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ABSTRACT 

Distributed systems are growing exponentially in the computing capacity. On the 

high-performance computing (HPC) side, supercomputers are predicted to reach exascale 

with billion-way parallelism around the end of this decade. Scientific applications 

running on supercomputers are becoming more diverse, including traditional large-scale 

HPC jobs, small-scale HPC ensemble runs, and fine-grained many-task computing 

(MTC) workloads. Similar challenges are cropping up in cloud computing as data-centers 

host ever growing larger number of servers exceeding many top HPC systems in 

production today. The applications commonly found in the cloud are ushering in the era 

of big data, resulting in billions of tasks that involve processing increasingly large 

amount of data. 

However, the resource management system (RMS) software of distributed 

systems is still designed around the decades-old centralized paradigm, which is far from 

satisfying the ever-growing needs of performance and scalability towards extreme scales, 

due to the limited capacity of a centralized server. This huge gap between the processing 

capacity and the performance needs has driven us to develop next-generation RMSs that 

are magnitudes more scalable. 

In this dissertation, we first devise a general system software taxonomy to explore 

the design choices of system software, and propose that key-value stores could serve as a 

building block. We then design distributed RMS on top of key-value stores. We propose 

a fully distributed architecture and a data-aware work stealing technique for the MTC 

resource management, and develop the SimMatrix simulator to explore the distributed 

designs, which informs the real implementation of the MATRIX task execution 



 

 xvi 

framework. We also propose a partition-based architecture and resource sharing 

techniques for the HPC resource management, and implement them by building the 

Slurm++ real workload manager and the SimSlurm++ simulator. We study the distributed 

designs through real systems up to thousands of nodes, and through simulations up to 

millions of nodes. Results show that the distributed paradigm has significant advantages 

over centralized one. We envision that the contributions of this dissertation will be both 

evolutionary and revolutionary to the extreme-scale computing community, and will lead 

to a plethora of following research work and innovations towards tomorrow’s extreme-

scale systems. 
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CHAPTER 1 

INTRODUCTION 

In this chapter, we introduce the extreme-scale distributed systems, summarize the 

workload diversity of extreme-scale computing, motivate the work of delivering scalable 

resource management system software towards extreme scales, highlight the research 

contributions, and describe the organizations of this dissertation. 

1.1 Extreme-scale Distributed Systems 

Technology developing trends indicate that the distributed systems are approaching 

the era of extreme-scale computing. On the high-performance computing side, predicts are 

that around the end of this decade, supercomputers will reach exascale (1018 Flop/s) 

comprising of thousands to millions of nodes, up to one billion threads of execution of 

parallelism [1] [2], and tens of petabytes of memory. Exascale computers will enable the 

unraveling of significant mysteries for a diversity of scientific applications, ranging from 

Astronomy, Biology, Chemistry, Earth Systems, Economics, to Neuroscience, Physics, and 

Social Learning and so on [3]. The US President made reaching exascale a top national 

priority, claiming it will “dramatically increase our ability to understand the world around 

us through simulation” [197]. There are many domains (e.g. weather modeling, global 

warming, national security, energy, drug discovery, etc.) that will achieve revolutionary 

advancements due to exascale computing. 

Exascale computing will bring new fundamental challenges in how we build 

computing systems and their hardware, how we manage them and program them through 

scalable system software. The techniques that have been designed decades ago will have 
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to be dramatically changed to support the coming wave of extreme-scale general purpose 

parallel computing. The five most significant challenges of exascale computing are: 

Concurrency and Locality, Resilience, Memory and Storage, Energy and Power [3] [4]. 

Any one of these challenges, if left unaddressed, could halt progress towards exascale 

computing. 

Concurrency and Locality refers to how we will harness the many magnitude orders 

of increased parallelism. The largest supercomputers have increased in parallelism at an 

alarming rate. In 1993, the largest supercomputer had 1K cores with 0.00006 PFlop/s 

(1015), in 2004 8K cores with 0.035 PFlop/s, in 2011 688K cores with 10.5 PFlop/s, in 2015 

3.12M cores with 34 PFlop/s, and in about 5 years, supercomputers will likely reach 

billions of threads/cores with 1000 PFlp/s [2]. The many-core computing era will likely 

increase the intra-node parallelism by two or three orders of magnitude, which cannot be 

efficiently utilized through the current tightly coupled programming models like Message 

Passing Interfaces (MPI) [64] that focus on optimizing the inter-node communications. 

Efficient shared-memory programming languages with automatic parallelism and localiy 

optimizations will be needed to cooperate with MPI, such as OpenMP [195], Cuda [194], 

and OpenCL [193]. 

Resilience refers to the capability of making all the infrastructure (hardware), 

system software and applications fault tolerant in face of a decreasing mean-time-to-failure 

(MTTF). Simulation studies [25] showed that at exascale level, the MTTF of a compute 

node will likely fall down to hours, making the current checkpointing method useless. More 

efficient fault tolerant mechanisms are demanded on the hardware level, such as chipkill 

correct memories [196]. In addition, the centralized design paradigm of current HPC 
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system software needs to be changed to avoid single-point-of failures. On the application 

side, MPI is the main communication library used for synchronization of applications, 

requiring restarting the applications when node failure happens. Therefore, application 

programmers need to develop transparent task migration techniques.    

Memory and Storage refers to optimizing and minimizing data movement through 

the memory hierarchy (e.g. persistent storage, burst buffer [187], solid state memory [198], 

volatile memory, caches, and registers). Exascale will bring unique challenges to the 

memory hierarchy never seen before in supercomputing, such as a significant increase in 

concurrency at both the node level (number of cores is increasing at a faster rate than the 

memory subsystem performance), and at the infrastructure level (number of cores is 

increasing at a faster rate than persistent storage performance). The memory hierarchy will 

change with new technologies (e.g. non-volatile memory [199]), implying that 

programming models and optimizations must adapt. Optimizing exascale systems for data 

locality will be critical to the realization of future extreme scale systems. 

Energy and Power refers to the ability to keep the power consumption of a 

supercomputer at a reasonable level, so that the cost to power of a system does not dominate 

the cost of ownership. The DARPA Exascale report [2] defined probably the single most 

important metric, namely the energy per flop, and capped the power consumption of a 

single supercomputer to be 20MW. Given the energy consumption of current top 1 

supercomputer which uses 17.8MW of power [200] and the increase in performance by 

30X (to reach exascale), we can conclude that we need to reduce the energy per flop by 

30X to make exascale computing viable. In addition, efficient data-aware scheduling 
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techniques are needed to minimize the data movement, resulting in less power 

consumption. 

On the cloud computing side, similar challenges will exist, as the data centers host 

ever-growing larger number of servers that exceed many top HPC systems in production 

today. Scalable solutions at all the IaaS [201] (e.g. light-weight virtualization techniques 

that allow scaling both vertically and horizontally), PaaS [202] (e.g. distributed resource 

management and scheduling techniques that support low latency and high utilization), and 

SaaS [203] (e.g. standard web delivery interfaces that allow custumers to export 

applications transparently) levels will be needed to address these challenges. 

This dissertation aims to lay the foundations of addressing the challenges of 

extreme scale computing through building scalable resource management system software. 

1.2  Workload Diversity towards Extreme-scale Computing 

As distributed systems are approaching extreme scales, the supported applications 

are becoming diverse, resulting in workloads with high heterogeneity. On the high 

performance computing side, with the extreme magnitudes of component count and 

parallelism at exascale, one way to efficiently use the machines without requiring full-scale 

jobs is to support the running of diverse categories of applications [22]. These applications 

would combine scientific workloads covering various domains, such as traditional large-

scale high performance computing (HPC), HPC ensemble runs, and loosely coupled many-

task computing (MTC). The support of running of all the diverse applications improves the 

resilience by definition given that failures will affect a smaller part of the machines. 

Traditional HPC workloads are typically large-scale long-duration tightly coupled 

applications that require many computing processors (e.g. half or full-size of the whole 
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machine) for a long time (e.g. days, weeks) and use MPI [64] to communication and 

synchronization among all the processors. Resiliency is achieved relying on the 

checkpointing mechanism. As the system scales up, check-pointing will not be scalable due 

to the increasing overheads to do checkpointing.  Besides, there will be less and less HPC 

applications that can scale up to exascale, requiring full-size allocation.  

Other HPC workloads are ensemble workflows that support the investigation of 

parameter sweeps using many small-scale coordinated jobs. These individual jobs are 

coordinated in a traditional HPC fashion by using MPI. These are applications that do 

parameter sweeps to define areas of interest for larger scale high-resolution runs. These 

ensemble runs are managed in an ad-hoc fashion without any scheduling optimization. 

Another area where ensemble runs are beneficial is in scheduling regression tests. Many 

applications use regression tests to validate changes in the code base. These tests are small-

scale, sometimes individual nodes, and are scheduled on a daily basis. A similar workload 

includes the system health jobs, which are run when job queues have small idle allocations 

available or when allocations are not preferred due to lack of contiguous nodes.  

There is a growing set of large-scale scientific applications which are loosely 

coupled in nature, containing many small jobs/tasks (e.g. per-core) with shorter durations 

(e.g. seconds), along with large volumes of data – these applications are referred to as 

many-task computing (MTC) applications, including those from astronomy, 

bioinformatics, data analytics, data mining, and so on. MTC applications are typically 

structured as Direct Acyclic Graph (DAG) where vertices are discrete tasks and an edge 

denotes the data flow from one task to another. The tasks do not require strict coordination 

of processes at job launch as the traditional HPC workloads do. The algorithm paradigms 
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well suited for MTC are Optimization, Data Analysis, Monte Carlo and Uncertainty 

Quantification. 

Similar to the MTC scientific applications, the data analytics applications in the 

Internet industry are ushering in the era of big data, which involves archiving, processing, 

and transferring increasingly large amount of data. Take the Facebook data warehouse as 

an example, the data size had been growing from 15TB in 2007 to 700TB in 2010 (46X) 

[188], which, based on the increasing trend, can reach up to tens of petabytes by today. The 

big data analytics workloads range from ad-hoc queries, simple reporting applications, to 

business intelligence applications and more advanced machine learning algorithms, 

generating billions of loosely coupled tasks with data dependencies. 

1.3  Motivations 

The resource management system (RMS) is a core system software for distributed 

computing systems. RMS is responsible for managing the system resources and scheduling 

application workloads. The key performance requirements of RMS are efficiency, 

scalability and reliability. Efficiency means the RMS needs to allocate resources and to 

schedule jobs fast enough to maintain high system utilizations; Scalability refers to the 

increasing of processing capacity as the workload and computing resources scale up; and 

Reliability requires that the RMS is still functioning well under failures.  

The RMS for extreme-scale computing needs to be efficient, scalable and reliable 

enough, in order to deliver high performance (e.g. high throughput, high utilization, and 

low latency) for all types of workloads. However, the state-of-the-art RMS of both 

supercomputers and Internet are still designed around the decades-old centralized 

paradigm, which are far from being able to satisfy the ever-growing needs of performance 



 

 

7 

of the RMS towards extreme scales, due to the single-point-of failure and limited capacity 

of a centralized server in handling all the resource management activities, such as system 

state management, resource allocation, job scheduling and job launching. Examples of 

RMS of supercomputers are SLURM [30], Condor [83], PBS [84], SGE [85], and Falkon 

[78]. They all have a centralized architecture. SLURM has been widely used as a 

production system on quite a few top supercomputers in the world. SLURM reported a 

maximum throughput of 500 jobs/sec [79] for simple batch jobs. While this is significantly 

better than others, however, we will need many orders of magnitude higher job delivering 

rates due to the significant increase of scheduling size (10X higher node counts, 100X 

higher thread counts, and much higher job counts), along with the much finer granularity 

of job durations (from milliseconds/minutes to hours/days). Furthermore, our experimental 

results in SLURM showed that SLURM crashed and was unable to handle more than 10K 

concurrent job submissions with average job length of 429ms. Falkon is a pioneering MTC 

task execution framework that can deliver several thousands of fine-grained tasks per 

second. However, we have already seen the saturation point of Falkon [66] [78] on the full 

scale of an IBM Blue Gene / P supercomputer (160K cores) [204] in Argonne National 

Laboratory, not even to mention the billion-core system scale and billions-task MTC 

applications at exascale. 

In the Internet domain, the challenges of RMS at extreme scales are only severer. 

Statistics show that Google now processes 40K+ search queries per second (3.5 billion 

searches per day and 1.2 trillion searches per year) [205], and the number of searches per 

year is increasing exponentially; Alibaba experienced a peak workload of 70K orders being 

processed per second during the 24-hour period of Singles Day of 2014 [206]. Google 
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recently published its cluster manager, named Borg [154], which offers a general interface 

for various workloads, such as the low-latency production jobs and long-running batch 

jobs. Borg applies a centralized resource manager (BorgMaster) to monitor and manage 

resources, and a separate centralized scheduler process to allocate resources and schedule 

jobs. Although Borg managed to improve the scalability of the centralized architecture 

through a few techniques such as score caching, equivalence classes, and relaxed 

randomization, we believe that the continued growths of system size and applications will 

eventually hit the ultimate scalability limit, if the centralized architecture remains. YARN 

[112] and Mesos [106] are the RMS of the Hadoop [118], and Spark [160] ecosystems, 

respectively. Even though the scheduling framework is decoupled from the resource 

manager in both systems, the resource manager and the per-application scheduler still have 

a centralized architecture, leading to capped scalability. 

The huge gap between the processing capacity and the performance needs has 

driven us to design and implement the next-generation resource management systems that 

are magnitudes more scalable than today’s centralized architectures. The goal of this 

dissertation is to deliver scalable resource management system software that can manage 

the numerous computing resources of extreme-scale systems and efficiently schedule the 

workloads onto these resources for execution, in order to maintain high performance. 

1.4  Dissertation Roadmap 

To achieve the goal of building scalable resource management systems, in this 

dissertation, we first devise a general system software taxonomy to explore the design 

choices (e.g. architectures, and protocols of maintaining scalable and distributed services) 

of extreme-scale system software, and propose that key-value stores [27] [51] could serve 
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as a building block. We then design distributed architectures and techniques on top of key-

value stores, including real resource management systems, as well as simulators. 

Specifically, we propose a fully distributed architecture and a distributed data-aware work 

stealing technique for the resource management of MTC applications, and develop the 

SimMatrix simulator [50] to explore the distributed architecture and technique, which 

informs the design and actual implementation of the MATRIX task execution framework 

[23] [24] [231]. We also propose a partition-based distributed architecture and distributed 

resource sharing techniques (e.g. random resource stealing [22] and monitoring-based 

weakly consistent resource stealing [140]) for the resource management of HPC 

applications, and implement them by building the Slurm++ workload manager [140] and 

the SimSlurm++ simulator. We study the proposed architectures and techniques through 

real systems (i.e. MATRIX and Slurm++) up to thousands of nodes, and through 

simulations (i.e. SimMatrix and SimSlurm++) up to millions of nodes. Results show that 

the distributed designs have significant advantages over centralized ones in scalable 

resource management. We envision that the research contributions of this dissertation will 

be both evolutionary and revolutionary to the community of extreme-scale system 

software, and will lead to a plethora of following research work and innovations towards 

tomorrow’s extreme-scale systems.  

The remainder of this dissertation is organized as follows. Chapter 2 introduces 

background knowledge of distributed systems, the three computing paradigms and the 

resource management system software. Chapter 3 devises a system software taxonomy for 

general HPC system software, and proposes that distributed key-value stores are a 

fundamental building block for extreme-scale HPC system software. Chapter 4 presents 
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the MATRIX many-task computing task execution framework. Chapter 5 proposes a data-

aware scheduling technique for scheduling data-intensive applications. Chapter 6 presents 

the Slurm++ workload manager for HPC applications. The related work is listed in Chapter 

7, followed by Chapter 8, which concludes the dissertation, highlights the research 

contributions, proposes future work, and analyzes the long-term impacts of this 

dissertation. 
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CHAPTER 2 

BACKGROUND 

This chapter introduces the background information of distributed systems, the 

three distributed computing paradigms, and the functionalities of the resource management 

system software that this dissertation is targeting. 

2.1  Distributed Systems 

A distributed system is a collection of autonomous computers that are connected 

through networks and system software, with the goal to offer the users a single, integrated 

view of sharing the resources of the system [207]. There are various types of distributed 

systems, including cluster, supercomputer, grid, and cloud.  

2.1.1  Cluster. A cluster is a relatively small-size distributed system, ranging from a few 

nodes to a few thousand nodes. The compute nodes of a cluster are usually made of 

commodity processors, and with each one running an operating system. In most cases, the 

compute nodes are homogeneous, configured with the same hardware and operating system 

[208]. Comparing with a single computer, clusters can deliver better performance with 

more computing capacity, and higher availability due to the configuration of redundant 

failover nodes, thus a single-node failure will not cause the whole system down. 

Furthermore, clusters are usually more cost-effective than single computers that offer 

comparable computing power and availability. The compute nodes are allocated to perform 

computational tasks that are controlled and scheduled by the resource management and job 

scheduling system software. They are connected with each other through fast local area 

networks (LAN), and use libraries such as MPI for network communication to exchange 
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data and synchronize, enabling the clusters to offer high performance computing with over 

low-cost commodity hardware.  

