation from Figure 2(a) is that, the
performance sensitivity to the number of references near
the optimal kopt is extremely low. And if we consider
that all our experiments are within 5% margin of error,
the differences across 400 – 2000 are essentially negligi-
ble. The optimal number of references seems to be 800

10

(a) Coarse Granularity 1 – 2000

(b) Fine Granularity 1 – 200

Fig. 2. I/O time with virtual chunks in GPFS

(the shortest time: 383.35 seconds), but the difference
across 400 - 2000 references is marginal, only within
sub-seconds. This phenomenon is because that beyond
a few hundreds of references, the GCRM data set has
reached a fine enough granularity of virtual chunks that
could be efficiently decompressed. To justify this, we re-
run the experiment with finer granularity from 1 to 200
references as reported in Figure 2(b). As expected, the
improvement over 1 – 200 references is more signifi-
cant than between 400 and 2000. This experiment also
indicates that, we could achieve a near-optimal (within
1%) performance (30.0% speedup at k = 50 vs 30.70%
at k = 800) with only 50

800 = 6.25% cost of additional
references. It thus implies that even fewer references than√
n could become significantly beneficial to the overall

I/O performance.
To study the effect of virtual-chunk compression to

real applications, we ran the MMAT application [19] that
calculates the minimal, maximal, and average tempera-
tures on the GCRM dataset. The breakdown of different
portions is shown in Figure 3. Indeed, MMAT is a
data-intensive application, as this is the application type
where data compression is useful. So we can see that in
vanilla GPFS 97% (176.13 out of 180.97 seconds) of the
total runtime is on I/O. After applying the compression

layer (k = 800), the I/O portion is significantly reduced
from 176.13 to 118.02 seconds. Certainly this I/O im-
provement is not free, as there is 23.59 seconds overhead
for the VC computation. The point is, this I/O time
saving (i.e. 176.13 - 118.02 = 58.11 seconds) outweighs the
VC overhead (23.59 seconds), resulting in 1.24X speedup
on the overall execution time.

Fig. 3. Execution time of the MMAT application

3.3 FusionFS Integration

FusionFS [14, 15, 27–29] is a new distributed file system
driven by our initial simulation study [25] that addresses
the I/O bottleneck of high-performance computing. It
is designed with unique features such as distributed
metadata [26, 30–32], cooperative caching [22, 23, 33],
virtual chunking [11, 12], distributed provenance [34, 35],
and GPU acceleration [36]. It also serves as a test bed
for other system components such as next-generation job
scheduler [37, 38].

We have deployed FusionFS integrated with virtual
chunks to a 64-nodes Linux cluster at Illinois Institute
of Technology. Each node has two Quad-Core AMD
Opteron 2.3 GHz processors with 8 GB RAM and 1 TB
Seagate Barracuda hard drive. All nodes are intercon-
nected with a 1Gbps Ethernet. Besides the GCRM [16]
data, we also evaluated another popular data set Sloan
Digital Sky Survey (SDSS [17]) that comprises a collection
of astronomical data such as positions and brightness
of hundreds of millions of celestial objects. The SDSS
dataset is from a SQL query submitted to the SDSS web
portal and has the same size of GCRM.

We illustrate how virtual chunks help FusionFS to im-
prove the I/O throughput on both data sets in Figure 4.
We do not vary k but set it to

√
n when virtual chunk

is enabled. Results show that both read and write
throughput are significantly improved. Note that, the
I/O throughput of SDSS is higher than GCRM, because
the compression ratio of SDSS is 2.29, which is higher
than GCRM’s compression ratio 1.49. In particular, we
observe up to 2X speedup when VC is enabled (SDSS
write: 8206 vs. 4101).

11

Fig. 4. FusionFS throughput on GCRM and SDSS
datasets

3.4 Parameter Sensitivity of Dynamic VC
As discussed in Section 2.6, it is nontrivial to update the
granularity (i.e. linear transform by αi and βi) of virtual
chunks within a particular range (i.e. (si, ti)). We will
show quantitatively how costly this update computation
is with respect to static virtual chunks. The experiments
assume there is one update applied each time, so the
subscripts of α1, β1, and (si, ti) are not shown in the
following discussion.

