
High-Performance Storage Support for Scientific
Applications on the Cloud

Dongfang Zhao?, Xu Yang?, Iman Sadooghi?, Gabriele Garzoglio†, Steven Timm†, Ioan Raicu?‡

?Illinois Institute of Technology †Fermi National Accelerator Lab ‡Argonne National Lab

{dzhao8,xyang56,isadooghi}@iit.edu, {garzogli,timm}@fnal.gov, iraicu@cs.iit.edu

ABSTRACT
Although cloud computing has become one of the most pop-
ular paradigms for executing data-intensive applications (for
example, Hadoop), the storage subsystem is not optimized
for scientific applications. We believe that when execut-
ing scientific applications in the cloud, a node-local dis-
tributed storage architecture is a key approach to overcome
the challenges from the conventional shared/parallel storage
systems. We analyze and evaluate four representative file
systems (S3FS, HDFS, Ceph, and FusionFS) on three plat-
forms (Kodiak cluster, Amazon EC2 and FermiCloud) with
a variety of benchmarks to explore how well these storage
systems can handle metadata intensive, write intensive, and
read intensive workloads.

1. INTRODUCTION
While cloud computing has become one of the most pre-

vailing paradigms for data-intensive applications, many legacy
scientific applications are still struggling to leverage this
new paradigm. One issue for scientific applications to be
deployed on the cloud lies in the storage subsystem. For
instance, HDFS [1] and its variations [2] are popular file
systems in cloud platforms for many workloads in data cen-
ters built on commodity hardware; yet, many scientific ap-
plications deal with a large number of small files [3] that
are not well supported by the data parallelism of HDFS.
The root cause of the storage discrepancy between scientific
applications and cloud computing stems from their assump-
tions: Scientific applications assume their data to be stored
in remote parallel file systems, while cloud platforms provide
node-local storage available on the virtual machines.

This paper shares our view on how to design storage sys-
tems for scientific applications on the cloud. Based on the
literature and our own experience on cloud computing and
high-performance computing (HPC) in the last decade, we
believe that cloud storage would need to provide the follow-
ing three essential services for scientific applications:
1. Scalable metadata accesses. Conventional central-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ScienceCloud’15, June 16, 2015, Portland, Oregon, USA.
Copyright c© 2015 ACM 978-1-4503-3570-6/15/06 ...$15.00.
DOI: http://dx.doi.org/10.1145/2755644.2755648.

ized mechanisms for managing metadata on cloud comput-
ing, such as GFS [2] and HDFS [1], would not suffice for the
extensive metadata accesses of scientific applications.
2. Optimized data write. Due to the nature of scientific
applications, checkpointing is the main approach to achieve
fault tolerance. This implies that the underlying storage
system is expected to be efficient on data write as check-
pointing per se involves highly frequent data write.
3. Localized file read. After a failure occurs, some vir-
tual machines (VM) need to restart. Instead of transferring
VM images from remote file systems, it would be better to
keep a local copy of the image and load it from the local
disk when needed.

In order to justify the above arguments, we analyze four
representative file systems. Two of them are originated from
cloud computing (S3FS [4], HDFS [1]). S3FS is built on
top of the S3 storage offer by Amazon EC2 cloud as a re-
mote shared storage with the added POSIX support from
FUSE [5]. HDFS is an open-source clone of Google File Sys-
tem (GFS [2]) without POSIX support. The other two file
systems were initially designed for high-performance com-
puting (Ceph [6], FusionFS [7]). Ceph employs distributed
metadata management and the CRUSH [8] algorithm to bal-
ance the load. FusionFS is first introduced in [9] and sup-
ports several unique features such as erasure coding [10],
provenance [11], caching [12, 13], and compression [14, 15].
This study involves three test beds: a conventional cluster
Kodiak [16], a public cloud Amazon EC2 [17], and a private
cloud FermiCloud [18].

2. DISTRIBUTED METADATA ACCESS
State-of-the-art distributed file systems on cloud comput-

ing, such as HDFS [1], still embrace the decade-old design of
a centralized metadata server. The reason of such a design
is due to the workload characteristic in data centers. More
specifically, a large portion of workloads in data centers in-
volve mostly large files. For instance, HDFS has a default 64
MB chunk size (typically 128 MB though), which implicitly
implies that the target workload has many files larger than
64 MB; HDFS is not optimized for files smaller than 64 MB.
Because many large files are expected, the metadata accesses
are not intensive and one single metadata server in many
cases is sufficient. In other words, a centralized metadata
server in the conventional workloads of cloud computing is
not a performance bottleneck.