2.1.2  Supercomputer. A supercomputer is an extreme case of computer cluster that is 

highly-tuned with high-bandwidth network interconnections and customized operating 

system, with the developing trend of consisting of many compute nodes with high intra-

node parallelism. Supercomputing is also referred to as high performance computing, 

because supercomputers are typically deployed as capacity computing facilities that are 

governed by national laboratories and large-scale computing centers. They are used to run 

large-scale scientific applications, including both simulations and real experiments, which 

require much large parallel computing power. Examples of supercomputers are the IBM 

Blue Gene serials - Blue Gene/L/P/Q [204], the Japanese K-computer [209], and the 

Chinese Tianhe supercomputers [200]. Figure 1 shows the developing trends of computing 

power of the Top500 [200] supercomputers, measured in Flop/s for the past twenty years, 

and projecting out for the next five years. For the top one supercomputer, we have 

surpassed the petaflop/s era (the top one supercomputer today has a peak speed of 33.9 

petaflop/s), and it is predicted that we will reach the exascale (1000 petaflop/s or exaflop/s) 

around the end of this decade [62]. 

 

Figure 1. Developing trend of the Top 500 supercomputers 
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2.1.3  Grid. Grids are composed of multiple clusters that are geographically dispersed in 

several institutions. These multi-site clusters are typically heterogeneous with each one 

having their own hardware, system software, and networks, and they are connected through 

loosely coupled wide area networks (WAN). The grand vision of “Grid Computing” is an 

analogy to the power grids where users have control over electricity through the wall 

sockets and switches without any consideration of where and how it is generated [210]. Dr. 

Foster et al. defines the Grid Computing as deploying distributed computing infrastructure 

to offer large scale resource sharing, innovative applications, and high performance 

computing to the dynamic collections of individuals and institutions (referred to as virtual 

organizations) through standard, secure and coordinated resource sharing protocols, so that 

they can accomplish their advanced scientific and engineering goals [211]. Examples of 

grids include the TeraGrid [212], the Enabling Grids for E-sciencE (EGEE) [213], and the 

ChinaGrid [214]. Some of the major grid middleware are the GridFTP [215] (a file transfer 

protocol), the Globus [216] (a file transfer service with web interfaces), and the Unicore 

[217]. Grids are well suited for running high throughput computing applications that are 

loosely coupled in nature, while are more challenging for high performance computing 

ones due to the fact that resources can be geographically distributed, resulting in high 

latency between nodes. 

2.1.4  Cloud. Clouds are distributed systems deployed over the Internet, aiming to deliver 

the hosted services to all the Internet users, through web interfaces. Clouds apply a “pay-

as-you-go” utility model to share resources and provide services to users dynamically on 

their demands through virtualization techniques, in order to achieve coherence, high system 

utilization, and economies of scale of the Internet. Clouds can be categorized as private 
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clouds, public clouds and hybrid clouds, according to the ownership. The services are 

divided into three levels, namely Infrastructure-as-a-Service (IaaS) [201], Platform-as-a-

Service (PaaS) [202], and Software-as-a-Service (SaaS) [203], from bottom up.  

IaaS provides services of accessing, monitoring and managing the hardware 

infrastructures, such as compute, storage, networking, so that the users don’t have to 

purchase the hardware. Examples of IaaS are Amazon Web Services (AWS) [218], Google 

Compute Engine (GCE) [219], and Microsoft Windows Azure [220]. PaaS is the set of 

services designed to provide a platform to customers, so that they can develop their code 

and deploy their applications without worrying about the complexities of building and 

maintaining the infrastructures. Amazon Elastic Compute Cloud (EC2) [221] and Google 

App Engine (GAE) [222] are exmaples of PaaS. SaaS offers services that deliver 

applications through web browsers to users without the needs of installing and running 

applications on local computers. Exmamples of SaaS are Gmail, Salesforce [223], and 

Workday [224]. 

2.1.5  Summary of Distributed Systems. We summarize the different categories of 

distributed systems in Figure 2 [40]. 

 

Figure 2. Categories of distributed systems 
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As seen, clusters and supercomputers are application oriented, comprising of many 

compute nodes connected through interconnects to run large-scale scientific applications, 

with the goals of offering high performance and low latency. Supercomputers are extreme 

cases of clusters with large scales and highly tuned hardware and software. Clouds and 

web servers are services oriented, delivering elastic services over the Internet with an on-

demand utility model. Grids can be used to either run scientific applications or deliver 

services among virtualized organizations through standard resource sharing protocols. 

Grids overlap with all of clusters, supercomputers, and clouds.   

2.1.6  Testbeds. This section describes the testbeds of distributed systems that are used 

in conducting experiments in this dissertation. The testbeds range from single shared-

memory parallel machine, cluster, supercomputer, to cloud. 

 Fusion: The fusion machine (fusion.cs.iit.edu) is a shared-memory parallel 

compute node in the datasys laboratory of IIT. The machine has an x86_64 

achitecture, 48 CPUs of the AMD Opteron (tm) model at 800MHz with 4 

sockets, 256GB memory, and a linux distributition openSUSE 11.2 (x86_64). 

This machine has been used extensively for simulation studies. 

 Kodiak: Kodiak is a cluster from the Parallel Reconfigurable Observational 

Environment (PROBE) at Los Alamos National Laboratory [120]. Kodiak has 

500 nodes, and each node has an x86_64 architecture, 2 AMD tm CPUs at 

2.6GHz, 8GB memory, and uses an OS of the Ubuntu 12.04 distribution. 

Kodiak has a shared network file system (NFS). The network supports both 1Gb 

Ethernet and 8Gb InfiniBand. Our experiments use the default interconnect of 

1Gb Ethernet. 
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 BG/P: The Blue Gene / P (BG/P) is an IBM supercomputer from Argonne 

National Laboratory (ANL) [204]. The machine is over 500 TFlops, and has 40 

40960 nodes with 40 racks. Each one has four IBM Power PC450 processors at 

850MHz, 2GB memory, and uses the ZeptOS [9]. The BG/P has both GPFS 

[225] and PVFS [226] file systems available. A 3D torus network is used for 

point-to-point communications. 

 Amazon EC2 Medium: One of the Cloud testbeds we used in our experiments 

is the Amazon EC2 Medium environment that had 64 “m1.medium” instances. 

Each instance had one x86_64 CPU, 2 ECUs, 3.7GB memory, 410GB hard 

drive, and used an OS of the Ubuntu 12.10LTS distribution. 

 Amazon EC2 Large: The other Cloud testbeds we used is the Amazon EC2 

Large environment that had 128 “m3.large” instances. Each instance had 2 

x86_64 CPUs, 6.5ECUs, 7.5GB memory and 16GB storage of SSD, and used 

an OS of the Ubuntu 14.04LTS distribution. 

2.2  Three Distributed Computing Paradigms 

The three distributed computing paradigms are high-performance computing 

(HPC), high-throughput computing (HTC), and many-task computing (MTC). Each of 

them has  its own application domains and users. 

2.2.1  High-performance computing. High-performance computing (HPC), sometimes 

referred to as supercomputing, is the use of the powerful computing capacities of clusters 

and supercomputers for running advanced scientific application programs with the goal 

speeding up the programs as much as possible. HPC environments deliver a tremendous 

amount of computing power on applications, emphasizing the performance measurement 
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of Flop/s. A large-scale HPC machine is usually governed by the national laboratories and 

the national computing centers in a central place. The most common users of HPC systems 

are scientific researchers, engineers, institutions, and government agencies. 

HPC applications usually require many computing processors (e.g. half, or full-size 

of the whole supercomputer) to discover the scientific mysteries through simulations and 

experiments. Examples of these applications are weather forecasting, probabilistic 

analysis, brute force code breaking, exploring the structures of biological gene sequences, 

chemical molecules, the human brain, as well as simulations of the origin of the universe, 

spacecraft aerodynamics, and nuclear fusion [141]. The application programs generate jobs 

that are tightly coupled, typically use the MPI programming model [64] to communicate 

and synchronize among all the processors, and rely on the checkpointing mechanism for 

reliability. 

2.2.2  High-throughput computing. High-throughput computing (HTC) describes a 

category of applications that compute on the many loosely coupled tasks with different 

data pieces. Scientists and engineers engaged in this sort of work are concerned with the 

number of Flop per month or per year achieved through the computing environment, as 

opposed to the measurement of Flop per second of the HPC environment. 

HTC emphasizes on efficiently harnessing all the available distributed computing 

resources to finish as many tasks as possible during a long period (e.g. weeks, months, even 

years). This was driven by the facts that many individuals and groups cannot afford an 

HPC machine and the HPC environment was inconvenient to them because they have to 

wait for a long time to get their allocations for a limited amount of time. As computer 

hardware has been becoming cheaper and more powerful, these users tend to moving away 
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from the HPC environment to desktop workstations and PCs, which they could afford and 

are available whenever they need those. Though each personal computer has significantly 

lower computing power than that of a HPC machine, there may be thousands or even 

millions of them, forming an environment with distributed ownership that is the major 

obstacle the HTC environment has to overcome for better expanding the available resource 

pools to individuals. This is also where the high efficiency is not playing a major role in an 

HTC environment. 

Workflow systems [68] [94] are an important middleware of HTC environments. 

Example jobs of the HTC applications include different patient data in large-scale 

biomedical trials, different parts of a genome or protein sequence in bioinformatics 

applications, different random numbers in a simulations based on Monte Carlo methods, 

and different model parameters in ensemble simulations or explorations of parameter 

spaces [83].   

2.2.3  Many-task computing. Many-Task Computing (MTC) was introduced by Dr. 

Raicu et al. [39] [40] in 2008 to bridge the gap between HPC and HTC, and to describe a 

class of applications that do not fit easily into the categories of HPC or HTC. We depict 

the relationships of the three paradigms in Figure 3 [40]. 

 

Figure 3. Relationships of the three computing paradigms 
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MTC applications are dramatically different from typical HPC ones. HPC 

applications require many computing cores to execute job in a cooperative way, while 

MTC ones are decomposed as many fine-grained tasks that are loosely coupled and do not 

require strict coordination of processes at job launch. On the other hand, MTC has features 

that distinguish it from HTC. HTC applications emphasize on long-term solutions to 

applications run on platforms such as clusters, grids and clouds, through either workflow 

systems or parallel programming systems. On the contrary, MTC applications demand a 

short time to solution, and may be decomposed into a large number of fine-grained tasks 

(small and short duration) that are both communication intensive and data intensive. The 

aggregate number of tasks and the volumes of involved data may be extremely large. 

MTC is driven by the data-flow programming model [165]. Many MTC 

applications are structured as direct acyclic graphs (DAG) [166], where the vertices are 

discrete tasks and the edges represent the data flows from one task to another. In the 

majority of cases, the data dependencies of the tasks of MTC applications will be files in a 

file system deployed across all the compute resources, such as the FusionFS file system 

[42]. For many applications, DAGs are a natural way to decompose the computations, 

which bring many flexibilities, such as allowing tasks to be executed on multiple machines 

simultaneously; enabling applications to continue under failures, if no data dependency 

exists among tasks, or tasks write their results to persistent storage as they finish; and 

permitting applications to be run on varying numbers of nodes without any modification. 

Examples of the MTC applications cover wide disciplines, ranging from astronomy, 

physics, astrophysics, pharmaceuticals, bioinformatics, biometrics, neuroscience, medical 

imaging, chemistry, climate modeling, to economics, and data analytics [53]. 
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2.3  Resource Management System Software 

Resource management system (RMS) is a vital system software deployed on 

distributed systems. The RMS is in charge of many activities, such as managing and 

monitoring all the resources (e.g. compute, storage, and network), state management, data 

management, resource partitioning, resource allocation, job scheduling, and job launching. 

This section defines the terms of entities of RMS, explains the activities of RMS, and gives 

three examples of RMS for HPC, MTC, and Hadoop applications. 

2.3.1  Terms of Entities of RMS. We define the terms of the important entities of a RMS 

as follows. 

Resource management system: A resource management system (RMS) typically 

comprises multiple components, such as resource manager, job queues, scheduler, and 

compute daemon. There are many alternatives to the term of resource management system 

(RMS), such as workload manager, cluster manager, job management system, and job 

scheduling system. For MTC environment, the terms of task scheduling framework, task 

execution framework, task execution fabric all mean RMS. In some cases, for simplicities, 

all the terms of resource manager, job manager, job scheduler, and task scheduler also 

mean RMS. They should not be confused with the resource manager and scheduler 

components of a RMS. 

Resource: Resource could mean any hardware piece of a compute node. The 

important resources to a RMS are hardware threads, CPU cores, memory, and networks. 

Job/Task: A job is a program to be executed, which is submitted by an end-user. A 

job can have resource requirements attached, such as number of nodes and cores. Task is 

finer grained, and a job may include many tasks with each one executing different 
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computations. An application may be comprised of multiple jobs. RMS of HPC 

environment usually works at the job level (coarse granularity), RMS of HTC environment 

works at both the job level and task level, and RMS of MTC environment typically works 

at the task level (fine granularity). 

Resource manager: A resource manager (RM) is a component of a RMS. RM 

manages and monitors all the resources, performs activities of resource partitioning, 

resource allocation, and maintains job metadata information. The RM usually accepts job 

submissions. Other terms such as controller, master are occasionally used in specific RMS. 

Job Queue: Job queues are used to hold jobs that are waiting to be scheduled. 

Sometimes when the system runs out resources, or has no enough resources to satisfy a 

job’s resource requirement, the job is then kept in the queue. Job queues are also useful 

when there are too many current job submissions, so that the RM and scheduler cannot 

process all of them at the same time. Another important reason to have job queues is to 

support different scheduling policies, such as preemptive scheduling, priority-based 

scheduling, and gang scheduling. These policies are used very common for HPC jobs. 

Scheduler: A scheduler is another important component of RMS, which schedules 

and launches jobs to pre-allocated compute nodes for execution. The scheduler could be 

implemented either as a separate thread of the RM, or as a standalone process. The former 

has better performance, while the latter is more scalable. One alternative to the term of 

scheduler is dispatcher.     

Compute daemon: A compute daemon (CD) is a standalone process running on all 

the compute nodes. A CD executes the actual job/task program, communicates with other 

CDs to exchange and synchronize data, returns the results or writes them in persistent 
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storage systems. A compute node can have multiple CDs running in parallel. Sometimes, 

the CDs are referred to as slaves, corresponding to the master term. A CD is also named 

executor. 

2.3.2  Activities of RMS. We explain the major activities of a RMS in brief as follows. 

 Resource management: manage and organize the resources in an efficient way 

(e.g. hash tables, database systems), in order to offer fast accessing (e.g. lookup, 

insert, update) speed.  

 Resource monitoring: monitor the system states of the compute nodes, 

including the health states (e.g. down or up, slow or normal), temperature, 

power consumption, etc.  

 Resource partitioning: partition the compute nodes into different groups for 

better utilization and specific resource requirements (e.g. affinity, GPUs, 

SSDs).  

 Resource allocation: allocate resources to a job, according to the job’s resource 

requirement.  

 Job scheduling: schedule jobs onto the allocated compute nodes. Different 

scheduling policies may be applied. 

 Job launching: launch a job and transform the job program to the compute 

nodes with one or more job steps. Scalable job launching techniques, like 

hierarchical tree-based job launching, are required for large-scale HPC jobs.  

2.3.3  Examples of Resource Management System. We give three examples of RMS 

that all have a centralized design, namely the SLURM [30] workload manager for the HPC 

applications, the Falkon [78] task execution framework for the MTC applications, and the 
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YARN [112] resource manager for the Hadoop applications. These examples help us 

understand the architecture and components of a RMS, and the procedure of running a job 

from job submission, to resource allocation, to job scheduling, until the job is finished. 

2.3.3.1 SLURM Workload Manager 

SLURM [30] is a workload manager designed for HPC applications. SLURM has 

been widely deployed on many HPC machines, ranging from clusters to many of the most 

powerful supercomputers in the worlds. The architecture and components of SLURM are 

shown in Figure 4 [30]. 

 

Figure 4. SLURM architecture and components 

SLURM uses a centralized controller (slurmctld) to manage all the compute 

daemons (slurmd) that are run on the compute nodes. The slurmctld is made of three 

subcomponents: the Node Manager monitors the state of nodes; the Partition Manager 

allocates resources to jobs for scheduling and launching; and the Job Manager schedules 

the jobs and manages the job states. The users submit jobs to the slurmctld through user 

commands, such as those shown in Figure 4. To improve scalability, SLURM delegate the 
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job launching responsibility to the user commands. In addition, SLURM does scalable job 

launch via a tree based overlay network rooted at rank-0. The slurmctld is made fault 

tolerant through a failover, which does not participate unless the main server fails. Besides, 

SLURM offers the option to store the resource and job information in database. Other RMS 

like Cobalt [114], PBS [153], and SGE [85], have a similiar architecture as SLURM. 