It should be clear that the cost in the following dis-
cussion is only for the reference update, and does not
consider the benefit from consequent I/Os as discussed
in Section 2.7. Even large overheads can be compensated
by the savings in I/O, resulting in better overall perfor-
mance.

The experimental setup is as follows. The files being
evaluated are again the 244.25GB GCRM data [16]. After
being compressed with 2,000 equidistant virtual chunks,
the RefUpdate procedure is triggered to adjust the vir-
tual chunks. The runtime of this procedure is compared
to the time of compressing the data with static virtual
chunks; the ratio of the update time over the compressing
time is then considered as the cost (in %).

There are two dimensions to control the updating
behavior: (1) the affected range length (s − t + 1), and
(2) the linear transform with α and β. Intuitively, a
larger (s− t+1) indicates more computation, since more
references need to be updated within that range. This
intuition also applies to the linear transform: larger α
and β imply more references to be appended to the end
of the compressed file. Note that, even though both α and
β are considered as coefficients in the linear transform,
it is sufficient to adjust α and set β = 0 to study the
performance with respect to the density of references,
or in other words the granularity of virtual chunks.
Therefore in the following discussion, β is set to zero.

In order to study the combined effect of both the
updated range and chunk granularity, we tune s−t+1

n
to be 0.2 – 1.0, and α to be 0.5 – 128 times of the
original granularity. Figure 5 shows the cost from differ-
ent parameter combinations. Unsurprisingly, the results
confirm our previous intuition: the peak cost (61.15%)
comes from the scenario where: (1) all the references are
updated, i.e. s−t+1

n = 1, and (2) the granularity of virtual
chunks is increased by 128 (the most) times. Similarly,
the lowest cost (10.07%) occurs for s−t+1

n = 0.2 and α =

0.5, the smallest values of both dimensions.

Fig. 5. Parameter sensitivity of dynamic virtual chunks

Now, we turn to discuss a more interesting observation
from Figure 5: the updated range seems to have a more
significant impact to the overhead, than α does. In par-
ticular, for all α’s, the increased overhead looks strongly
proportional to the increased (s− t+1) range, while the
impact from α is less noticeable: increasing α from 0.5
to 128 only adds about 10% cost. To make this more
obvious, we slice the 3-D surface on two dimensions
when fixing s−t+1

n = 0.5 and α = 2, as shown in Figure 6
and Figure 7, respectively.

Figure 6 clearly shows that changing α from 0.5 to
128 affects the cost by slightly less than 11%, with a
fixed ratio between the updated range and the overall
length (s−t+1

n = 0.5). This could be best explained by the
fact that the number of references is roughly set to the
square root of the number of data entries. Thus, even
though the number of references (controlled by α and
β) is significantly increased (256X from 0.5 to 128), the
overall impact to the system performance is diluted by
the small factor – the square root of the original scale.

Fig. 6. Parameter sensitivity with fixed range ratio = 0.5

12

In contrast to α, we observed a strong linearity be-
tween the cost and the updated range (s − t + 1), as
shown in Figure 7. The reason of this phenomenon is
that all the encoded data within (s, t) need to be read into
memory and then decoded to retrieve the new references.
Therefore the cost of this procedure is highly dependent
on the number of data within the range; So we see
a strong linear relation between the overhead and the
updated range.

Fig. 7. Parameter sensitivity with fixed α = 2

4 DISCUSSION AND LIMITATION
4.1 Applicability
It should be clear that the proposed virtual chunk mech-
anism to be used in compressible storage systems is
applicable only if the underlying compression format is
splittable. A compressed file is splittable if it can be split
into subsets and then be processed (e.g. decompressed)
in parallel. Obviously, one key advantage of virtual
chunks is to manipulate data in the arbitrary and logical
subsets of the original file, which depends on this split-
table feature. Without a splittable compression algorithm,
the virtual chunk is not able to decompress itself. The
XOR-based delta compression used through this paper
is splittable. Popular compressors, such bzip2 [4] and
LZO [3], are also splittable. Some non-splittable examples
include Gzip [39] and Snappy [40].