The centralized design of metadata service, unfortunately,
would not meet the requirement of many HPC applications
that deal with a larger number of concurrent metadata ac-

cesses. HPC applications are, in nature, highly different
than those conventionally deployed on cloud platforms. One
of the key differences is file sizes. For instance, Welch and
Noer [19] report that 25% – 90% of all the 600 million files
from 65 Panasas [20] installations are 64 KB or smaller. Such
a huge number of small files pose a significantly higher pres-
sure to the metadata server than the cloud applications. A
single metadata server would easily become the bottleneck
in these metadata-intensive workloads.

A distributed approach to manage metadata seems to be
the natural choice for scientific applications on the cloud.
Fortunately, several systems (for example, [6, 7]) have em-
ployed this design principle. In the remainder of this section,
we pick FusionFS and HDFS as two representative file sys-
tems to illustrate the importance of a distributed metadata
service under intensive metadata accesses. Before discussing
the experiment details, we provide a brief introduction of the
metadata management of both systems.

HDFS, as a clone of the Google File System [2], has a log-
ically1 single metadata server (i.e., namenode). The repli-
cation of the namenode is for fault tolerance rather than
balancing the I/O pressure. That is, all the metadata re-
quests are directed to the single namenode—a simple, yet
effective design decision for the cloud workloads. FusionFS
is designed to support extremely high concurrency of meta-
data accesses. It achieves this goal by dispersing meta-
data to as many nodes as possible. This might be overkill
for small- to medium-scale applications, but is essential for
those metadata-intensive workloads that are common in sci-
entific applications.

Fig. 1 shows the metadata performance of HDFS and Fu-
sionFS on Kodiak. The workload in this experiment is to
let each node create empty files to the file system at differ-
ent scales from 4 to 512 nodes. The reported numbers are
aggregate metadata throughput.

Figure 1: Metadata performance of FusionFS and
HDFS are compared.

There are three important observations worth more dis-
cussion. First, the baseline (i.e., 4 nodes) shows that HDFS
can only create 2 files per second, while FusionFS delivers
more than 6K operations per second. This drastic gap is
mainly due to that HDFS is a Java implementation with
large overhead when communicating with the name server
and FusionFS’s metadata is highly optimized with C/C++.
Second, HDFS’s metadata performance starts to taper off
beyond 128 nodes. This can be best explained by that

1because it gets replicated on multiple nodes, physically

the single name server gets saturated by the aforementioned
workloads from 128 nodes. Third, the metadata throughput
of FusionFS shows almost linear scalability from 4 nodes all
the way to 512 nodes. This trend justifies the effectiveness of
employing a distributed metadata management for intensive
metadata accesses.

3. OPTIMIZED DATA WRITE
Data write is one of the most common I/O workloads in

scientific applications due to their de facto mechanism to
achieve fault tolerance—checkpointing. Essentially, check-
pointing asks the system to periodically persist its memory
states to the disks, which involves a larger number of data
writes. The persisted data only need to be loaded (i.e., read)
after a failure occurs in a completely nondeterministic man-
ner. As the system is becoming increasingly larger, the time
interval between consecutive checkpoints is predicted to be
dramatically smaller in future systems. [21] From storage’s
perspective, cloud platform will have to provide highly effi-
cient data write throughput for scientific applications.

Unfortunately, HDFS could hardly provide optimized data
write due to the metadata limitation discussed in Section 2.
Fig. 2 shows the write throughput of FusionFS and HDFS on
Kodiak. Similarly to the metadata trend, the write through-
put of HDFS also suffers poor scalability beyond 128 nodes.

Figure 2: Write throughput of FusionFS and HDFS
are compared.

Another option in cloud platforms is the remote shared
storage. It usually provides a unified interface and scalable
I/O performance for applications. One example is the S3
storage on Amazon EC2 cloud. S3 does not only provide a
set of API but also leverages FUSE [5] to serve as a fully
POSIX-compliant file system named S3FS. Therefore S3FS
is becoming a popular replacement of the conventional re-
mote shared file systems [22, 23] in HPC. Nevertheless, we
will show that S3FS is hardly competitive to a node-local
file system.

Fig. 3 shows the aggregate throughput of both FusionFS
and S3FS on Amazon EC2 m3.medium instances. Obvi-
ously, S3FS is orders of magnitude slower than FusionFS.
The reason is that every file operation on S3FS invokes a se-
quence of remote data transfer while FusionFS tries to deal
with data on the local disk. FusionFS has shown highly
strong scalability on HPC machines on up to 16K nodes re-
sulting in an aggregate 2.5 TB/s throughput; we are now
seeing a similar success on the cloud.