Figure 5 [30] illustrates an example of running the srun command that submits an 

interactive job. Firstly, the job is submitted to the slurmctld, which then replies the resource 

allocations to the command. After getting the resource allocation, srun divides the job into 

one or multiple job steps, and then launches the job steps to all the allocated slurmds. 

During execution, the slurmds send output to srun and the srun reports status to slurmctld 

periodically, until the job is finished. After the job is done, srun sends message to release 

the resources, to slurmctld, which then sends epilog information to the slurmds.  

 

Figure 5. The srun command of SLURM 

2.3.3.2 Falkon Task Execution Framework 

Falkon is a lightweight task execution framework for MTC applications. Falkon 

has been deployed on multiple platforms, including the ANL/UC Linux cluster, the 
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SiCortex machine, and the BG/P supercomputer. Falkon comprises a centralized 

dispatcher, a provisioner, and zero or more executors, as shown in Figure 6 [78] (a). Figure 

6 (b) illustrates the message exchanges among the components, labeled with numbers. Two 

numbers denote both send and receive via Web Services (WS) messages (solid lines); while 

one number denotes only a send notification message performed via TCP (dotted lines). 

    

              (a) Falkon components             (b) Message exchanges among components 

Figure 6. Falkon architecture and components 

A client uses a pre-requested endpoint reference to submit tasks (messages 1, 2), 

monitor wait for notifications (message 8), and retrieve results (messages 9, 10). The 

dispatcher accepts task submissions from clients, and schedules tasks to the executors 

according to different scheduling policies. The provisioner manages to create and destroy 

executors on the compute nodes, under the guidance of the dispatcher. The provisioner 

monitors the dispatcher state by polling it periodically (message POLL), and determines 

when and how many additional executors should be created, and for how long before 

releasing them. The newly created executors register with the dispatcher, and execute tasks 

with the following procedure: the dispatcher notifies the executors for available tasks 
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(message 3); the executor request tasks (message 4); the dispatcher schedules tasks to the 

executors (message 5); the executors run the supplied tasks and returns the results (message 

6), and finally the dispatcher acknowledges (message 7). 

2.3.3.3 YARN Resource Manager 

YARN is the next generation RMS for general Hadoop clusters that run various 

categories of applications (e.g. Hadoop, MPI, and scientific workflows). YARN utilizes a 

resource manager (RM) to monitor and allocate resources, delegates per-application master 

(AM) to launch tasks to resource containers managed by the node manager (NM) on the 

computing nodes. Figure 7 [112] depicts the YARN architecture and components (shown 

in blue), and the running of two applications (shown in in yellow and pink). 

 

Figure 7. YARN architecture and components 

The centralized RM coordinates the resource allocations for all the applications. 

The resource of a compute node is organized as containers (e.g. <2GB RAM, 1 CPU>) by 

the NM running on the mode. An NM monitors local resource availability and manages 

container lifecycle. The RM assembles the resource from all the NMs to gain a global view, 

which enforces various scheduling policies. 



 

 

27 

A client submits jobs to the RM that passes the accepted jobs to the scheduler to be 

executed. Once the resource requirement of a job is satisfied, the scheduler allocates a 

container to create an AM for the job. The AM requests containers from the RM, and 

schedules and launch the job to all the granted resource containers with a lease to complete 

all the job tasks. The AM is also responsible for managing all the lifecycle activities of a 

job, such as elastic resource allocations, managing the execution flow of the workload 

DAG (e.g., reduce tasks take the outputs of map tasks as input), load balancing, and 

performing other optimization techniques. 

2.4  Performance Metrics 

This section defines the performance metrics that will be used in our simulations 

and experiments to evaluate the performance of various techniques and systems. Some 

metrics are used across the evaluation results of all chapters, such as throughput, efficiency, 

while the others are only used in certain results. 

 Throughput: measures how fast the RMS can execute a given workload, with 

the unit of jobs per time period (e.g. sec, hours). It is calculated as the number 

of jobs/tasks finished dividing by the total time of finishing them. The total time 

is the time difference between the earliest submission time and the latest 

finishing time of all the jobs. This metric is only meaningful to the jobs with 

short durations (e.g. a few milliseconds or less), and the higher throughput 

number means the less overheads and better performance. For long-duration 

jobs, the throughput cannot reveal the performance directly. 

 Per Client Throughput: average client throughput from the client’s perspective. 

For each client, the client throughput is calculated as the number of requests 
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(submitted by the client) finished dividing by the time to finish the requests. It 

measures how fast requests are processed viewed by the client. 

 Coefficient variance: aims to show the performance of work stealing [52] 

towards distributed load balancing. We use the coefficient variance of the 

numbers of tasks finished by all the schedulers as the measurement – the smaller 

value indicates the better performance. This metric only has significance for 

homogeneous workloads with tasks having the same running time. 

 Efficiency: shows the proportion of time when the system is actually executing 

tasks. Other than executing tasks, the system may do other work, such as 

auxiliary computing, moving tasks around for load balancing, and network 

communications, which we need to minimize. A higher efficiency (~100%) 

means a better performance. It is the percentage of the ideal running time ( idealT

) to the actual running time ( actualT ) of a workload, which quantifies the average 

utilization of the system. The higher efficiency (  100 %ideal actualT T ) indicates 

less overheads of the scheduling framework. Given a workload that has p

phases and one phase cannot be started until the previous one has been finished, 

we can compute the ideal running time,  
1

p

ideal ideal
T T




 , in which  ideal
T

  is 

the ideal running time of the th phase. Assuming in the th phase, on average, 

each core is executing k  tasks with an average length of l . Therefore, 

 ideal
t k l


  . For instance, the bag-of-task workload has only one phase, while 

a typical mapreduce job has two phases (e.g. map phase and reduce phase). 
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 Utilization is the instantaneous metric that measures the ratio of resources (CPU 

cores) that are occupied to execute tasks during some instant time. It is usually 

presented when doing visualization of the system state according to the logs 

generated by the monitoring program. 

 Average Time Per Task Per CPU: defines the average time of executing a task 

from one CPU’s perspective. In an ideal case, each CPU would process tasks 

sequentially without waiting. Therefore, the ideal average time should be equal 

to the average task length of all the tasks. In reality, the average time should be 

larger than the ideal case, and the closer they are the better. For example, 

assuming it takes 10sec to run 2000 tasks on 100 cores, this is 2 tasks-per-sec-

per-cpu (2000/10/100) on average, meaning 0.5sec per task per CPU. 

 Average Task-Delay Ratio: denoted as tdr , is computed as the normalized 

difference between the average ideal task turnaround (itt) time, ittT , and the 

average actual task turnaround (att) time attT . Therefore,  td att itt ittr T T T  . 

For each task n , the turnaround time (tt), denoted as  tt n
T , is the time interval 

between the time when the task is launched and the time when the task is 

finished. This metric requires the RMS to record the detailed timestamps of 

each task, from which, we can know the turnaround time of each task. 

Therefore, we can compute attT  after running a workload that include k  tasks: 

( )1

k

tt nn
att

T
T

k




. Assuming on average, each core in the system is executing k  
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tasks with an average length of l . Therefore, the thn  task needs to wait 

 1n l   time before being executed, meaning that  ( ) 1tt nT n l l nl     . 

Therefore, we have 
 

1 1

2

k

n
itt

nl n
T l

k

 
  


. This metric measures how fast a 

framework can response to a workload from each task’s perspective. The 

smaller tdr means faster response time and lower scheduling overheads. 

 Average scheduling latency per job: is the average scheduling latency of all the 

jobs. The scheduling latency of a job is the time difference between the 

submission time of the job and the time when the job is granted with the 

required resources. This metric shows how well the resource allocation 

technique employed by a RMS can perform. The smaller number indicates a 

less overhead and better performance. 

 Average ZHT message count per job: figures out the average number of 

messages interchanged between the controllers and the ZHT servers (a 

distributed key-value store) of all jobs. Each ZHT operation (e.g. insert, lookup, 

and compare and swap) of the controller is counted as a message. The smaller 

message count means the less overheads of using the ZHT key-value store. 

 Speedup: is a measurement of relative performance improvement. It is often 

used when comparing two results. 
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CHAPTER 3 

SYSTEM SOFTWARE TAXONOMY 

Owing to the extreme parallelism and the high component failure rates of 

tomorrow’s exascale, high-performance computing (HPC) system software will need to be 

scalable, failure-resistant, and adaptive for sustained system operation and full system 

utilizations. Many of the existing HPC system software are still designed around a 

centralized server paradigm and hence are susceptible to scaling issues and single points 

of failure. In this chapter, we explore the design tradeoffs for scalable system software at 

extreme scales. We devisee a general system software taxonomy by deconstructing 

common HPC system software into their basic components. The taxonomy helps us reason 

about system software as follows: (1) it gives us a systematic way to architect scalable 

system software by decomposing them into their basic components; (2) it allows us to 

categorize system software based on the features of these components, and finally (3) it 

suggests the configuration space to consider for design evaluation via simulations or real 

implementations. Further, we propose that the key-value store is a viable building block to 

build scalable system software at extreme scales. We then evaluate different design choices 

of key-value stores through simulations up to millions of nodes using both benchmarking 

workloads and workloads from real system software traces. We envision that the 

conclusions we will draw in this chapter help to lay the foundations of developing next-

generation HPC system software for extreme scales. 
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3.1  Exascale HPC System Software 

System software is a collection of important middleware services that offer to 

upper-lay applications integrated views and control capabilities of the underlying hardware 

components. Generally, system software allows applications full and efficient hardware 

utilization. A typical system software stack includes (from the bottom up) operating 

systems (OS), runtime systems, compilers, and libraries [1]. Technological trends indicate 

that exascale high-performance computing (HPC) systems will have billion-way 

parallelism [2], and each node will have about three orders of magnitude more intra-node 

parallelism than that of the node of today’s peta-scale systems [4]. Exascale systems will 

pose fundamental challenges of managing parallelism, locality, power, resilience, and 

scalability [3] [5] [6]. 

Current HPC system software designs focus on optimizing the inter-node 

parallelism by maximizing the bandwidth and minimizing the latency of the 

interconnection networks but suffer from the lack of scalable solutions to expose the intra-

node parallelism. New loosely coupled programming models (e.g. many-task computing 

[39], over-decomposition [7], and MPI + OpenMP [8]) are helping to address intra-node 

parallel-ism for exascale systems. These programming models place a high demand on 

system software for scalability, fault-tolerance and adaptivity. However, many of the 

existing HPC system software are still designed around a centralized server paradigm and, 

hence, are susceptible to scaling issues and single points of failure. Such concerns suggest 

a move towards fundamentally scalable distributed system software designs – a move 

further motivated by the growing amount of data (and metadata) that servers need to 

maintain in a scalable, reliable, and consistent manner. 
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The exascale community has been exploring research directions that address 

exascale system software challenges, such as lightweight OS and kernels (e.g. ZeptoOS 

[9], Kitten [10]); asynchronous and loosely coupled runtime systems (e.g. Charm++ [11], 

Legion [12], HPX [13], STAPL [14], and Swift [15] [91]); load balanced and locality-

aware execution and scheduling models (e.g. MATRIX [23] [26], ParallelX [16], and 

ARMI [17]); automatic and auto-tuning compilers (e.g. ROSE [18], SLEEC [19]). The 

general collections of HPC system software are those that support system booting, system 

monitoring, hardware or software configuration and management, job and resource 

management, I/O forwarding, and various runtime systems for programming models and 

communication libraries. As HPC systems approach exascale, the basic design principles 

of scalable and fault-tolerant system architectures need to be investigated for HPC system 

software implementations. Instead of exploring the design choices of each system software 

at every stack level individually and in an ad hoc fashion, this work aims to develop a 

general framework that allows for systematic explorations of the design space of HPC 

system software and to evaluate the impacts of different design choices.  

In this chapter, the questions we intend to answer are: what are the scalabilities of 

different system soft-ware architectures (centralized, hierarchical, distributed); and at what 

scales and levels of reliability and consistency does distributed design outweigh the extra 

complexity and overhead of centralized and hierarchical designs. 

To answer the questions, we devise a general taxonomy [228] that classifies system 

software based on basic components, to identify their performance and scaling limits. By 

identifying the common basic components and focusing on designing these core 

components, we will enable faster prototyping and development of new system software. 
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We then motivate key-value stores (KVS) as a building block for HPC system software at 

extreme scales, and then using KVS as a case study, we explore design tradeoffs of system 

software. Via simulation, we explore the scalability of each system architecture and 

quantify the overheads in supporting reliability at extreme scales. We believe the work 

presented in this article lays the foundations for the development of the next-generation, 

extreme-scale HPC system software. This chapter makes the following contributions: 

 Devise a comprehensive taxonomy by deconstructing system software into their 

core components.  

 Propose that key-value stores are a viable building block of extreme-scale HPC 

system software. 

 Develop a simulation tool to explore key-value store design choices for large-

scale HPC system software. 

 Conduct an inclusive evaluation of different system architectures (centralized, 

hierarchical, and distributed) under various design choices, such as different 

replication, recovery, and consistency models, using both synthetic and real 

workload traces.  

3.2  Key-value Stores in HPC 

3.2.1  Building Blocks for HPC. We motivate that KVS is a building block for HPC 

system software at extreme scales. The HPC system software, which we generally target, 

are those that support system booting, system monitoring, hardware or software 

configuration and management, job and resource management, I/O forwarding, and various 

runtime systems for programming models and communication libraries [30] [31] [32] [33]. 

For extreme-scale HPC systems, these system software all need to operate on large 
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volumes of data in a scalable, resilient and consistent manner. We observe that such system 

software commonly and naturally comprise of data-access patterns amenable to the NoSQL 

abstraction, a lightweight data storage and retrieval paradigm that admits weaker 

consistency models than traditional relational databases. 

These requirements are consistent with those of large-scale distributed data centers, 

such as, Amazon, Facebook, LinkedIn and Twitter. In these commercial enterprises, 

NoSQL data stores – Distributed Key-Value Stores (KVS) in particular – have been used 

successfully [34] [35] [36] in deploying software as a service (SaaS). We assert that by 

taking the particular needs of HPC system into account, we can use KVS for HPC system 

software to help resolve many scalability, robustness, and consistency issues.  

By encapsulating distributed system complexities in the KVS, we can simplify HPC 

system software designs and implementations. Giving some examples as follows: For 

resource management, KVS can be used to maintain necessary job and node status 

information. For monitoring, KVS can be used to maintain system activity logs. For I/O 

forwarding in file systems, KVS can be used to maintain file metadata, including access 

authority and modification sequences. In job start-up, KVS can be used to disseminate 

configuration and initialization data amongst composite tool or application processes (an 

example of this is under development in the MRNet project [33]). Application developers 

from Sandia National Laboratory [37] are targeting KVS to support local checkpoint/restart 

protocols. Additionally, we have used KVS to implement several system software, such as 

a many-task computing (MTC) task execution [38] [39] [40] [41] framework – MATRIX 

[23] [24] [26], where KVS is used to store the task metadata information, and a fuse-based 

distributed file system, FusionFS [42], where the KVS is used to track file metadata. 
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3.2.2  Centralized Architecture’s Bottleneck. HPC system software designed around 

the centralized architecture suffer from limited scalability, high likelihood of non-

recoverable failures and other inefficiencies. To validate this, we assess the performance 

and resilience of a centralized file-backed KVS. 

We implement a KVS prototype. Each request (put, get, and delete) was turned into 

a corresponding file sys-tem operation (write, read and remove, respectively) by the server. 

A request with a 16-byte payload is consist of a (key, value) pair. We run the prototype on 

a 128-node machine with AMD 2GHz Dual-Core Opteron and 4 GB of memory per node. 

Compute nodes are connected with Gigabit Ethernet. At every second boundary, the 

throughput attained by the server is measured to deter-mine the maximum throughput 

during operation. 

Figure 8 shows the peak throughput is achieved at 64 clients with the configuration 

of one client per node. As multiple clients per node are spawned, the throughput decreases 

due to network contention. At relatively modest scales, centralized server shows significant 

performance degradation due to contention.  

 

Figure 8. Performance and Resilience of Centralized KVS 
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To measure the reliability of the centralized server, we set the failure rate of the 

server to be dependent on the number of clients it is serving due to the increasing loads on 

the server. Considering an exponential distribution of server failures, the relationship 

between the server’s up time and the number of clients is: 𝑢𝑝 𝑡𝑖𝑚𝑒 = 𝐴𝑒𝜆𝑛, where 𝐴 is the 

up time with zero client, 𝜆 is the failure rate, and 𝑛 is the number of clients. Assuming a 2-

month up time with zero client (𝐴 = 1440 hours), and a 1-month (i.e. 720 hours) up time 

with 1024 clients of a single server, we show the trend of the server up time with respect 

to the number of clients (dotted blue line) in Figure 8. The reliability decreases as the scale 

of the system increases. 

At exascale, the above results would be amplified to pose serious operability 

concerns. While not surprising results, these results motivate alternative distributed 

architectures that support scalability, reliability and consistency in a holistic manner. 

These issues can be addressed by identifying the core components required by system 

software, such as a global naming system, an abstract KVS, a decentralized architecture, 

and a scalable, resilient overlay network. 