4.2 Autonomic VC Update
Our intuitive solution (Section 2.6) to adjust the virtual
chunk granularity is to ask users to specify where and
how to update the reference. It implies that the users
are expected to have a good understanding of their
applications, such as I/O patterns. This is a reasonable
assumption in some cases, for example if the application
developers are the main users. Besides the manual ma-
nipulation approach introduced in Section 2.6, we can
also expect that the users would specify the distribution
of the reference density in a configuration file, or more
likely a rule such as a decay function [20].

Nevertheless we believe it would be more desirable
to have an autonomic mechanism to adjust the virtual
chunks for those domain users without the technical
expertise such as chemists, astronomers, et al. Given the
large volume of scientific data sets and their applications,
supervised learning techniques have the potentials to
predict future I/O patterns on the basis of a training set.
This remains an open question to the community and a
direction of our future work.

4.3 Data Insertion and Data Removal
We are not aware of much need for data insertion and
data removal within a file in the context of HPC or
scientific applications. By insertion, we mean a new data
entry needs to be inserted into an arbitrary position of an
existing compressed file. Similarly, by removal we mean
an existing value at an arbitrary position needs to be
removed. Nevertheless, this work would be more com-
plete with support of efficient data insertion and removal
when enabling virtual chunks in storage compression.

A straightforward means to support this operation
might treat a data removal as a special case of data writes
with the new value as null. But then it would bring new
challenges such as dealing with the “holes” within the
file. We would like to have more discussions with HPC
researchers and domain scientists regarding this.

5 RELATED WORK
It should be noted that a compression method does not
necessarily need to restore the absolutely original data.
In general, compression algorithms could be categorized
into to two groups: lossy algorithms and lossless algo-
rithms. A lossy algorithm might lose some (normally a
small) percentage of accuracy, while a lossless one has to
ensure the 100% accuracy. In scientific computing, stud-
ies [6, 7] show that lossy compression could be accept-
able, or even quite effective, under certain circumstances.
In fact, lossy compression is also popular in other fields,
e.g. the most widely compatible lossy audio and video
format MPEG-1 [41]. This paper presents virtual chunks
mostly by going through a delta-compression example
based on XOR, which is a lossless compression. It does
not imply that virtual chunks cannot be used in a lossy
compression. Virtual chunk is not a specific compression
algorithm but a system mechanism that is applicable to
any splittable compression (either lossy or lossless).

Some frameworks are proposed as middleware to
allow applications call high-level I/O libraries for data
compression and decompression, e.g. [19, 42, 43]. None
of these techniques take consideration of the overhead
involved in decompression by assuming the chunk allo-
cated to each node would be requested as an entirety. In
contrast, virtual chunks provide a mechanism to apply
flexible compression and decompression.

There is previous work to study the file system support
for data compression. Integrating compression to log-
structured file systems was proposed decades ago [44],

13

which suggested a hardware compression chip to acceler-
ate the compressing and decompressing. Later, XDFS [45]
described the systematic design and implementation for
supporting data compression in file systems with Berke-
leyDB [46]. MRAMFS [47] was a prototype file system to
support data compression to leverage the limited space
of non-volatile RAM. In contrast, virtual trunks represent
a general technique applicable to existing systems.

Data deduplication is a general inter-chunk compres-
sion technique that only stores a single copy of the
duplicate chunks (or blocks). For example, LBFS [48] was
a networked file system that exploited the similarities
between files (or versions of files) so that chunks of
files could be retrieved in the client’s cache rather than
transferring from the server. CZIP [49] was a compres-
sion scheme on content-based naming, that eliminated
redundant chunks and compressed the remaining (i.e.
unique) chunks by applying existing compression algo-
rithms. Recently, the metadata for the deduplication (i.e.
file recipe) was also slated for compression to further
save the storage space [50]. While deduplication focuses
on inter-chunk compressing, virtual chunk focuses on the
I/O improvement within the chunk.

Index has been introduced to data compression to
improve the compressing and query speed e.g. [51, 52].
The advantage of indexing is highly dependent on the
chunk size: large chunks are preferred to achieve high
compression ratios in order to amortize the indexing
overhead. However large chunks would cause poten-
tial decompression overhead as explained earlier in this
paper. Virtual chunk overcomes the large-chunk issue
by logically splitting the large chunks with fine-grained
partitions while still keeping the physical coherence.