Figure 3: Write throughput of FusionFS and S3FS
are compared.

According to FusionFS’s performance, we envision the
node-local storage is essential to achieve optimal write through-
put. To further justify that, we conduct similar experiments
with another node-local distributed file system Ceph [6] de-
ployed on FermiCloud [18]. Fig. 4 shows that the write
throughput of Ceph is almost linearly scalable and the effi-
ciency is always higher than 90%. The baseline number is
relatively low (6.66 MB/s) because we only allow five writers
in the experiment.

Figure 4: Scalable Write Throughput of Ceph.

The scalable throughput of Ceph is attributed by its dis-
tributed metadata and data movement. The metadata in
Ceph is organized in such a way that high availability and
scalability are guaranteed. An extra ceph metadata server
can be standby, ready to take over the duties of any failed
metadata server that was active, thus eliminating the single
point of failure on metadata. Moreover, Ceph can be config-
ured with multiple metadata servers that split the directory
tree into subtrees (and shards of a single busy directory),
effectively balancing the load amongst all the active servers.
Ceph use Object Storage Device (OSD) Daemons to han-
dle the read/write operations on the storage disks. Unlike
traditional architectures, where clients talk to a centralized
component (for example, a gateway, a broker), Ceph allows
clients to interact with Ceph OSD Daemons directly [8].
This design prevents the single point of failure and improves
the performance and scalability of Ceph’s I/O throughput.

Nevertheless, a key difference exists between Ceph and
FusionFS. In Ceph, a complicated algorithm (CRUSH) mi-
grates data across multiple physical nodes to achieve load
balance in nearly real-time; FusionFS always writes to the
local storage and asynchronously calls a background pro-
cess to balance the data. In other words, FusionFS trades
real-time load balance for higher I/O performance, which is
desirable in many scenarios.

Figure 5: Ceph and FusionFS on Amazon EC2.

Fig. 5 shows the aggregate throughput of Ceph and Fu-
sionFS on Amazon EC2 cloud, both of which are deployed
with FUSE and measured when writing/reading a distinct
file of 4 GB on each node. The setup of both filesystems
are the same: each node behaves as a data server, a meta-
data server, and a client. We observe both file systems have
good scalability, but FusionFS is stronger: from 4 to 16
nodes the gap between Ceph and FusionFS is increased from
(2.0+3.1)/2 = 2.5× to (2.8+3.7)/2 = 3.3×. Also note that
the throughput of FusionFS is reaching the hardware limit:
on 4 nodes it delivers aggregate 170 MB/s indicating 42.5
MB/s per node, and the raw bandwidth is 44.9 MB/s. That
is, FusionFS achieves 42.5/44.9 = 94.7% efficiency.

4. LOCALIZED FILE READ
File read throughput is an important metric and is often

underestimated since a lot of effort is put on data write as
discussed in Section 3. When a VM is booted or restarted,
the image needs to be loaded into the memory and this is be-
coming a challenging problem in many cloud platforms [24,
25]. Therefore a scalable read throughput is highly desirable
for the cloud storage, which urges us to revisit the conven-
tional architecture where files are typically read from remote
shared file systems. In HPC this means the remote parallel
file system such as GPFS and Lustre, and in cloud platforms
such as Amazon EC2 it implies the remote S3 storage, or the
S3FS file system.

Ideally, local file reads would be preferable since it avoids
the costly remote data transfer. To demonstrate this, we
compare FusionFS and S3FS on Amazon EC2 in Fig. 6. Fu-
sionFS, which leverage local disks for file reads, shows orders
of magnitude higher throughput than S3FS.

On FermiCloud, Ceph, another local-read-enabled file sys-
tems also achieves a scalable read throughput and high effi-
ciency as shown in Fig. 7 (the relatively low baseline num-

Figure 6: Read throughput of FusionFS and S3FS
are compared.

ber is due to the same reason in write throughput; only
five readers are enabled). We believe this is essential for
read-intensive applications on the cloud, such as VM image
loading. While strictly local reading might not always be an
option in all cases because some applications poses unique
workflows and are hard to determine before run time, more
“static” workloads such as VM loading should be supported
by local file read if at all possible.

Figure 7: Scalable Read Throughput of Ceph.