3.3  HPC System Software Taxonomy 

In contrast to the traditional HPC system software that are tightly coupled for 

synchronized workloads, SaaS developed for the Cloud domain is designed for loosely 

asynchronous embarrassingly parallel workloads in distributed systems with wide area 

networks. As HPC systems are approaching exascale, the HPC system software will need 

to be more asynchronous and loosely coupled to expose the ever-growing intra-node 

parallel-ism and hide latency. To be able to reason about general HPC system software at 

exascale, we devise a taxonomy by breaking system software down into various core 
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components that can be composed into a full system software. We introduce the taxonomy, 

through which, we then categorize a set of system software. 

A system software can be primarily characterized by its service model, data layout 

model, network model, recovery model, and consistency model. These components are 

explained in detail as follows:  

 Service Model describes system software functionality, architecture, and the 

roles of the software’s composite entities. Other properties such as atomicity, 

consistency, isolation, durability (ACID) [28], availability, partition-tolerance 

etc. also are expressed as parts of the service model. These characteristics define 

the overall behavior of the system software and the constraints it imposes on 

the other models. A transient data aggregation tool, a centralized job scheduler, 

a resource manager with a single failover, a parallel file system are some 

examples of the service model. 

 Data Layout Model defines the system software data distribution. In a 

centralized model, a single server is responsible for maintaining all the data. 

Alternatively, the data can be partitioned among distributed servers with 

varying levels of replication, such as partitioned (no replication), mirrored (full 

replication), and overlapped (partial replication). 

 Network Model dictates how system software components are connected. In a 

distributed network, servers can form structured overlays – rings, binomial, k-

ary, n-cube, radix trees; complete, binomial graphs; or unstructured overlay – 

random graphs. The system software could be further differentiated based on 

deterministic or non-deterministic information routing in the overlay network. 
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While some overlay networks imply a complete membership set (e.g. fully-

connected), others assume a partial membership set (e.g. binomial graphs). 

 Recovery Model describes how system software deals with server failures with 

minimum manual intervention. The common methods include failover, 

checkpoint-restart, and roll-forward. Triple modular redundancy and erasure 

coding [20] are additional ways to deal with failures and ensure data integrity. 

The recovery model can either be self-contained, such as recovery via logs from 

persistent storage, or require communication with replicas to retrieve. 

 Consistency Model pertains to how rapidly data changes in a distributed system 

are propagated and kept coherent. Depending on the data layout model and the 

corresponding level of replication, system software may employ different levels 

of consistency. The level of consistency is a tradeoff between the server’s 

response time and how tolerant clients are to stale data. It can also compound 

the complexity of recovery under failures. Servers could employ weak, strong, 

or eventual consistency depending on the importance of the data.  

By combining specific instances of these components, we can define a system 

architecture of system software. Figure 9 and Figure 10 depict some specific system 

architectures derived from the taxonomy. For instance, ctree is a system architecture with a 

centralized data layout model and a tree-based hierarchical overlay network; dfc 

architecture has a distributed data layout model with a fully-connected overlay network, 

whereas dchord architecture has a distributed data layout model and a Chord overlay network 

[29] with partial membership. Recovery and consistency models are not depicted, but 

would need to be identified to define a complete service architecture. 
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                 (a) csingle                          (b) csingle fail-over 

 

(c) ctree 

Figure 9. Centralized system architecture 

 

(a) dfc 

   

    (b) dchord                                      (c) drandom 

Figure 10. Distributed system architecture 

Looking into the memory requirements of these architectures allows deriving 

observations analytically. Figure 11 (a) shows the per-server memory requirement of the 

client data for different architectures, assuming 16GB client data. A single server must 

have the memory capacity to hold all the data, where the dfc and dchord architectures partition 

the data evenly across many servers. Figure 11 (b) illustrates the per-server memory 
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requirements to store the server membership information, assuming each server 

identification is 10KB. This is trivial for a single server. For dfc, it grows linearly with the 

number of severs, while for dchord, the relationship is logarithm. 

         

                   (a) Data memory per server                     (b) Membership memory per server 

Figure 11. Memory requirements for different architectures 

To demonstrate how common HPC system software would fit into the taxonomy, 

we have classified, at a high-level, some representative system software in Table 1. 

3.4  Key-value Stores Simulation 

Having motivated KVS as a building block for extreme-scale HPC system software, 

using the taxonomy we narrow the parameter space and focus on the major KVS 

components. Then we can use simulation to evaluate the design spaces for any specific 

KVS applications before any implementation. Additionally, we can create modular KVS 

components that allow the easy creation of extreme-scale system software. This section 

presents the design and implementation details of a KVS simulator [232]. The simulator 

allows us to explore all the system architectures, namely csingle, ctree, dfc and dchord. Here we 

assume a centralized data layout model for csingle and ctree, and a distributed data layout 

model for dfc and dchord. The simulator is extendable to other network and data layout 

models. The architectures can be configured with N-way replication for the recovery model 

16

64

256

1024

4096

16384

1 10 100 1000P
a

rt
it
io

n
e

d
 D

a
ta

 M
e

m
o

ry
 (

M
B

)

No. of Server

csingle partitioned
data memory
dfc partitioned data
memory

0.01

0.1

1

10

1 10 100 1000

P
e
r-

S
e

rv
e

r 
M

e
m

b
e

rs
h

ip
 

M
e

m
o

ry
 (

M
B

)

No. of Server

dfc membership
memory
dchord membership
memory



 

 

42 

and either eventual or strong consistency for the consistency model. The conclusions that 

we will draw from KVS simulations can be generalized to other system software, such as 

job schedulers, resource managers, I/O forwarding, monitoring, and file systems. 

Table 1. Representative system services categorized through the taxonomy 

System 

Software 
Service Model 

Data Layout 

Model 
Network Model Recovery Model Consistency Model 

Voldemort Key-value store Distributed Fully-connected N-way Replication Eventual 

Cassandra Key-Value Store Distributed Fully-connected N-way Replication Strong and Eventual 

D1HT Key-Value Store Distributed Hierarchical N-way Replication Strong 

Pastry Key-Value Store Distributed Partially-connected N-way Replication Strong 

ZHT Key-Value Store Distributed Fully-connected N-Way Replication Strong and Eventual 

Riak Key-value store Distributed Partially-connected N-way Replication Strong and Eventual 

Charm++ Runtime System Distributed Hierarchical N-way Replication Strong 

Legion Runtime System Distributed Hierarchical None Strong 

STAPL Runtime System Distributed Nested/Hierarchical N-Way Replication Strong 

HPX Runtime System Distributed Fully-connected N-Way Replication Strong 

SLURM Resource Manager Replicated Centralized Fail-Over Strong 

Slurm++ Resource Manager Distributed Fully-connected Fail-Over Strong 

MATRIX Task Scheduler Distributed Fully-connected None Strong 

OpenSM Fabric Manager Replicated Centralized Fail-Over Strong 

MRNet Data Aggregation Centralized Hierarchical None None 

Lilith Data Distribution Replicated Hierarchical Fail-Over Strong 

Yggdrasil Data Aggregation Replicated Hierarchical Fail-Over Strong 

IOFSL I/O Forwarding Centralized Hierarchical None None 

FusionFS File System Distributed Fully-connected N-way Replication Strong and Eventual 

 

3.4.1 Simulator Overview. Simulations are conducted up to exascale levels with tens of 

thousands of nodes (each one has tens to hundreds of thousands threads of execution) 

running millions of clients and thousands of servers. The clients are simulated as compute 

daemons that communicate with the servers to store data and system states. The millions 
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of clients are spread out as millions of compute daemon processes over all the highly 

parallel compute nodes. Furthermore, the number of clients and servers are configurable, 

and how a server is selected by client can be preconfigured or random, and is easily 

modified.  

The workload for the KVS simulation is a stream of PUTs and GETs. At simulation 

start, we model unsynchronized clients by having each simulated client stall for a random 

time before submitting its requests. This step is skipped when modeling synchronized 

clients. At this point, each client connects to a server (as described below) and sends 

synchronous (or blocking) GET or PUT requests as specified by a workload file. After a 

client receives successful responses to all its requests, the client-server connection is 

closed. The data records stored in the servers are (key, value) pairs; the key uniquely 

identifies the record and the value is the actual data object. By hashing the key through 

some hashing function (e.g. modular) over all the servers, the client knows the exact server 

that is storing the data.  

Servers are modeled to maintain two queues: a communication queue for sending 

and receiving messages and a processing queue for handling incoming requests that operate 

on the local data. Requests regarding other servers’ data cannot be handled locally and are 

forwarded to the corresponding servers. The two queues are processed concurrently, 

however the requests within one queue are processed sequentially. Since clients send 

requests synchronously, each server’s average number of queued requests is equal to the 

number of clients that server is responsible for. 

For the distributed architectures, dfc and dchord, our simulator supports two 

mechanisms for server selection. In the first mechanism, client selection, each client has a 
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membership list of all servers; a client selects a server by hashing the request key and using 

the hash as an index into the server list. Alternatively, a client may choose a random server 

to service their requests. In the second mechanism, server selection, each server has the 

membership list of part or all of the servers and clients submit requests to a dedicated 

server. Client selection has the benefit of lower latency, but leads to significant overhead 

in updating the membership list when servers fail. Server selection, on the other hand, puts 

a heavier burden on the servers. 

3.4.2  Cost Parameters. The simulation results are dependent on the attribution of the 

communication and processing costs due to the system software architecture, we explain 

and justify the cost parameters in this subsection. Figure 12 shows the scenario of server 

selection with five enqueued operations, three of which are resolved locally and forwarded 

to the local operations queue, and two are resolved remotely by forwarding to other servers. 

All of the architectures under study are derived from this basic design using communication 

and processing costs. 

 

Figure 12. KVS client/server simulator design 
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The composite overheads include client send, ( CS ), client receive, ( CR ), server 

send ( SS ), server receive ( SR ) and local request processing, ( LP ). CS  is comprised of 

message serialization time, sert , and message transmission time, comt  , calculated as 

msgSize BW lat , where msgSize  is the message size in bytes, BW  is the peak network 

bandwidth and lat  is half of the round-trip time ( RTT ). CR  is the message deserialization 

overhead, dest . SS  includes the time when the server finishes the last queued task in the 

communication queue qct , the overhead of packing a message by the server sst , and comt . 

SR  is the summation of qct , the overhead of unpacking a message by the server srt . LP  

includes the time when the server finish processing the last queued request qpt , and the 

request processing time pt . For a locally resolved query, the time to finish it consists of 

client send overhead CS , server receive overhead SR , locally processed time LP , 

server send to client overhead SS , and client receive overhead CR . This is applicable to 

all the architectures. For a remotely resolved request in dfc, the time to finish it includes 

client send overhead CS , server receive overhead SR , server forwarding request 

overhead SS SR , locally processed time LP , server returning processing result 

overhead SS SR , server send to client overhead SS , and client receive overhead CR . 

For a remotely resolved request of dchord involving k  hops to find the predecessor of the 

responsible server, the time to finish the request includes client send overhead CS , server 

receive overhead SR , overhead of finding the predecessor  2 k SS SR   , server 

forwarding request overhead to the responsible server SS SR , locally process LP , 
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server returning processing result overhead SS SR , server send to client overhead SS , 

and client receive overhead CR . The time to resolve a query locally ( LRt ) and the time to 

resolve a remote query ( RRt ) is given by 

 LRt CS SR LP SS CR       

         For dfc:          2RR LRt t SS SR     

         For dchord:      2RR LRt t k SS SR      

where k  is the number of hops to find the predecessor. 

3.4.3 Data Layout and Network Models. The data layout and network models 

supported are: centralized data server (csingle), centralized data server with aggregation 

servers in a tree overlay (ctree), distributed data servers with fully connected overlay (dfc), 

distributed data servers with partial connected overlay (dchord). 

For csingle and ctree, all data is stored in a single server. The main difference is that 

ctree has a layer of aggregation servers to whom the client submits requests. The aggregation 

size (number of requests being packed before sending) of each individual aggregation 

server is dynamically changing according to the loads. It is equal to the number of clients, 

which havemore requests left to be processed, among all the clients that the aggregation 

server is responsible for. The upper bound is the number of clients the aggregation server 

serves. Currently, they only do request aggregation. In the future, it is possible to simulate 

PUT caches in these servers for read intensive workloads. 

For dfc and dchord, the key space along with the associated data value is evenly 

partitioned among all the servers ensuring a perfect load balancing. In dfc, data is hashed to 

the server in an interleaved way (key modular the server id), while in dchord, consistent 
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hashing [44] is the method for distributing data. The servers in dfc have global knowledge 

of all servers, while in dchord, each server has only partial knowledge of the other servers; 

specifically this is logarithm of the total number of servers with base 2 and is kept in a table 

referred to as the finger table in each server. 

3.4.4 Recovery Model. The recovery model defines how a server recovers its state and 

how it rejoins the system after a failure. This includes how a recovered server recovers its 

data and how to update the replica information of other servers that are affected due to the 

recovery. The first replica of a failed server is notified by an external mechanism (EM) 

[29] (e.g. a monitoring system software that knows the status of all servers) when the 

primary server recovers. Then the first replica sends all the replicated data (including the 

data of the recovering server and of other servers for which the recovering server acts as a 

replica) to the recovered server. The recovery is done once the server acknowledges that it 

has received all data. 

3.4.4.1 Failure/Recovery 

Fail/recover events are generated because of servers failing and rejoining the 

dynamic overlay network. The servers can fail the system very frequently in an extreme-

scale system, in which the mean-time-to-failure (MTTF) could be in the order of hours [25] 

[65]. For simplicity, in our simulator, we assume that fail/recover events happen at fixed 

periods and there is only one server failing or recovering in the system at a given time. At 

the very beginning, all servers are up in the system. When fail/recover event occurs, the 

simulator randomly picks one server and flips its status (up to down, down to up). In order 

to notify other servers about a node’s failure, we implement both the eager and lazy 

methods. In the eager method, we assume an EM sending a failure message to notify other 
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online servers. This would be done either with a broadcast message (in dfc) or with chaining 

in which every node notifies the left node in their finger tables (for dchord). In the lazy 

method, servers are not notified but realize the failure of a node when they try to 

communicatewith it. When a node recovers, it gets the membership list from the EM and 

then does a broadcast (dfc), or it receives its finger table from the EM and then notify all 

the servers that should have the joined node in their finger tables (dchord) [29]. In our 

simulations, the failure event without a replication model impies that when a server fails, 

all the messages (requests coming from the clients, or forwarding messages from other 

servers) would fail. In addition, the clients would not try the failed requests again, even if 

the failed server recovers. The purpose of this is to isolate the effect of failures so that it 

can be measured separately. 

3.4.4.2 Failure/Recovery with Server Replication 

We implement a replication model in the simulator for handling failures. In csingle 

and ctree, one or more failovers are added; while in dfc and dchord, each server replicates its 

data in the consecutive servers (servers have consecutive id numbers from 0 to server count 

- 1). Failure events complicate server replication model. When a server fails, the first 

replica sends the failed server’s data to an additional server to ensure that there are enough 

replicas. In addition, all the servers that replicate data on the failed server would also send 

their data to one more server. The clients can tolerate server failures by identifying the 

replicas of a server as consecutive servers.  

Our simulator implements different policies for the clients to handle server failures, 

such as timeouts, multi-trial, and round robin. For example, in the timeouts policy, a client 

would wait a certain time for the server to respond. If the server does not respond after the 
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timeout, the client then turns to the next replica. In addition, our simulator has the ability 

to handle communication failures by relying on the EM. The EM monitors the status of all 

the servers by issuing periodic heartbeat messages. When a link failure of a server happens, 

the EM detects it according to the failed heartbeat message and then notifies the affected 

clients, which then direct requests to the next replica.  

3.4.5  Consistency Model. Our simulator implements two consistency models: strong 

consistency and eventual consistency [21]. 

3.4.5.1 Strong Consistency 

In strong consistency, updates are made with atomicity guarantee so that no two 

replicas may store different values for the same key at any given time. A client sends 

requests to a dedicated server (primary replica). The get requests are processed and 

returned back immediately. The put requests are first processed locally and then sent to the 

replicas; the primary replica waits for an acknowledgement from each other replica before 

it responds back to the client. When a server recovers from failure, before getting back all 

its data, it caches all the requests directed to it. In addition, the first replica (notified by the 

EM) of the newly recovered server migrates all pending put requests, which should have 

been served by the recovered server, to the recovered server. This ensures that only the 

primary replica processes put requests at any time while there may be more than one 

replicas processing get requests. 