6 CONCLUSION AND FUTURE WORK

This paper presents a new compression mechanism
named virtual chunking (VC). VC avoids the potentially
huge space overhead of conventional physical chunking
in data compression and supports an efficient random ac-
cess to the compressed data. In essence, VC achieves the
small spacial overhead of file-level compression as well
as the small computational overhead of (physical)chunk-
level decompression, the best of both worlds.

We discuss VC from two major perspectives on
whether or not the I/O pattern follows a uniform distri-
bution over the data: static VC and dynamic VC. Static
VC assumes the references are equidistant without a
prior knowledge of the application’s characteristic and
I/O patterns. Although static VC is applicable in many
scenarios, it is still highly desirable to allow users to
specify the reference position or distribution. To this end,
we extend static VC to dynamic VC, a more general form
of static VC to make the approach more applicable.

We formulate the procedures to use static and dynamic
VC to incorporate splittable compressors. An in-depth
analysis is conduced for the abstract model of VC such

as the optimal parameter setup. Evaluations show that
VC could speed up scientific applications by 1.3X – 2X.

Our future work primarily lies in devising an auto-
matic mechanism to update virtual chunks with machine
learning. The learning process in each iteration does not
need to start from scratch; it may take the previous result
as a feed and incrementally makes the adjustment—some
of our previous work [53–55] on incremental algorithms
could possibly be leveraged.

ACKNOWLEDGMENT
This work was supported in part by the Office of Bi-
ological and Environmental Research, Office of Science,
U.S. Department of Energy, under contract DE-ACO2-
O6CH11357, and the NSF under awards OCI-1054974.

REFERENCES
[1] T. Hey, S. Tansley, and K. Tolle, Eds., The Fourth Paradigm: Data-Intensive

Scientific Discovery. Microsoft Research, 2009.
[2] P. A. Freeman, D. L. Crawford, S. Kim, and J. L. Munoz, “Cyberinfrastruc-

ture for science and engineering: Promises and challenges,” Proceedings of
the IEEE, vol. 93, no. 3, pp. 682–691, 2005.

[3] LZO, “http://www.oberhumer.com/opensource/lzo,” Accessed September
5, 2014.

[4] bzip2, “http://www.bzip2.org,” Accessed September 5, 2014.
[5] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop distributed

file system,” in Proceedings of IEEE Symposium on Mass Storage Systems and
Technologies, 2010.

[6] D. Laney, S. Langer, C. Weber, P. Lindstrom, and A. Wegener, “Assessing
the effects of data compression in simulations using physically motivated
metrics,” in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, 2013.

[7] S. Lakshminarasimhan, J. Jenkins, I. Arkatkar, Z. Gong, H. Kolla, S.-H.
Ku, S. Ethier, J. Chen, C. S. Chang, S. Klasky, R. Latham, R. Ross, and
N. F. Samatova, “ISABELA-QA: Query-driven analytics with ISABELA-
compressed extreme-scale scientific data,” in Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC’11), 2011.

[8] HDF5, “http://www.hdfgroup.org/HDF5/doc/index.html,” Accessed
September 5, 2014.

[9] NetCDF, “http://www.unidata.ucar.edu/software/netcdf,” Accessed
September 5, 2014.

[10] GRIB, “http://www.wmo.int/pages/prog/www/DPS/
FM92-GRIB2-11-2003.pdf,” Accessed April 19, 2015.

[11] D. Zhao, J. Yin, and I. Raicu, “Improving the i/o throughput for data-
intensive scientific applications with efficient compression mechanisms,” in
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC ’13), poster session, 2013.

[12] D. Zhao, J. Yin, K. Qiao, and I. Raicu, “Virtual chunks: On supporting
random accesses to scientific data in compressible storage systems,” in
Proceedings of IEEE International Conference on Big Data, 2014.

[13] F. Schmuck and R. Haskin, “GPFS: A shared-disk file system for large
computing clusters,” in Proceedings of the 1st USENIX Conference on File and
Storage Technologies, 2002.