5. RELATED WORK
Conventional storage in HPC systems for scientific ap-

plications are mainly remote to compute resources. Pop-
ular systems include GPFS [22], Lustre [23], PVFS [26].
All these systems are typically deployed on a distinct clus-
ter from compute nodes. Cloud computing, on the other
hand, is built on the commodity hardware where local stor-
age is typically available for virtual computing machines.
The de facto node-local file system (Google File System [2],
HDFS [1]), however, can be hardly leveraged by scientific
applications out of the box due to the concerns on small file
accesses, POSIX interface, and so forth. Another category
of storage in the cloud is similar to the conventional HPC
solution—a remote shared storage such as Amazon S3. A
POSIX-compliant file system built on S3 is also available
named S3FS [4]. Unfortunately its throughput performance

usually becomes a bottleneck of the applications and thus
limits its use in practice.

6. CONCLUSION
This position paper envisions the characteristics of future

cloud storage systems for scientific applications that used to
be running on the HPC systems. Based on literature and
our own FusionFS experience, we believe the key designs of
future storage system comprise the fusion of compute and
storage resources as well as completely distributed data ma-
nipulation (both metadata and files), in order to make cloud
computing more adaptable to scientific applications, namely
(1) distributed metadata accesses, (2) optimized data write,
and (3) localized file read.

Acknowledgments. This work was supported in part by
the National Science Foundation under awards OCI-1054974
(CAREER), by the US Department of Energy under con-
tract number DE-AC02-07CH11359, and by KISTI under
a joint Cooperative Research and Development Agreement
CRADA-FRA 2014-0002/KISTI-C14014.

7. REFERENCES
[1] K. Shvachko, et al. The hadoop distributed file system. In

MSST, 2010.

[2] S. Ghemawat, et al. The Google file system. In SOSP, 2003.

[3] P. Carns, et al. Small-file access in parallel file systems. In
IPDPS, 2009.

[4] S3FS. https://code.google.com/p/s3fs/.

[5] FUSE. http://fuse.sourceforge.net.

[6] S. Weil, et al. Ceph: A scalable, high-performance distributed
file system. In OSDI, 2006.

[7] D. Zhao, et al. FusionFS: Toward supporting data-intensive
scientific applications on extreme-scale distributed systems. In
Big Data Conference, 2014.

[8] S. Weil, et al. Crush: Controlled, scalable, decentralized
placement of replicated data. In SC, 2006.

[9] D. Zhao, et al. Distributed file systems for exascale computing.
In SC, 2012.

[10] D. Zhao, et al. Towards high-performance and cost-effective
distributed storage systems with information dispersal
algorithms. In CLUSTER, 2013.

[11] D. Zhao, et al. Distributed data provenance for large-scale
data-intensive computing. In CLUSTER, 2013.

[12] D. Zhao, et al. Hycache+: Towards scalable high-performance
caching middleware for parallel file systems. In CCGrid, 2014.

[13] D. Zhao, et al. HyCache: A user-level caching middleware for
distributed file systems. In IPDPSW, 2013.

[14] D. Zhao, et al. Virtual chunks: On supporting random accesses
to scientific data in compressible storage systems. In Big Data
Conference, 2014.

[15] D. Zhao, et al. Improving the i/o throughput for data-intensive
scientific applications with efficient compression mechanisms. In
SC, 2013.

[16] Kodiak. https://www.nmc-probe.org/wiki/machines:kodiak.

[17] Amazon EC2. http://aws.amazon.com/ec2.

[18] FermiCloud. http://fclweb.fnal.gov/.

[19] B. Welch, et al. Optimizing a hybrid SSD/HDD HPC storage
system based on file size distributions. In MSST, 2013.

[20] D. Nagle, et al. The Panasas activescale storage cluster:
Delivering scalable high bandwidth storage. In SC, 2004.

[21] D. Zhao, et al. Exploring reliability of exascale systems through
simulations. In HPC, 2013.

[22] F. Schmuck, et al. GPFS: A shared-disk file system for large
computing clusters. In FAST, 2002.

[23] P. Schwan. Lustre: Building a file system for 1,000-node
clusters. In Linux symposium, 2003.

[24] H. Wu, et al. A reference model for virtual machine launching
overhead. IEEE Transactions on Cloud Computing, 2014.

[25] H. Wu, et al. Modeling the virtual machine launching overhead
under fermicloud. In CCGrid, 2014.

[26] P. Carns, et al. PVFS: A parallel file system for linux clusters.
In Annual Linux Showcase and Conference, 2000.

http://fuse.sourceforge.net

	Introduction
	Distributed Metadata Access
	Optimized Data Write
	Localized File Read
	Related Work
	Conclusion
	References