3.4.5.2 Eventual Consistency 

In eventual consistency, given a sufficiently long period of time over which no 

further updates are sent, all updates will propagate and all the replicas will be consistent 

eventually, although different replicas may have different versions of data of the same key 
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at a given time. After a client finds the correct server, it sends requests to a random replica 

(called the coordinator). This is to model inconsistent updates of the same key and to 

achieve load balancing, among all the replicas. There are three key parameters to the 

consistency mechanism: the number of replicas–N, the number of replicas that must 

participate in a quorum for a successful get request–R, and the number of replicas that must 

participate in a quorum for a successful put request-W. We satisfy R+W>N to guarantee 

“read our writes” [21]. Similar to Dynamo [34] and Voldemort [36], we use vector clock 

to track different data versions and detect conflicts. A vector clock is a <serverId, counter> 

pair for each key in each server. It specifies how many updates have been processed by the 

server for a key. If all counters in a vector clock V1 are no larger than all corresponding 

ones in a vector clock V2, then V1 precedes V2, and can be replaced by V2. If V1 overlaps 

with V2, then there is a conflict. 

For a get request, the coordinator reads the value locally, sends the request to other 

replicas, and waits for <value, vector clock> responses. When a replica receives a get 

request, it first checks the corresponding vector clock. If it precedes the coordinator’s 

vector clock, then the replica responds with success. Otherwise, the replica responds 

failure, along with its <value, vector clock> pair. The coordinator waits for R−1 successful 

responses, and returns all the versions of data to the client who is responsible for 

reconciliation (according to an application-specific rule such as “largest value wins”) and 

writing back the reconciled version.  

For a put request, the coordinator generates a new vector clock by incrementing the 

counter of the current one by 1, and writes the new version locally. Then the coordinator 

sends the request, along with the new vector clock to other replicas for quorum. If the new 
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vector clock is preceded by a replica’s, the replica accepts the update and responds success; 

otherwise, responds failure. If at least W−1 replicas respond success, the put request is 

considered successful. 

3.4.6 KVS Simulator Implementation Details. After evaluating several simulation 

frameworks such as OMNET++ [46], OverSim [47], SimPy [48], PeerSim [49], we chose 

to develop the simulator on top of PeerSim because of its support for extreme scalability 

and dy-namicity. We use the discrete-event simulation (DES) [50] engine of PeerSim. In 

DES, every behavior in the system is converted to an event and tagged with an occurrence 

time. All the events are inserted in a global event queue that is sorted based on the event 

occurrence time. In every iteration, the simulation engine fetches the first event and 

executes the corresponding actions, which may result in following events. The simulation 

terminates when the queue is exhausted. The simulation procedure is depicted in Figure 

13.  

 

Figure 13. Simulation procedure flowchart 
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A variation of DES is parallel DES (PDES) [43], which takes advantage of the 

many-core architecture to access larger amount of memory and processor capacities, and 

to handle even more complex systems in less end-to-end time. However, PDES adds 

significant complexity to the simulations, adds consistency challenges, requires more 

expensive hardware, and often does not have linear scalability as resources are increased. 

Table 2. Parameter names and descriptions 

Name  Description 

BW    Network bandwidth 

lat    Network congestion latency 

msgSize    Message size 

idLength    Key length (in bits) 

sst    Server message packing overhead 

srt    Server message unpacking overhead 

cst   Client message packing overhead 

crt   Client message unpacking overhead 

pt   Time to process a request locally 

numReqPerClient  Number of request per client 

numClientPerServ  Number of clients per server 

FailureRate  Failure frequency 

numReplica  Number of replicas 

R  Number of succesful Get responses 

W  Number of succesful Put responses 

numTry  Number of retries before a client talks to the replica 

 

Several parameters define the simulator environment and operation. The simulation 

is built on top of PeerSim, which is developed in Java, and has about 10,000 lines of code. 
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The input to the simulation is a configuration file, which specifies the system architecture, 

the values of the parameters, etc. The names and descriptions of the parameters are shown 

in Table 2. There are no other dependencies. The simulator is made open source on Github: 

https://github.com/kwangiit/KVSSim. 

3.5 Evaluation 

Our evaluation aims to give insights into the design spaces of HPC system software 

through KVS simulations, and to show the capabilities of our simulator in exposing costs 

inherent in design choices. We evaluate the overheads of different architectures as we vary 

the major components defined in section 3.3. We present results by incrementally adding 

complex features such as replication, failure/recovery, and consistency, so that we can 

measure the individual contributions to the overheads due to supporting these distributed 

features. This overhead is reflected in the communication intensity of the specific 

architectures and the additional communication because of the additional features. 

3.5.1  Experimental Setup. All the experiments are run on the Fusion machine. The 

software versions used are: Sun 64-bit JDK version 1.6.0_22; PeerSim jar package version 

1.0.5. The largest amount of memory required for any of the simulations is 25GB and the 

longest running time is 40 minutes (millions of clients, thousands of servers, and tens of 

millions of requests). Given our lightweight simulator, we can explore an extremely large-

scale range.  

3.5.1.1 Parameters 

The parameters presented in Table 2 are displayed in Table 3 with their values. The 

network parameters are chosen to reflect large-scale systems such as the BG/P, and the 
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Kodiak cluster. The base request-processing time is taken from samples of processing time 

from services such as memcached [45] and ZHT [51]. 

Table 3. Simulation parameters 

Name BG/P Kodiak 

BW  6.8Gbps 1.0Gbps 

lat  100us 12us 

msgSize  10KB 10KB 

idLength  128bits 128bits 

sst  50us 40us 

srt  50us 40us 

cst  50us 40us 

crt  50us 40us 

pt  500us 1500us 

numReqPerClient 10 10 

numClientPerServ 1024 1024 

numTry 3 3 

 

3.5.1.2 Workloads 

The simulations are performed with up to 1 million clients each submitting 10 Get 

or Put requests. We did experiments to verify that higher numbers (e.g. 100, 1k, 10k) of 

get/put requests gave the same results. These values are configurable by changing the 

parameters, numReqPerClient and numClientPerServ, from Table 3. For dfc and dchord, we 

increment the number of clients by 1024 and the number of servers by 1 as we scale. 

In exploring the overhead of different distributed system service features (section 

3.5.2 through section 3.5.6), we use the synthetic workload, in which, 10M tuples of <type, 
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key, value> are generated with a uniform random distribution (URD) (50% Gets and 50% 

Puts) and placed in a workload file. Each client would then read 10 requests in turn and 

execute their workloads. Realistic workloads are also employed. They are described in 

more details and applied in section 3.5.7, where we feed the KVS simulator with these 

distributed HPC service traces to show the generality of KVS. 

3.5.1.3 Validation 

We validate our simulator against two real systems: a zero-hop KVS, ZHT [51], 

and an open-source implementation of Amazon Dynamo KVS, Voldemort [36]. Both 

systems serve as building block for system services. ZHT is used to manage metadata of 

file systems (FusionFS), monitor task execution information of job scheduling systems 

(MATRIX), and to store the resource and job information for our distributed job launch 

prototype which is under improvement, while Voldemort is used to store data for the 

LinkedIn professional network. 

In the case of validating against ZHT, the simulator was configured to match the 

client selection that was implemented in ZHT. ZHT was run on the BG/P machine with up 

to 8K nodes and 32K cores. We used the published network parameters of BG/P in our 

simulator. We used the same workload as that used to in ZHT: each node has a client and 

a server, each client submits 10K requests with URD, the length of the key is 128 bits, and 

the message size is 134 bytes. The result in Figure 14 shows that our simulator matches 

ZHT with up to the largest scale (8K nodes with 32K cores) that ZHT was run. The biggest 

difference was only 15% at large scales. The ZHT curve depicts decreasing efficiency after 

1024 nodes, because each rack of BG/P has 1024 nodes. Within 1024 nodes (one rack), the 

communication overhead is small and relatively constant, leading to constant efficiency 
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(75%). After 1024 nodes, the communication spans multiple racks, leading to larger 

overheads. 

 

Figure 14. Validation of the simulator against ZHT and Voldemort 

In the case of Voldemort, we focused on validating the eventual consistency model 

of the simulator. The simulator was configured to match the server selection dfc model, 

with each server backed by 2 replicas and responsible for 1024 clients, and an associated 

eventual consistency protocol with versioning and read-repair. We ran Voldemort on the 

Kodiak cluster from PROBE with up to 800 servers, and 800k clients. Each client 

submitted 10 random requests. As shown in Figure 14, our simulation results match the 

results from the actual run of Voldemort within 10% up to 256 nodes. At higher scales, due 

to resource over-subscription, an acute degradation in Voldemort’s efficiency was 

observed. Resource over-subscription means that we ran excessively many client processes 

(up to 1k) on one physical node. At the largest scale (800 servers and 800 nodes), there 

will be 1k client processes on each node, leading to serious resource over-subscription. 

Given the validation results, we believe that the simulator can offer convincible 

performance results of the various architectural features. This allows us to weigh the 

service architectures and the overheads that are induced by the various features.  
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3.5.2 Architecture Comparisons. We compare different architectures (csingle vs ctree, and 

dfc vs dchord) for the basic scenario (no replication, failure/recovery or consistency models) 

with synthetic workloads to investigate the tradeoffs between these architectures at 

increasingly scales. 

3.5.2.1 csingle vs. ctree 

Figure 15 shows the comparison between csingle and ctree. We see that before 16 

clients, ctree performs worse than csingle due to that the small gather size (at most 16) is 

insufficient to make up the additional latency of the extra communication hop. Between 32 

(1 aggregation server) to 16K clients (16 aggregation servers with each one managing 1K 

clients), ctree performs better than csingle because of the larger gather sizes (32 to 1K). After 

32K clients, the individual performance is degrading; the relative performance gap is 

decreasing and finally disappearing. This is because the per-request processing time is 

getting larger when the number of clients increases due to contentions, which renders that 

the communication overhead is negligible. 

 

Figure 15. Throughput of csingle vs ctree 

To model the server contention due to the increasing number of clients, we run a 
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polynomial regression on the processing time with respect to the number of clients with 

the base of 500ms. Within 1K nodes, the changing of processing time is shown in Table 4. 

The 1K client-processing time (637 ms) is used in dfc and dchord as each server manages 1K 

clients. For csingle and ctree, Beyond 1K nodes, we increase the processing time linearly with 

respect to the client count. 

In Figure 15, the values after 1K clients are linear models. There could be other 

models (e.g. logarithm, polynomial, exponential) between processing time and the number 

of clients depending on the server implementation (e.g. multi-threading, event-driven, etc). 

We only use the calibrated values up to 1K clients. We show the results after 1K clients 

merely to point out that there is a severe server contention in a single server at large scales, 

leading to poor scalability of the centralized architecture. 

Table 4. Processing time as a function of number of clients 

Number of Clients 1 2 4 8 16 32 64 128 256 512 1K 

Processing Time (ms) 613 611 608 601 588 567 537 509 505 541 637 

 

3.5.2.2 dfc vs. dchord 

The comparison between dfc and dchord is shown in Figure 16. Each server is 

configured to manage 1K clients. With dfc, we observe that the server throughput almost 

scales linearly with respect to the server count, and the efficiency has a fairly constant value 

(67%) at extreme scales, meaning that dfc has great scalability. With dchord, we see slightly 

less throughput as we scale up, and the efficiency decreases smoothly (Figure 16(a)). This 

is due to the additional routing required by dchord to satisfy requests: one-hop maximum for 

dfc and logN hops for dchord. We show the average per-client throughput for both dfc and 
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dchord in Figure 16(b). Up to 1M clients, dfc is about twice as fast as dchord from the client’s 

perspective. From the error bars, we see that dchord has higher deviation of the per-client 

throughput than that of dfc. This is again due to the extra hops required to find the correct 

server in dchord. 

   

              (a) Server throughput and efficiency                (b) Average throughput per client 

Figure 16. dfc and dchord performance comparison 

The conclusion is that at the base case, the partial connectivity of dchord results in 

latency as high as twice as that of the full connectivity of dfc, due to the extra routing.  

3.5.3  Replication Overhead. This section investigates the replication overhead 

associated with dfc and dchord. The data is collected for comparison of 1 to 3 replicas and 

the results are shown in Figure 17. It shows that there is always additional cost for 

additional replicas due to the added communication and processing overhead involved in 

propagating the Put requests to the extra replicas. Comparing dfc and dchord, we see that dfc 

has more overhead than dchord when adding extra replicas. This is due to the low efficiency 

of dchord, since dchord has higher overhead for routing, the additional fixed overhead for the 

replicas is relatively small when comparing with the routing overhead. dfc the relatively 

low routing overhead results in a larger impact on efficiency. In dfc, the first added replica 
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adds over 20% overhead (67% to 46%) and decreases the efficiency by 29.9% (20% / 67%); 

the second added replica introduces over 10% overhead (46% to 35%) and decreases the 

efficiency by 23.9%. While in dchord, overheads of the first and second added replicas are 

6% (33% to 27%) and 4% (27% to 23%), and efficiency decreased by 18.2% and 14.8%, 

respectively at the largest scale. 

 

                                     (a) dfc                                                       (b) dchord 

Figure 17. Replication overheads 

3.5.4  Server Failure Effects. We add failure events (servers fail and possibly recover) 

to the simulator to emulate the failure rates of extreme-scale class systems. Here we do not 

use extra replicas, a request to a “failed” server would be dropped and the client would not 

retry. This is to measure the overhead of dynamicity of the service architectures. A failure 

event has to be forwarded to every other server in the dfc network, whereas in the dchord 

network, it is sent to logN nodes resulting (logN)2 messages. Different failure frequencies 

(high 60/min, medium 20/min, and low 5/min) are studied with the results shown in Figure 

18, for both dfc and dchord. 

As seen in Figure 18, the higher the failure frequency is, the more overhead 

introduced (lower efficiency curve for higher failure frequency). However, the dominating 
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factor is the client messages. These client request-processing messages dwarf the number 

of communication messages of the failure events, which is a secondary factor even at the 

frequency of 60 events/min. Furthermore, this effect is getting dominating as the system 

scales up; the efficiency gaps are getting smaller and smaller until they disappear at the 

largest scales. For example: given 1M clients each sending 10 requests, 1K servers, and 5 

failure events, for dfc, we have at most 10M client-forwarding messages and failure events 

only require 51K messages (small compared to 10M), while for dchord, we have 

1M*log(1K)=10M forwarding message, and 5(log(1K))2=500 failure messages. This 

illustrates how client-request messages dominate even with the added messages required 

to deal with server failures and recovery. Figure 18 shows that dfc is more efficient than 

dchord at the studied failure rates.  

     

                                   (a) dfc                                                            (b) dchord 

Figure 18. Server failure effects 

In order to validate the correctness of failure events represented in our simulator, 

we show the number of communication messages of one failure event in Figure 19. In this 
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failure events, and collect the average number of messages. The regression models in 

Figure 19 validate the linear and logarithmic relationships of the number of messages with 

respect to the number of servers for dfc and dchord, respectively. The R-Square values of the 

models are 0.865 and 0.998, which demonstrate that our models are representative. 

 

Figure 19. Regression of the number of messages of failure events 

3.5.5 Server Failures with Replication. This section explores the overhead of failure 

events when a server is configured to keep updated replicas for resilience. We choose the 

multi-trial policy: the clients resend the failed requests to the primary server several times 

(an input parameter numTry, which is set to a default value of 3) before turning to the next 

replica.  

Figure 20 displays the efficiency comparison between the base dfc and dfc configured 

with failure events and replication, and between the base dchord and dchord configured with 

failure events and replication, respectively. We use 3 replicas, set the failure rate to be 5 

failure events per minute, and apply a strong consistency model. As seen in Figure 20, both 

dfc and dchord have significant efficiency degradation when failures and replication are 

enabled (blue solid line vs blue dotted line, red solid line vs red dotted line). The 
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performance degradation of dfc is more severe than that of dchord - 44% (67% to 23%) for 

dfc vs. 17% (32% to 15%) for dchord. We explain the reasons with the help of Table 5. 

 

Figure 20. Server failure effect with replication 

Table 5. Message count (#msg) for dfc, dchord with and without failure and replica (F&R) 

 Request-process #msg 
 

failure #msg  strong consistency #msg 

# 

Clients 
dfc dchord 

dfc 

(F&R) 

dchord 

(F&R) 

 

dfc 

(F&R) 

dchord 

(F&R) 

 dfc 

(F&R) 
dchord (F&R) 

4096 143.4K 185.0K 312.4K 246.2K 
 

33 4.5K  217.7K 87.1K 

8192 307.3K 491.1K 404.1K 596.2K 
 

42 445  175.4K 170.9K 

16384 634.8K 1.2M 726.1K 1.5M 
 

66 28.6K  336.5K 377.1K 

32768 1.3M 2.8M 1.4M 3.0M 
 

114 712  665.4K 662.0K 

65536 2.6M 6.4M 2.7M 6.6M 
 

210 590  1.3M 1.3M 

131072 5.2M 14.3M 5.3M 14.5M 
 

402 888  2.6M 2.6M 

262144 10.5M 31.3M 10.6M 31.7M 
 

786 996  5.3M 5.2M 

524288 21.0M 67.9M 21.1M 68.4M 
 

1.6K 1.1K  10.5M 10.5M 

1048576 41.9M 146.6M 42.0M 147.1M 
 

3.1K 1.3K  21.0M 21.0M 

 

Table 5 lists the message count of each property (process request, failure, strong 

consistency) for both dfc and dchord. We see that at extreme scales, the request-process 
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message count (dominant factor) does not increase much when turning on failures and 

replicas for both dfc and dchord. The message count of failure event is negligible, and of 

strong consistency increases significantly at the same rate for both dfc and dchord. However, 

these added messages account for 1/3(20M/60M) for dfc, while less than 1/8 (20M/170M) 

for dchord. Due to the high request-process message count in dchord, the overhead of dfc seems 

more severe. The replication overhead is costly, which indicates that tuning a system 

software to the appropriate number of replicas will have a large impact on performance. 