[14] D. Zhao, N. Liu, D. Kimpe, R. Ross, X.-H. Sun, and I. Raicu, “Towards
exploring data-intensive scientific applications at extreme scales through
systems and simulations,” Parallel and Distributed Systems, IEEE Transactions
on, 2015 (accepted).

[15] D. Zhao, Z. Zhang, X. Zhou, T. Li, K. Wang, D. Kimpe, P. Carns, R. Ross, and
I. Raicu, “FusionFS: Toward supporting data-intensive scientific applications
on extreme-scale distributed systems,” in Proceedings of IEEE International
Conference on Big Data, 2014.

[16] GCRM, “http://kiwi.atmos.colostate.edu/gcrm/,” Accessed September 5,
2014.

[17] SDSS Query, “http://cas.sdss.org/astrodr6/en/help/docs/realquery.asp,”
Accessed September 5, 2014.

[18] Intrepid, “https://www.alcf.anl.gov/user-guides/
intrepid-challenger-surveyor,” Accessed September 5, 2014.

[19] T. Bicer, J. Yin, D. Chiu, G. Agrawal, and K. Schuchardt, “Integrating
online compression to accelerate large-scale data analytics applications,”
in Proceedings of the 2013 IEEE 27th International Symposium on Parallel and
Distributed Processing (IPDPS), 2013.

http://www.oberhumer.com/opensource/lzo
http://www.bzip2.org
http://www.hdfgroup.org/HDF5/doc/index.html
http://www.unidata.ucar.edu/software/netcdf
http://www.wmo.int/pages/prog/www/DPS/FM92-GRIB2-11-2003.pdf
http://www.wmo.int/pages/prog/www/DPS/FM92-GRIB2-11-2003.pdf
http://kiwi.atmos.colostate.edu/gcrm/
http://cas.sdss.org/astrodr6/en/help/docs/realquery.asp
https://www.alcf.anl.gov/user-guides/intrepid-challenger-surveyor
https://www.alcf.anl.gov/user-guides/intrepid-challenger-surveyor

14

[20] E. Cohen and M. Strauss, “Maintaining time-decaying stream aggregates,”
in Proceedings of the Twenty-second ACM SIGMOD-SIGACT-SIGART Sympo-
sium on Principles of Database Systems, 2003.

[21] FUSE, “http://fuse.sourceforge.net,” Accessed September 5, 2014.
[22] D. Zhao, K. Qiao, and I. Raicu, “Hycache+: Towards scalable high-

performance caching middleware for parallel file systems,” in IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, 2014.

[23] D. Zhao and I. Raicu, “HyCache: A user-level caching middleware for
distributed file systems,” in Proceedings of IEEE 27th International Symposium
on Parallel and Distributed Processing Workshops and PhD Forum, 2013.

[24] ——, “Distributed file systems for exascale computing,” in International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC ’12), doctoral showcase, 2012.

[25] D. Zhao, D. Zhang, K. Wang, and I. Raicu, “Exploring reliability of exascale
systems through simulations,” in Proceedings of the 21st ACM/SCS High
Performance Computing Symposium (HPC), 2013.

[26] T. Li, X. Zhou, K. Brandstatter, D. Zhao, K. Wang, A. Rajendran, Z. Zhang,
and I. Raicu, “ZHT: A light-weight reliable persistent dynamic scalable zero-
hop distributed hash table,” in Proceedings of IEEE International Symposium
on Parallel and Distributed Processing, 2013.

[27] D. Zhao, X. Yang, I. Sadooghi, G. Garzoglio, S. Timm, and I. Raicu, “High-
performance storage support for scientific applications on the cloud,” in
Proceedings of the 6th Workshop on Scientific Cloud Computing (ScienceCloud),
2015.

[28] D. Zhao and I. Raicu, “Storage support for data-intensive scientific appli-
cations on the cloud,” in NSF Workshop on Experimental Support for Cloud
Computing, 2014.

[29] ——, “Storage support for data-intensive applications on extreme-scale
hpc systems,” in International Conference for High Performance Computing,
Networking, Storage and Analysis (SC ’14), doctoral showcase, 2014.