3.5.6 Strong and Eventual Consistency. We compare the consistency models. We 

enable failures with 5 failure events per minute and use 3 replicas. Like Dynamo [34], we 

configure (N, R, W) to be (3, 2, 2). Figure 21 shows the efficiency results of both dfc and 

dchord.  

 

Figure 21. Strong consistency and eventual consistency 

We see that eventual consistency has larger overhead than strong consistency. From 

strong to eventual consistency, efficiency reduces by 4.5% for dfc and 3% for dchord at 
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and consistency models in Table 6. We observe that the request-process message count 

doesn’t vary much for both dfc and dchord. However, for consistency messages, eventual 

consistency introduces about as twice (41M/21M) the number of messages as that of strong 

consistency. This is because in eventual consistency, each request would be forwarded to 

all N=3 replicas and the server waits for R=2 and W=2 successful acknowledgments. With 

strong consistency, just the put requests would be forwarded to all other replicas. Eventual 

consistency gives faster response times to the clients but with larger cost of communication 

overhead.     

Table 6. Message count (#msg) of strong consistency (sc) and eventual consistency (ec) 

 

process #msg failure #msg consistency #msg 

sc ec sc ec sc ec 

 

#client 
dfc dchord dfc dchord dfc dchord dfc dchord dfc dchord dfc dchord 

4K 312K 246.2K 141.5K 211K 30 4.6K 30 360 217.7K 87K 167.2K 164.5K 

8K 404K 596.2K 391.9K 683K 40 450 50 590 175.4K 171K 340.2K 328.2K 

16K 726K 1.5M 733.1K 1.5M 67 28.6K 90 23.7K 336.5K 377K 668.2K 655.4K 

32K 1.4M 3.0M 1.4M 3.1M 110 710 150 830 665.4K 662K 1.3M 1.3M 

66K 2.7M 6.7M 2.7M 6.6M 210 590 210 770 1.3M 1.3M 2.6M 2.6M 

128K 5.3M 14.5M 5.3M 14.8M 400 890 530 1.1K 2.6M 2.6M 5.3M 5.3M 

256K 21M 68.4M 21.0M 68.7M 1.6K 1.1K 2.1K 1.4K 10.5M 10.5M 21.0M 21.0M 

1M 42M 147.1M 42.0M 148M 3.1K 1.3K 4.1K 1.6K 21.0M 21.0M 42.0M 42.0M 

 

3.5.7 KVS Applicability to HPC System Software. In this section, we show that KVS 

can be used as building block for developing HPC system software. First, we conduct 

simulations with three workloads, which were obtained from real traces of three system 

software: job launch using SLURM [30], monitoring by Linux Syslog, and I/O forwarding 

using the FusionFS [42] distributed file system. In the next two chapters, we will see two 
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RMS that use a KVS (i.e. ZHT [51]) for distributed state management, namely the 

SLURM++ workload manager [22], and a MTC task scheduler, MATRIX [23]. 

3.5.7.1 Simulation with Real Workload Traces 

We run simulations with three workloads obtained from typical HPC system 

software, listed as follows: 

 Job Launch: this workload is obtained from monitoring the messages between 

the server and client during an MPI job launch in SLURM resource manager. 

Though the job launch is not implemented in a distributed fashion, the messages 

should be representative regardless of the server structure, and in turn drive the 

communications between the distributed servers. The workload is characterized 

with the controlling messages of the slurmctld (get) and the results returning 

from the slurmds (put). 

 Monitoring: we get this workload from a 1600-node cluster’s syslog data. The 

data is categorized by message-type (denoting the key space) and count 

(denoting the frequency of each message). This distribution is used to generate 

the workload that is completely put dominated. 

 I/O Forwarding: We generate this workload by running the FusionFS 

distributed file system. The client creates 100 files and operates (reads or writes 

with 50% probability) on each file once. We collect the logs of the ZHT 

metadata servers that are integrated in FusionFS. 

We extend these workloads to make them large enough for exascale systems. For 

job launch and I/O forwarding, we repeat the workloads several times until reaching 10M 

requests, and the key of each request is generated with uniform random distribution (URD) 
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within 64-bit key space. The monitoring workload has 77 message types with each one 

having a different probability. We generate 10M put requests; the key is generated based 

on the probability distribution of the message types and is mapped to 64-bit key space. We 

point out that these extensions reflect some important properties of each workload, even 

though cannot reflect every details: the job launch and I/O forwarding workloads reflect 

the time serialization property and the monitoring workload reflects the probability 

distribution of all obtained messages. We run these workloads in our simulator, and present 

the efficiency results for dfc and dchord with both strong and eventual consistency, in Figure 

22. We see that for job launch and I/O forwarding, eventual consistency performs worse 

than strong consistency. This is because both workloads have almost URD for request type 

and the key. For monitoring workload, eventual consistency does better because all requests 

are put type. The strong consistency requires acknowledgments from all the other N-1 

replicas, while the eventual consistency just requires W-1 acknowledgments. Another fact 

is that the monitoring workload has the lowest efficiency because the key space is not 

uniformly generated, resulting in poor load balancing. 

    

                               (a) dfc                                                             (b) dchord                           

Figure 22. dfc and dchord with real workloads 
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The above results demonstrate that our KVS framework can simulate various 

system software as long as the workloads could be mirrored to put or get requests, which 

is true for the HPC system software we have investigated. 

3.6 Conclusions and Impact 

The goal of this work was to propose a general system software taxonomy for 

exascale HPC system software, and to ascertain that a specific HPC system software should 

be implemented at certain scales with certain levels of replication and consistency as 

distributed systems. We devised a system software taxonomy. Four classes of system 

architectures were studied through a key-value store simulator. We conducted extreme-

scale experiments to quantify the overheads of different recovery, replication and 

consistency models for these architectures. We also showed how KVS could be used as a 

building block for general system software. The motivation was that a centralized server 

architecture does not scale and is a single point of failure. Distributed system architectures 

are necessary to expose the extreme parallelism, to hide latency, to maximize locality, and 

to build scalable and reliable system software at exascale.  

The conclusions of this work are: (1) KVS is a viable building block; (2) when there 

are a huge amount of client requests, dfc scales well under moderate failure frequency, with 

different replication and consistency models, while dchord scales moderately with less 

expensive overhead; (3) when the communication is dominated by server messages (due 

to failure/recovery, replication and consistency), dchord will have an advantage; (4) different 

consistency models have different application domains. Strong consistency is more 

suitable for running read-intensive applications, while eventual consistency is preferable 

for applications that require high availability (shown in Figure 23). 
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Figure 23. Guide to choose different consistency models 

We have high hope that the proposed HPC system software taxonomy, along with 

the idea of using key-value store as a building block for system state management, will lay 

the foundations of developing and deploying next generation system software for exascale 

supercomputers. The design philosophies of the HPC system software need to be 

dramatically transformed to better support the tremendous growths of both intra-node and 

inter-node parallelism of the upcoming exascale machines, from centralized architectures 

to more distributed ones for better scalability, bringing new challenges of maintaining high 

available, consistent services. As there are numerous system software needed on exascale 

machines, from the top application level to the bottom OS level, the taxonomy will be very 

handy in categorize them and characterize the system software of each category. In this 

way, we only need to solve the challenges of one system software, and the solutions will 

automatically apply to others in the same category. This will open doors to new research 

directions of developing more taxonomies that are inclusive. 

The proposal of using key-value stores as a building block is meaningful and will 

have long-term impacts on the exascale HPC system software community. Many system 
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software will be beneficial from using key-value stores as a system state management 

service, including those that support system booting, system monitoring, hardware or 

software configuration and management, job and resource management, I/O forwarding, 

and various runtime systems for programming models and communication libraries. We 

will see examples of resource management and job/task scheduling system software that 

are built on top of key-value store in the following chapters of this dissertation. This will 

drive new research directions of developing scalable key-value stores for HPC 

environments. Furthermore, as key-value stores have been widely used in the Internet 

domains, this work will be able to bridge the gap between HPC and cloud computing, by 

running suitable HPC applications in the cloud environment, and vice versa, in order to 

improve the accessibility, system utilization, performance of the distributed systems as an 

ensemble. 
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CHAPTER 4 

MATRIX TASK EXECUTION FRAMEWORK 

Large-scale scientific applications of many-task computing (MTC) are well suited 

to be run on exascale machines that will be comprised of hundreds of thousands to millions 

of nodes with up to a billion threads of execution. Exascale MTC applications will likely 

employ over-decomposition to generate many more tasks (e.g. billions) than available 

parallelism, which are loosely coupled and fine-grained in both job/task sizes (e.g. per-

core) and durations (e.g. from millisecond to hours). Over-decomposition has been shown 

to improve utilization at large scales as well to make fault tolerance more efficient, but 

poses significant challenges on the job schedulers to deliver orders of magnitude higher 

throughput (e.g. millions/sec) than that can be achieved through the state-of-the-art 

centralized schedulers. This chapter aims to address the scheduling challenges and 

throughput needs of exascale MTC applications through a distributed scheduling 

architecture and load-balancing technique (i.e. work stealing). We explore the scalability 

of work stealing in balancing workloads through a lightweight discrete event simulator, 

SimMatrix, which simulates both centralized and distributed MTC task execution 

frameworks up to 1-million nodes, 1-billion cores, and 100 billion tasks, on both shared-

memory many-core machine and distributed exascale billion-core machine. With the 

insights gained from the simulations, we develop a real distributed task execution 

framework, MATRIX, which implements the work stealing technique to achieve 

distributed load balancing, and employs a distributed key-value store (i.e. ZHT) to manage 

task metadata. MATRIX is deployed on an IBM Blue Gene/P (BG/P) supercomputer and 
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Amazon cloud running both independent tasks and tasks with dependencies specified as 

Direct Acyclic Graphs (DAG). We compare MATRIX with Falkon (a centralized MTC 

task scheduler) on BG/P up to 4K cores. MATRIX maintains throughputs as high as 13K 

tasks/sec and 90%+ efficiency for 1-sec tasks while Falkon only achieves 20% efficiency. 

We also compare MATRIX with Sparrow and CloudKon in cloud up to 64 EC2 instances, 

and MATRIX outperforms Sparrow and CloudKon by 9X and 5X respectively with 67K 

tasks/sec and 80%+ efficiency. We expect the improvements to grow at larger scales due 

to the distributed nature of work stealing. We believe that work stealing is generalizable to 

other domains, such as scheduling on many-core computing, grids, data centers, and 

clouds. 

4.1 Many-task Computing Task Execution Framework 

Applications that fit into the many-task computing (MTC) category cover a wide 

range of scientific domains, ranging from astronomy, astrophysics, bioinformatics, 

biometrics, chemistry, climate modeling, to data analytics, economics, medical imaging, 

neuroscience, pharmaceuticals, and physics [38] [40]. MTC uses over-decomposition [7] 

to decompose applications into embarrassingly parallel tasks that are loosely coupled and 

fine grained in both task sizes (e.g. per-core) and durations (e.g. millisecond to hours). 

Applications of MTC are structured as Direct Acyclic Graphs (DAGs), where the vertices 

are discrete tasks and the edges are data dependencies. MTC applications are well suited 

to be run on supercomputers, as the machines have tremendous computing capacity for the 

task executions, and high bandwidth networks for data movement among dependent tasks. 

To better illustrate the fact that the tasks of MTC are fine-grained in task durations, 

we investigated the largest available trace of real MTC workloads, collected over a 17-
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month period comprising of 173M tasks [38] [41]. We filtered out the logs to isolate only 

the 160K-core BG/P supercomputer from Argonne National Laboratory, which netted 

about 34.8M tasks with the minimum runtime of 0 seconds, maximum runtime of 1469.62 

seconds, average runtime of 95.20 seconds, and standard deviation of 188.08. We plotted 

the Cumulative Distribution Function of the 34.8M tasks, shown in Figure 24.  

 

Figure 24. Cumulative Distribution Function of the MTC workloads 

We see that about 10% of the tasks have lengths less than 1 second, most of the 

tasks have lengths ranging from several seconds to hundreds of seconds, and the medium 

task length is about 30 seconds, which is just one third of the average (95.2 seconds). These 

34.8M tasks are partitioned into 1395 BOTs (where BOTs are clearly marked in the logs). 

With the supercomputers approaching exascale with billions of threads of 

execution, we expect that the task lengths will be scaled down accordingly because the 

machines will be more powerful, resulting in many more short tasks. In addition, the MTC 

applications are also developing and scaling up with an extremely fast speed, resulting in 

exposing orders of magnitudes of fine-grained tasks (e.g. billions) that need to be scheduled 

and executed within a short amount of time, in order to achieve high system utilization. 
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However, the current job schedulers and execution frameworks of supercomputers have 

been designed around the centralized paradigm for tightly coupled long-running HPC 

applications, which are not able to fulfill the scheduling needs of MTC applications, due 

to the lack of scheduling granularity at the core/thread level and the inherent scalability 

limitation of the centralized architecture. To bridge the gap between the needs of task 

scheduling and execution, and the poor performance of the current schedulers of 

supercomputers for MTC applications, we make efforts to develop scalable task scheduling 

and execution framework towards exascale computing. 

We propose that the task scheduling framework of MTC in an exascale computing 

environment will need to be fully distributed in order to achieve high performance, 

meaning high throughput (e.g. millions/sec), utilization, availability, as well as low latency, 

as opposed to the centralized and/or hierarchical designs. There should be as many 

schedulers as the compute nodes, forming a 1:1 mapping. This is demanded, as at exascale, 

each compute node will have high intra-node parallelism (e.g. thousands to tens of 

thousands cores), which requires one dedicated scheduler to manage resource and schedule 

the fine-grained tasks in local, preserving the data locality and hiding the latency. We 

abandon the centralized architecture due to the limited processing capacity and the single-

point-of-failure issue. We bypass the hierarchical architecture as it is difficult to maintain 

a tree under failures, and a task may experience longer latency because it needs to go 

through multiple hops as opposed to only one in a fully distributed architecture. The fully 

distributed architecture is scalable, as all the schedulers could receive workloads and 

participate in scheduling tasks. Therefore, ideally, the throughput would gain linear 

speedup as the system scales up. In addition, the architecture will be fault tolerant, leading 
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to high availability, because a node failure only affects tasks running on that node. 

Furthermore, the simulation work in chapter 3 showed that fully distributed architecture 

has advantages over others when the client-processing events dominate, which is true for 

MTC applications because the number of tasks needed to be scheduled and executed are 

huge. 

Load balancing [102] is an important goal of fully distributed task execution 

framework of MTC. Load balancing refers to distributing workloads as evenly as possible 

across all the schedulers, and it is critical given that a single heavily loaded scheduler would 

lower the system utilization significantly. However, it is challenging to achieve load 

balancing in fully distributed architecture because not only a scheduler has limited partial 

knowledge of its own state, but the task executions of applications may cause load 

imbalance during runtime. Therefore, load balancing must be achieved through the 

corporations of all the schedulers dynamically.  

In this chapter, we propose an adaptive work stealing technique [87] to achieve 

distributed load balancing at extreme scales. We explore the scalability of the work stealing 

technique through a lightweight discrete event simulator, SimMatrix [50], which simulates 

task scheduling framework comprising of millions of nodes and billions of cores/tasks. 

With the insights gained from the simulations, we develop a real distributed task execution 

framework, MATRIX, which implements the work stealing technique to achieve 

distributed load balancing, and employs a distributed key-value store (i.e. ZHT [51]) to 

manage task metadata. This chapter focuses on evaluating the distributed architecture and 

scheduling techniques with compute-intensive MTC tasks that are either bag of tasks 

without dependencies, or have task dependencies on the task itself. We leave the topic of 
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scheduling data-intensive MTC applications in Chapter 4. The main contributions of this 

chapter can be summarized as follows: 

 Propose an adaptive work stealing technique, which applies dynamic multiple 

random neighbor selection, and adaptive polling interval strategies. 

 Design and implement the SimMatrix simulator of MTC task scheduling system 

that simulates different scheduling architectures, such as centralized, 

hierarchical, and distributed, and various scheduling techniques, such as FIFO 

and work stealing. 

 Implement a real distributed task execution framework, MATRIX, which 

adopts the adaptive work stealing for distributed load balancing and a 

distributed key-value store for task metadata management. 

 Comparing the resource consumption and performance of SimMatrix with 

those of two existing distributed system simulators (i.e. SimGrid and GridSim). 

 Evaluate work stealing via both SimMatrix with the simulations of various 

platforms and MATRIX, using a variety of workloads with task granularities 

ranging from milliseconds to seconds. 

 Compare the performance of MATRIX with that of Falkon, Sparrow, and 

CloudKon on both the BG/P supercomputer and the Amazon cloud. 