[30] T. Li, X. Zhou, K. Wang, D. Zhao, I. Sadooghi, Z. Zhang, and I. Raicu, “A
convergence of key-value storage systems from clouds to supercomputer,”
Concurr. Comput. : Pract. Exper., 2015 (accepted).

[31] T. Li, K. Keahey, K. Wang, D. Zhao, and I. Raicu, “A dynamically scalable
cloud data infrastructure for sensor networks,” in Proceedings of the 6th
Workshop on Scientific Cloud Computing (ScienceCloud), 2015.

[32] T. Li, C. Ma, J. Li, X. Zhou, K. Wang, D. Zhao, and I. Raicu, “Graph/z: A key-
value store based scalable graph processing system,” in Cluster Computing,
IEEE International Conference on, 2015.

[33] D. Zhao, K. Qiao, and I. Raicu, “Towards cost-effective and high-
performance caching middleware for distributed systems,” International
Journal of Big Data Intelligence, 2015.

[34] D. Zhao, C. Shou, T. Malik, and I. Raicu, “Distributed data provenance for
large-scale data-intensive computing,” in Cluster Computing, IEEE Interna-
tional Conference on, 2013.

[35] C. Shou, D. Zhao, T. Malik, and I. Raicu, “Towards a provenance-aware dis-
tributed filesystem,” in 5th Workshop on the Theory and Practice of Provenance
(TaPP), 2013.

[36] D. Zhao, K. Burlingame, C. Debains, P. Alvarez-Tabio, and I. Raicu, “To-
wards high-performance and cost-effective distributed storage systems with
information dispersal algorithms,” in Cluster Computing, IEEE International
Conference on, 2013.

[37] Z. Zhou, X. Yang, D. Zhao, P. Rich, W. Tang, J. Wang, and Z. Lan, “I/o-aware
batch scheduling for petascale computing systems,” in Cluster Computing,
IEEE International Conference on, 2015.

[38] K. Wang, X. Zhou, T. Li, D. Zhao, M. Lang, and I. Raicu, “Optimizing load
balancing and data-locality with data-aware scheduling,” in Proceedings of
IEEE International Conference on Big Data (BigData Conference), 2014.

[39] Gzip, “http://www.gnu.org/software/gzip/gzip.html,” Accessed Septem-
ber 5, 2014.

[40] Snappy, “https://code.google.com/p/snappy/,” Accessed September 5,
2014.

[41] MPEG-1, “http://en.wikipedia.org/wiki/MPEG-1,” Accessed September 5,
2014.

[42] E. R. Schendel, S. V. Pendse, J. Jenkins, D. A. Boyuka, II, Z. Gong,
S. Lakshminarasimhan, Q. Liu, H. Kolla, J. Chen, S. Klasky, R. Ross, and
N. F. Samatova, “Isobar hybrid compression-i/o interleaving for large-scale
parallel i/o optimization,” in Proceedings of International Symposium on High-
Performance Parallel and Distributed Computing, 2012.

[43] J. Jenkins, E. R. Schendel, S. Lakshminarasimhan, D. A. Boyuka, II, T. Rogers,
S. Ethier, R. Ross, S. Klasky, and N. F. Samatova, “Byte-precision level
of detail processing for variable precision analytics,” in Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis (SC), 2012.

[44] M. Burrows, C. Jerian, B. Lampson, and T. Mann, “On-line data compression
in a log-structured file system,” in Proceedings of the Fifth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 1992.

[45] J. P. MacDonald, “File system support for delta compression,” University of

California, Berkley, Tech. Rep., 2000.
[46] M. A. Olson, K. Bostic, and M. Seltzer, “Berkeley db,” in Proceedings of the

Annual Conference on USENIX Annual Technical Conference, 1999.
[47] N. K. Edel, D. Tuteja, E. L. Miller, and S. A. Brandt, “Mramfs: A compressing

file system for non-volatile ram,” in Proceedings of the The IEEE Computer
Society’s 12th Annual International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunications Systems (MASCOTS), 2004.

[48] A. Muthitacharoen, B. Chen, and D. Mazières, “A low-bandwidth network
file system,” in Proceedings of the Eighteenth ACM Symposium on Operating
Systems Principles (SOSP), 2001.