4.2 Fully Distributed Scheduling Architecture 

We have motivated that the MTC paradigm will likely require a fully distributed 

task scheduling architecture for exascale machines. The architecture is shown in Figure 25. 

The scheduling system has four components: client, scheduler, executor, and key-value 

store (KVS). Each compute node runs a scheduler, an executor and a KVS server. The 
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client issues requests to generate a set of tasks, puts task metadata into KVS servers, 

submits tasks to all schedulers, and monitors the execution progress. The schedulers are 

fully connected, and map tasks to the local executor. Whenever a scheduler has no tasks, it 

communicates with other schedulers to migrate ready tasks through load balancing 

techniques (e.g. work stealing). Each executor forks several (usually equals to number of 

physical cores of a machine) threads to execute ready tasks concurrently. 

KVS server

Scheduler

Executor KVS server

Scheduler

Executor

Compute Node Compute Node

……

Fully-Connected

communication

Client Client Client

 

Figure 25. Fully distributed scheduling architecture 

As chapter 3 proposed that KVS is a viable building block of extreme-scale system 

software, we integrate a distributed KVS, ZHT, in our scheduling system to monitor the 

execution progress and to keep the metadata of all the tasks and system states in a 

distributed, scalable, and fault tolerant way. ZHT is a zero-hop persistent distributed KVS 

with each ZHT client having a global view of all the ZHT servers. For each operation (e.g. 

insert, lookup, remove) of ZHT server, there is a corresponding client API. The client calls 

the API, which sends a request to the exact server (known to the client by hashing the key) 

that is responsible for the request. Upon receiving a request, the ZHT server executes the 

corresponding operation. ZHT serves as a data management building block for extreme 
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scale system software, and has been tested up to 32K cores on an IBM Blue Gene /P 

supercomputer [51]. 

Both the system clients and schedulers are initialized as ZHT clients. The system 

client inserts all the task metadata information to ZHT before submitting tasks to all the 

schedulers. The scheduler queries and updates the task metadata when scheduling tasks, 

and in the meanwhile, puts local state information (e.g. number of waiting, ready, and 

complete tasks, number of idle executing threads) to ZHT periodically and the system 

client keeps monitoring this information until all tasks are completed. 

4.3  Adaptive Work Stealing Technique 

Work stealing has been proven as an efficient load balancing technique at the 

thread/core level in shared memory environment [87] [116]. It is a pull-based method in 

which the idle processors randomly steal tasks from the overloaded ones. Our fully 

distributed scheduling system adopts work stealing at the node level in distributed 

environment. Work stealing is proceeded by the idle schedulers stealing workloads from 

others, as referred to neighbors. When a scheduler is idle, it randomly chooses some 

candidate neighbors. Then, it goes through all neighbors in sequential to query the “load 

information” (number of ready tasks), and tries to steal tasks from the most heavily loaded 

neighbor. In fully distributed architecture, every scheduler has a global membership list 

and is aware of all others. Therefore, the selection of candidate neighbors (victims) from 

which an idle scheduler (thief) steals tasks could be static or dynamic/random.  

In the static mechanism, the neighbors of a scheduler are pre-determined as 

consecutive nearby identities and will not change. This mechanism has limitation that every 

scheduler is confined to communicate with part of other schedulers. In the dynamic case, 
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whenever a scheduler is idle, it randomly chooses some candidate neighbors from the 

membership list. The traditional work stealing algorithm randomly selects one neighbor 

[105] per stealing operation, leading to poor performance at extreme scales. Instead, we 

choose to have a multiple random neighbor selection strategy that randomly selects several 

candidate neighbors instead of one, and chooses the most heavily loaded one to steal tasks 

upon every work stealing operation. This dynamic mechanism increases the chances of 

choosing the overloaded neighbors to balance loads. On the other hand, the multiple 

neighbor section strategy introduces some overhead when selecting neighbors; however, 

we show that this overhead is minimal (the time complexity is (n), where n is the number 

of neighbors) in Algorithm 1, shown in Figure 26. 

 

Figure 26. Algorithm of dynamic multi-random neighbor selection 

We prove the time complexity of Algorithm 1 of the dynamic multi-random 

neighbor section strategy is (n), where _n num neigh , the number of neighbors to be 

chosen.  
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Let k  be the k th neighbor to be chosen, m  be the number of nodes in the system. 

The possibility that one neighbor that has already been chosen is chosen again is: 
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So, the time complexity to choose n random neighbors is: (n). 

After an idle scheduler selects candidate neighbors, it queries each neighbor in 

sequential about the load information, referring to the number of tasks to be executed. 

Then, the idle scheduler tries to steal tasks from the most heavily overloaded one. When a 

scheduler fails to steal tasks from the selected neighbors, because either all neighbors have 
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no tasks, or the most heavily loaded scheduler had already executed the reported tasks 

when actual stealing happens, it waits for a period of time and does work stealing again. 

We call this wait time the poll interval. Algorithm 2 shown in Figure 27 gives the overall 

work stealing procedure. Each scheduler checks the local task and resource information. 

Whenever a scheduler runs out of tasks to be executed, it signals the adaptive work stealing 

algorithm. 

 

Figure 27. Algorithm of adaptive work stealing 

In order to improve the performance of the work stealing technique, we implement 

an adaptive poll interval strategy. If the poll interval is fixed, there would be difficulties to 

set the value to the right granularity. If the poll interval is too small, at the final stage when 

there are not many tasks left, many schedulers would poll neighbors to do work stealing. 
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These would eventually fail leading to more work stealing communications. If the poll 

interval is set large enough to limit the number of work stealing events, work stealing 

would not respond quickly to changing conditions, and lead to poor load balancing. 

Therefore, we propose an adaptive strategy to adjust the poll interval during runtime. The 

poll interval of a scheduler is changed dynamically similar to the exponential back-off 

approach used in the TCP networking protocol [89] to control the network congestion. The 

default value is set to be small (e.g. 1 ms). Once a scheduler successfully steals tasks, it 

sets the poll interval back to the default value. Otherwise, the scheduler waits the time of 

poll interval and doubles it and tries to do work stealing again. In addition, we set an upper 

bound, and whenever the poll interval hits the upper bound, a scheduler would not do work 

stealing anymore. This would significantly reduce the amount of failing work stealing 

operations at the final stage. 

The parameters that can affect the performance of the adaptive work stealing 

technique are number of dynamic neighbors, number of tasks to steal, and the poll interval. 

The values of these parameters need to be set correctly according to the applications, and 

need to be changed dynamically at runtime according to the system state. Without the 

dynamic features, the work stealing technique may not scale efficiently up to exascale. We 

will show our thorough explorations of the work stealing parameters in simulations. 

4.4  SimMatrix – Simulator of Task Execution Framework at Exascale 

Research about real scheduling system is impossible at exascale, because not only 

we lack the exascale computers, but also the experimental results obtained from the real-

world platforms are often irreproducible due to resource dynamics [88]. Therefore, we fall 

back to simulations to study various task scheduling architectures and algorithms. Like the 
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key-value store simulator in Chapter 3, we develop a lightweight discrete event simulator 

(DES) [119], called SimMatrix [50], which simulates MTC task execution framework 

comprising of millions of nodes and billions of cores/tasks. Careful consideration was 

given to the SimMatrix architecture, to ensure that it would scale to exascale levels on 

modest resources of a single node. SimMatrix supports both centralized (e.g. first-in-first-

out or FIFO) and distributed (e.g. work stealing) scheduling. We will use SimMatrix to 

study the scalability and performance of different scheduling architectures and techniques. 

4.4.1  SimMatrix Architectures. The simulated scheduling architectures of SimMatrix 

are shown in Figure 28. For simplicity, we assign consecutive integer numbers as the node 

identities (node ids), ranging from 0 to the number of nodes N-1. 

 

Figure 28. SimMatrix architectures: the left is centralized; the right is distributed 

SimMatrix supports the granularity of scheduling at the node/core level at extreme 

scales. The simulated system could be centralized (Figure 28 left), where a single 

dispatcher (typically located on a single node called head node) maintains a task queue and 

manages the resources of all the compute nodes, the scheduling of tasks, and the task 

execution state updates. It could also be distributed (Figure 28 right), where each 

computing node maintains a task scheduler, and they manage local resources and cooperate 



 

 

84 

with each other to achieve load balancing. The centralized approach suffers scalability and 

single-point-of failure. We believe that distributed scheduling with innovative load 

balancing techniques (e.g. work stealing) is the scheduling approach to exascale. Another 

one is the hierarchical architecture, where several schedulers are organized as a tree-based 

topology. SimMatrix could be easily extended to support hierarchical scheduling [233]. 

4.4.2  Centralized Scheduler. In the centralized architecture, a dispatcher maintains a 

task queue and manages the resources of all the compute nodes, the scheduling of tasks, 

and the task execution state updates. All tasks are submitted to the dispatcher by the client. 

The dispatcher then assigns tasks to the first node that has free executing cores using the 

FIFO policy [155]. None of the compute nodes has queues to hold extra tasks. If all cores 

are busy executing tasks, the dispatcher will wait until some tasks are finished releasing 

the corresponding cores. Then, it schedules tasks again to the nodes that have idle cores. 

This procedure continues until all the tasks are finished. 

4.4.2.1 Task Description 

Each task is modeled to have various attributes. The basic attributes are task length 

meaning the time taken to complete the task, task size meaning the number of cores 

required to execute the task, and task timestamps including submission time, queued time, 

start time, end time. For applications that have dependencies on task and data, more 

attributes will be added to describe a task, such as the input data size, the output data size, 

the parent tasks, and the children tasks. 

4.4.2.2 Global Event Queue 

Before settling on SimMatrix being a DES, we explored the maximum number of 

threads that could be supported by Java JVM, and found that on our 48-core system with 
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256GB of memory, 32K threads is the upper bound. Since it is not feasible for us to run 

1M threads in Java (or C/C++ which we also explored), we decide on creating an object 

per simulated node. Any behavior is converted to an event, and all events are put in a global 

event queue, and sorted based on the occurrence time. We advance the simulation time to 

the occurrence time of the first event removed from the queue. The events are: 

 TaskEnd: Signals a task completion event, leading to free a processing core. 

The dispatcher will advance to the next task to schedule. The compute node 

with the available core will wait for the dispatcher to assign the next task. 

 Submission: Client submits tasks to the dispatcher, triggered when the length 

of the task queue in the dispatcher is below a predefined threshold. 

 Log: Signals to write a record to a summary log file, including the information 

such as the simulation time, number of all cores, number of executing cores, the 

length of task queue, instant throughput, etc. 

The performance of the event queue is critical. It has to be scalable to billions of 

events, and be subjected to frequent operations. We use the TreeSet [157] data structure in 

Java. It is a set of elements ordered using their natural ordering, or by a comparator 

provided at set creation time. In SimMatrix, it is ordered by a comparator based on the 

event occurrence time, along with the event Id (if events have the same occurrence time). 

The TreeSet is implemented based on Red-Black tree [90] [156] that guarantees Θ(logn) 

time for removing and inserting, and Θ(1) time for getting the first event.    

4.4.2.3 Node Load Information 

Since the compute node has no task queue to hold tasks to be executed, the load of 

a node of the centralized scheduler is defined as the number of busy cores ranging from 0 
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to the number of cores of a node. The dispatcher manages the resources of all the compute 

nodes and has a global view of the loads of all the nodes. The dispatcher needs to access 

the load information continuously as long as there are tasks to be executed, to find the next 

nodes that have available executing cores. If we were to naively go through all the nodes 

to get the load information, the simulator would be inefficient when the number of nodes 

is large (e.g. 1 million). 

We implement the load information using a nested hash map data structure. The 

key is the load (from 0 to number of cores), while the value is a hash set that contains the 

node ids whose loads are all equal to the key. This means that nodes in the simulator are 

grouped together in buckets that have similar loads. Every time when the dispatcher wants 

to schedule some tasks to a node, it goes through all the load buckets sequentially, finds 

the first set of nodes that have idle cores (load is less than the number of cores), and then 

assigns tasks to all the nodes in a FIFO pattern. As the number of cores per node is 

relatively small (e.g. 1000 cores), we consider this lookup operation taking Θ(c) time, 

where c is the number of cores of a node, and c<=1000. Once the right load level is 

identified, inserting, searching or removing an element in the nested hash map takes only 

Θ(1) time. This nested data-structure helps reduce the time complexity by orders of 

magnitude, from a Θ(n) (n is the number of nodes) to Θ(c*1) for one scheduling decision, 

and allows the simulator to run orders of magnitude faster at exascale. 

4.4.2.4 Static and Dynamic Task Submission 

SimMatrix allows the client to submit tasks in either a static or a dynamic way. In 

the static submission, the client would submit all tasks (either predefined in a workload file 

or generated by a specific workload generator) in one batch to the dispatcher as soon as 
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possible. This is to eliminate the potential bottleneck of the task submission. The dynamic 

task submission applies when the number of tasks is tremendously large. SimMatrix allows 

task submission throttling to limit the memory footprint of the simulator to only the active 

tasks. Essentially, the client would divide the tasks into many batches, and submit the tasks 

one after another until all the tasks are submitted. The simulator set a threshold for the 

number of tasks in the task queue of the dispatcher. If the task queue length is below the 

threshold, the client will submit the next batch of tasks.  

4.4.2.5 Logs 

In order to help generate the evaluation results, as well as for visualization’s 

purpose, we write some information into logs. We have two logs, one records the per-task 

information (can be very large for exascale simulations), while the other one records the 

summary over some defined unit of time (quite efficient regardless of scale of experiment). 

The per-task log records information such as task id, compute node id, submission time, 

queue wait time, execution time, and exit code that identifies whether the task was executed 

successfully or not. The summary log records information such as the simulation time, 

number of all cores, number of busy cores, task queue length, and instance throughput.  

The per-task log is optional due to the potential large overheads of writing a huge 

file. If enabled, a record is logged whenever a ‘TaskEnd’ event happens. The summary log 

is mandatory, and is implemented by submitting ‘Log’ events to the global event queue. At 

the beginning when simulation time is 0, we insert a ‘Log’ event. When handling a ‘Log’ 

event, we remove it and insert the next ‘Log’ event that happens after a fixed amount of 

simulation time. This way, we can ensure that the increment of the simulation time between 

two consecutive records is constant, making plots of the results easier to manage. 
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4.4.3  Distributed Scheduler. One of the major motivations of developing SimMatrix is 

to study different distributed scheduling techniques at exascale, assuming that the 

centralized schedulers would not scale up to exascale levels. This section describes the 

distributed scheduler that uses the adaptive work stealing technique to achieve load 

balancing. With the distributed architecture, each scheduler on one compute node 

maintains a task queue. The distributed scheduler shares common features with the 

centralized one, such as task description and dynamic task submission. 

Tasks can be submitted to any arbitrary node. For simplicity, we let the client 

submit all tasks to the first node (id = 0). This is the worst-case scenario from a load 

balancing perspective. SimMatrix also allows the client to submit tasks in the best-case 

scenario, where the tasks are submitted to all the nodes in a load balancing fashion (e.g. 

uniform random, modular). Every compute node has a global knowledge of all other nodes 

in the system (membership list). Figure 28 (right part) shows a fully connected 

homogeneous topology. All nodes have the same amount of neighbors and cores; in this 

example, the neighbors of a node are just its several left and right nodes with consecutive 

ids, we call this schema as the static neighbor selection. In addition, our simulator allows 

dynamic random neighbor selection, which means every time when doing work stealing, a 

node selects several neighbors randomly from the membership list. 

When a node runs out of tasks to be executed, it will ask the load information of all 

the neighbors in turn. In the distributed scheduling system, the load of a node is the task 

queue length minus the number of idle cores of that node. The idle node tries to steal tasks 

from the heaviest loaded one. When a node receives a load information request, it will send 

its load information to the calling neighbor. If a node receives work stealing request, it then 
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checks its task queue, if which is not empty, the node will send some tasks to the neighbor, 

or it will send information to signal a steal failure. When a node fails to steal tasks, it will 

wait some time (referred to as the poll interval), and then try again. The termination 

condition is that all the tasks submitted by the client are finished. We do this by setting a 

global counter that is visible for all the simulated nodes. 

The simulated distributed scheduler also has a global event queue that has the same 

implementation as that of the centralized one. This global event queue allows the simulator 

to be implemented in a relatively straightforward manner, easing the implementation, 

tuning, and debugging. The trade-off is perhaps the limited concurrency. However, as we 

will show in the evaluation section, even with this design, SimMatrix is able to outperform 

several other simulators significantly. The types of events are defined as follows. 

 TaskEnd: A task completion event. The compute node starts to execute another 

task if its task queue is not empty. This results in inserting another ‘TaskEnd’ 

event. Otherwise, a ‘Steal’ event is triggered to steal tasks. If the node is the 

first node that accepts all the tasks and its task queue length is below a threshold, 

a ‘TaskReception’ event will be triggered on the client’s side. 

 Log: The same as the centralized scheduler.  