[49] K. Park, S. Ihm, M. Bowman, and V. S. Pai, “Supporting practical content-
addressable caching with czip compression,” in 2007 USENIX Annual Tech-
nical Conference, 2007.

[50] D. Meister, A. Brinkmann, and T. Süß, “File recipe compression in data
deduplication systems,” in Proceedings of the 11th USENIX Conference on File
and Storage Technologies (FAST), 2013.

[51] S. Lakshminarasimhan, D. A. Boyuka, S. V. Pendse, X. Zou, J. Jenkins,
V. Vishwanath, M. E. Papka, and N. F. Samatova, “Scalable in situ scientific
data encoding for analytical query processing,” in Proceedings of the 22nd In-
ternational Symposium on High-performance Parallel and Distributed Computing
(HPDC), 2013.

[52] Z. Gong, S. Lakshminarasimhan, J. Jenkins, H. Kolla, S. Ethier, J. Chen,
R. Ross, S. Klasky, and N. F. Samatova, “Multi-level layout optimization
for efficient spatio-temporal queries on isabela-compressed data,” in Pro-
ceedings of the 2012 IEEE 26th International Parallel and Distributed Processing
Symposium (IPDPS), 2012.

[53] D. Zhao and L. Yang, “Incremental isometric embedding of high-
dimensional data using connected neighborhood graphs,” IEEE Trans. Pat-
tern Anal. Mach. Intell. (PAMI), vol. 31, no. 1, Jan. 2009.

[54] R. Lohfert, J. Lu, and D. Zhao, “Solving sql constraints by incremental
translation to sat,” in International Conference on Industrial, Engineering and
Other Applications of Applied Intelligent Systems, 2008.

[55] D. Zhao and L. Yang, “Incremental construction of neighborhood graphs for
nonlinear dimensionality reduction,” in Proceedings of International Conference
on Pattern Recognition, 2006.

Dongfang Zhao is working towards his Ph.D. in
computer science at Illinois Institute of Technol-
ogy in Chicago. Previously he obtained his Mas-
ter’s degree in computer science from Emory
University in Atlanta. His research interests in-
clude high-performance computing, distributed
systems, cloud computing, big data, and ma-
chine intelligence.

Dr. Kan Qiao received his Ph.D. in computer
science from Illinois Institute of Technology in
Chicago, 2015. He obtained his bachelor’s de-
gree in Electrical Engineering from Beijing Uni-
versity Of Aeronautics and Astronautics (China)
in 2010. His research interests include combina-
torial optimization and network algorithms. He is
now a software engineer at Google.

Dr. Jian Yin is a senior computer scientist
at the Pacific Northwest National Laboratory.
His current research interests include distributed
systems, high-performance computing, data sci-
ences, and large-scale scientific applications. He
holds a Ph.D. degree in computer science from
the University of Texas at Austin, TX.

Dr. Ioan Raicu is an assistant professor in the
Department of Computer Science at Illinois In-
stitute of Technology, as well as a guest re-
search faculty in the Math and Computer Sci-
ence Division at Argonne National Laboratory.
He has received the prestigious NSF CAREER
award (2011 - 2015) for his innovative work on
distributed file systems for extreme-scales. He
obtained his Ph.D. in Computer Science from
University of Chicago in 2009.

http://fuse.sourceforge.net
http://www.gnu.org/software/gzip/gzip.html
https://code.google.com/p/snappy/
http://en.wikipedia.org/wiki/MPEG-1

	Introduction
	Virtual Chunking
	Storing References
	Compression with VC
	Optimal Number of References
	Random Read
	Random Write
	Updating VC
	I/O Improvement from Dynamic VC

	Evaluation
	Compression Ratio
	GPFS Middleware
	FusionFS Integration
	Parameter Sensitivity of Dynamic VC

	Discussion and Limitation
	Applicability
	Autonomic VC Update
	Data Insertion and Data Removal

	Related Work
	Conclusion and Future Work
	Biographies
	Dongfang Zhao
	Dr. Kan Qiao
	Dr. Jian Yin
	Dr. Ioan Raicu