 Steal: Signals the work stealing algorithm to invoke the steal operation. First, 

the node asks for the load information of its neighbors in turn, and then selects 

the most loaded one to steal tasks by inserting a ‘TaskReception’ event. If all 

neighbors have no tasks, the node will wait for some time to ‘Steal’ again. 

 TaskDispatch: Dispatch tasks to a neighbor. If at the current time, the node 

happens to have no tasks, it will inform the neighbor to steal tasks again by 
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inserting a ‘Steal’ event from the neighbor. Otherwise, the node dispatches a 

part (e.g. half) of its tasks in the task queue to the neighbor by inserting a 

‘TaskReception’ event from that neighbor. 

 TaskReception: Signals the receiving node to accept task by increasing the 

length of its task queue. The tasks received are either from the client, or from a 

neighbor. 

 Visualization: Visualize the load information of all nodes. 
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Figure 29. Event State Transition Diagram 

The state transition diagram of all the events is shown in Figure 29, where each 

state is an event that is executed, and the next state is the event to be inserted into the event 

queue signaled after finishing the current event. For example, if the current event is 

“TaskEnd”, meaning that a node finishes a task and has one more available core. If the 

node has more tasks to be executed, it will insert another “TaskEnd” event for the available 

core; otherwise, it will steal tasks from neighbors. In addition, if the current node is the 

first node and needs more tasks, it will ask the clients to submit the next batch of tasks.  
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4.4.4  SimMatrix Implementation Details. We developed SimMatrix from scratch in 

Java. SimMatrix has 2600+ lines of code, out of which 800 lines of code are for the 

centralized simulator and the rest 1800 lines of code are for the distributed scheduler. 

Before developing our own simulator, we explored the possibilities of leveraging other 

existing distributed system simulation frameworks, such as Jist [158], SimGrid [88], 

GridSim [109], and PeerSim [48]. We found that none of the simulators have the ability to 

simulate the exascale level (e.g. millions of nodes, billions of cores, and hundreds of 

billions of tasks) we are studying. We implemented a workload generator for SimMatrix, 

which can generates workload according to different distributions of task lengths, such as 

uniform random distribution and Gamma distribution. The source code of SimMatrix is 

made open source on http://datasys.cs.iit.edu/~kewang/software.html. 

4.5 MATRIX – a Real MTC Task Execution Framework  

In addition to the SimMatrix simulator, we also develop a real MTC task execution 

framework. MATRIX implements the distributed scheduling architecture (shown in Figure 

25) and the adaptive work stealing technique to achieve load balancing. MATRIX also 

integrates a distributed key-value store (KVS), ZHT [51], to monitoring execution progress 

and maintain system and task metadata. 

4.5.1  MATRIX Components. The basic MATRIX components, along with the 

communication messages among the components are shown in Figure 30.  

Each compute node runs a scheduler, an executor and a ZHT server. The executor 

is implemented as a separate thread in the scheduler. All the schedulers are fully connected 

with each one knowing all of others. The client is a benchmarking tool that issues request 

to generate a set of tasks, and submits the tasks to any scheduler. The executor keeps 
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executing tasks of a scheduler. Whenever a scheduler has no more waiting tasks, it initiates 

work stealing to steal tasks from neighbors. The tasks being stolen would be migrated from 

the victim to the thief. In this scenario, task migration does not involve moving data. We 

leave the exploration of scheduling of data-intensive MTC applications in the next chapter. 
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Figure 30. MATRIX components and communications among them 

ZHT is used to keep the system and task metadata in a distributed, scalable, and 

fault tolerant way. Each scheduler is initialized as a ZHT client, and calls the ZHT client 

APIs (lookup, insert, remove, etc) to insert, query and update information when task state 

has been changed. The key is the task id, and the value is the important information related 

to a specific task, such as the time timestamps including submission time, queued time, 

executing time, and finish time, the task status, such as waiting, being executed, or 

completed, the task migrating history, and task dependency information of lists of parents 

and children.  
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Figure 30 also shows the communicating messages between client and scheduler, 

represented as client interaction; and those among schedulers, represented as work stealing. 

In client interaction, the client first submits tasks to any scheduler (message 1), and it can 

check task status information (message 2). The scheduler would return the task status 

information to client after it queries the ZHT server (message 3). In work stealing, a thief 

scheduler first requests the load information of each potential victim (message 4). The 

potential victims then send load information to the thief (message 5). The thief then 

requests tasks from the most heavily overloaded victim (message 6), which then sends tasks 

to the thief (message 7). 

4.5.2 Task Submission. In MATRIX, a client can submit tasks to any arbitrary 

scheduler. The tasks are submitted in batches (configurable in size) to improve the per 

client throughput. The number of clients is typically configured in a 1:1 ratio between 

clients and schedulers. The way a client submits tasks can vary according to requirements.  

In the best-case situation, a client would submit all the tasks to all the schedulers in 

a load-balanced way. Each scheduler will get a portion of tasks. The client can submit tasks 

by hashing each task to corresponding scheduler using some load-balanced hashing 

function (e.g. task id modular scheduler id). In addition, we can have as many clients as 

schedulers, and evenly divide the total tasks among the clients. Each client would submit 

the tasks to a corresponding scheduler. This is the best-case situation, because tasks are 

evenly distributed to all the schedulers in terms of number of tasks. If all the tasks are 

homogenous (tasks are all the same), then load is perfectly balanced, and there is no need 

to do work stealing. For heterogeneous workload where tasks have different durations, 

work stealing is useful when some schedulers finish their tasks earlier than others do.  
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In the worst-case situation, all tasks are submitted to only one arbitrary scheduler. 

All the other schedulers would have no tasks at the beginning. Therefore, work stealing 

runs from the beginning to ensure that all the tasks are quickly distributed among all 

compute nodes evenly to reduce the time for completing the execution of a workload. 

Assuming there are m schedulers and each one talks to n neighbors, so ideally within logm

n  

steps, the tasks should be balanced across all the nodes. 

4.5.3 Execution Unit. The executor that runs on every compute node maintains three 

different queues: task wait queue, task ready queue, and task complete queue. The 

scheduler would put all the incoming tasks from the client to the task wait queue. Figure 

31 shows an example of the executor with 4 executing threads, T1 to T4. With these three 

queues, MATRIX can support running tasks with dependencies specified by certain direct 

acyclic graph (DAG) [70]. In this chapter, we only considers the dependencies of tasks 

themselves. 

 

Figure 31. Execution Unit in MATRIX 
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All the tasks will be put in the wait queue initially. The task dependency is stored 

in ZHT in the following way. Each task has two fields: a counter, and a list of child tasks. 

The key is the task id, the two fields are part of the value. The counter represents the number 

of parent tasks that should complete before this particular task can be executed. The list of 

child tasks is the list of tasks that are waiting for this particular task to complete. A program 

P1 would keep checking every task in the wait queue to see whether the dependency 

conditions for that task are satisfied or not by querying ZHT server. The dependency 

conditions would be satisfied only if all the parent tasks have been finished (the counter is 

0). Once a task is ready to run, it would be moved from the wait queue to the ready queue 

by P1.  

There are several executing threads in the executor, which keep pulling tasks from 

the ready queue to execute the tasks in the FIFO way. The number of executing threads is 

configurable, but in practice, it is usually configured to be the number of physical cores (a 

similar strategy was used in Falkon [78] on the BG/P machine).  

After finishing the execution of a task, the task is then moved to the complete queue. 

As long as the ready queue is empty, the scheduler would do work stealing, and try to steal 

tasks from randomly selected neighbors. Only the tasks in the ready queue can be stolen. 

Tasks in the wait queue would be marked as unreachable for other schedulers. 

For each task in the complete queue, another program P2 in the executor is 

responsible for sending a completion notification message to ZHT server for each child 

task. The ZHT server would then update the dependency status of each child of that 

particular task by decreasing the counter by 1. As long as the dependency counter of a task 

is 0, the task would be ready to run. Whenever the status of a task is changed, the scheduler 
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would update the changing information by inserting the updated information to ZHT server 

for that specific task. 

4.5.4 Client Monitoring. In MATRIX, client does not have to be alive during the whole 

experiment to wait notifications of the completions of tasks. Instead, MATRIX has a 

monitoring program on the client side that can poll the task execution progress. As the 

MATRIX client is also initialized as a ZHT client, the monitoring program can query the 

status of a specific task by sending query message to ZHT servers, which then query the 

task information, and return the result to client. In addition, in order to know the execution 

progress of a workload, the monitoring program could periodically send messages to the 

ZHT servers to get information about how many tasks have been finished. The termination 

condition is that all the tasks submitted by the client are finished. The monitoring program 

can also record logs about the system state, such as the number of total, busy and free 

execution threads, the lengths of the three queues for each scheduler. This information is 

helpful for debugging and for ease of visualization of the system state. 

4.5.5 Implementing Details. We developed MATRIX in C++. We implemented the 

client code that generates tasks according to the input task requirements, inserts the task 

dependencies to ZHT servers, submits tasks, and monitors the execution progress. The 

DAG generation and management are currently implemented as an internal functionality 

to the MATRIX client. We also implemented the scheduler code that includes the executor 

program as a separate thread. The input to MATRIX is a configuration file that specifies 

all the parameters, such as the number of tasks, the batch size (number of tasks packed to 

be submitted once), task dependency type, task length, number of executing cores, work 

stealing initial poll interval, work stealing poll interval upper bound, and so on. These 
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summed up to around 2.5K lines of code representing 1-year of development, in addition 

to the 8K lines of codebase from ZHT. We have scaled this prototype on BG/P machine up 

to 1K nodes (4-K cores) with promising results. MATRIX has dependencies on Linux, 

ZHT, NoVoHT [159], and Google Protocol Buffer [95]. The code of the MATRIX 

prototype is made open source, available on Github: https://github.com/kwangiit/matrix 

4.6  Performance Evaluation 

This section presents the performance evaluation, including all the simulation and 

experimental results. We start by evaluating the task scheduling architectures and 

techniques through SimMatrix. Furthermore, we evaluate the real MATRIX task execution 

framework. 

4.6.1  Explorations through SimMatrix. This section presents the explorations of the 

task scheduling architectures and techniques through the SimMatrix simulator up to 

exascale, including the validation of SimMatrix against Falkon [78] (a centralized light-

weight MTC task scheduler), and MATRIX [23]; the experimental results showing the 

resource requirement of SimMatrix with scales ; the exploration of work stealing up to 

millions of nodes, billions of cores, and hundreds of billions of tasks ; the comparison 

between centralized and distributed schedulings ; the comparisons between SimMatrix, 

SimGrid and GridSim ; and the application domains of SimMatrix. We have two 

benchmarking workloads that are primarily used in this section: 

 AVE_5K: The average task length is 5000 seconds (0 - 10000), with uniform 

distribution. The number of tasks is 10 times of the number of all cores. 

 ALL_1: All tasks have 1-second length. The number of tasks is 10 times of the 

number of all cores. 
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4.6.1.1 Simulation Validation 

SimMatrix is validated against the state-of-the-art MTC execution fabrics, Falkon 

(for centralized scheduling) and MATRIX (for distributed scheduling with work stealing 

technique). We set the number of cores per node to 4, and the network bandwidth and 

latency the same as the case of BG/P machine. The number of tasks is 10 times and 100 

times of the number of all cores for Falkon and MATRIX respectively. The validation 

results are shown in Figure 32 and Figure 33.  

 

Figure 32. Validation of SimMatrix against Falkon 

  

                       (a) “sleep 0” workload                                    (b) real workload trace 

Figure 33. Validation of SimMatrix against MATRIX.  
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We measured the centralized scheduling (dotted lines) of SimMatrix has an average 

of 2.8% normalized difference in efficiency compared to Falkon (solid lines) for several 

sleep tasks, such as sleep 1 sec, 2 sec and 4 sec in Figure 32. The difference is calculated 

as abs(SimMatrix - Falkon) / SimMatrix. SimMatrix and MATRIX are compared for raw 

throughput using a “sleep 0” workload, and for efficiency using the real workload trace. 

For “sleep 0” workload (Figure 33 (a)), the simulation matched the real performance data 

with an average of 5.85% normalized difference (abs(SimMatrix - MATRIX) / SimMatrix), 

and for real workload trace (Figure 33(b)), we achieved a mere 2.6% difference. 

The reasons for these differences are twofold. Falkon and MATRIX are real 

complex systems deployed on a real supercomputer. Our simulator makes simplifying 

assumptions, such as the network; for example, we do not model communication 

congestion, resource sharing and the effects on performance, and the variability that comes 

with real systems. We believe the relatively small differences (2.8% and 5.85%) 

demonstrate that SimMatrix is accurate enough to produce convincible results (at least at 

modest scales). 

4.6.1.2 Resource Requirements of SimMatrix 

SimMatrix is lightweight in terms of time and memory requirements, and extreme 

scalable with up to 1 million of node, 1 billion cores, and 100 billion tasks. We show the 

time and memory requirements of SimMatrix with scales in Figure 34. In these 

experiments, we use the workloads from the real MTC application traces, shown in Figure 

24. Each node is configured to have 1000 cores, and the number of tasks is 100 times of 

the number of all cores. At exascale with 1M nodes, there will be 1B cores and 100B tasks. 

Based on the 34.8M tasks, we generated a workload for each scale, from 1 node (1000 
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cores) to 1M nodes (1 billion cores). If the number of tasks is less than 34.8M, we just 

randomly selected them from the 34.8M tasks. If the number of tasks is greater than 34.8M, 

we took the overall tasks several rounds, and randomly selected the rest tasks.  

    

              (a) Overall resource consumption             (b) Average resource consumption 

Figure 34. Resource consumption of SimMatrix 

Figure 34 (a) shows that both the time and memory consumptions increase with a 

slower rate than the system scale, which means that our simulations are resource efficient. 

At exascale with 1M nodes, 1 billion cores and 100 billion tasks, the centralized 

architecture consumes just 23.3GB memory, 17.6 hours, and the distributed architecture 

needs about 192.1GB memory, 256.4 hours (still moderate considering the extreme scale). 

Considering per task average resource requirement (Figure 34 (b)), SimMatrix just needs 

0.6us and 0.24Byte per task for centralized scheduling, while 8.8us and 1.97Byte per task 

for distributed scheduling. These low costs at exascale levels will lead to innovative studies 

in scheduling algorithms at unprecedented scales. 

4.6.1.3 Exploring Work Stealing Parameter Space 

The parameters that could affect the performance of work stealing are number of 
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selection. We explore them in detail through SimMatrix. The workload we used is the same 

as that in section 4.6.1.2.   

(1)  Number of Tasks to Steal 

Our experiments used the worst-case task submission. steal_1, steal_2, steal_log, 

steal_sqrt, steal_half means steal 1, 2, logarithm base-2, square root, and half number of 

tasks respectively. We set that each scheduler has 2 static neighbors. The resutlts are shown 

in Figure 35. We see that as the number of nodes increases, the efficiencies of steal_1, 

steal_2, steal_log, steal_sqrt decrease. The efficiency of steal_half keeps at the value of 

about 90% up to 16 nodes, and decreases after that. Moreover, the decreasing speed of 

steal_half is the slowest. 

 

Figure 35. Different numbers of tasks to steal with respect to scale 
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in the id namespace from the original compute node who is receiving all the task 

submissions. The conclusion is that stealing half number of tasks is optimal and having a 

small number of static neighbors is not sufficient to achieve high efficiency even at modest 

scales. We also can generalize that stealing more tasks (less than half) generally produces 

higher efficiencies. 

(2) Number of Neighbors of a Node 

There are two ways by which the neighbors of a node are selected: static neighbors 

mean the neighbors (consecutive nearby schedulers) are determined at first and never 

change; dynamic random neighbors mean that every time when does work stealing, a 

scheduler randomly selects some neighbors. The results of both neighbor selection 

strategies are shown in Figure 36. 

 

                     (a) static neighbor selection                    (b) dynamic neighbor selection 

Figure 36. Different numbers of neighbors 

In our experiments, nb_1, nb_2, nb_log, nb_sqrt, nb_eighth, nb_quar, nb_half 

means 1, 2, logarithm base-2, square root, eighth, a quarter, half neighbors of all schedulers, 

respectively. In static case (Figure 36 (a)), when the number of neighbors is no less than 

eighth of all schedulers, the efficiency will keep at 87%+ within 8192 nodes’ scale. For 
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other numbers, the efficiencies could not remain, and will drop down to very small values. 

We conclude that the optimal number of static neighbors is eighth of all schedulers, as 

more neighbors do not improve performance significantly. However, in reality, an eighth 

of neighbors will likely lead to too many neighbors to be practical, especially for an 

exascale system with millions of nodes. In the search for a lower number of needed 

neighbors, we explore the dynamic multiple random neighbor selection technique. 

In dynamic case (Figure 36 (b)), we first do nb_1 experiments until starting to 

saturate (efficiency < 80%), then at which point, start to do nb_2, then nb_log, and nb_sqrt 

at last. The results show that nb_1 scales up to 128 nodes, nb_2 scales up to 16K-nodes, 

nb_log scales up to 64K-nodes, and nb_sqrt scales up to 1M-nodes, remaining 87% 

efficiency. Even with 1M-nodes in an exascale system, the square root implies having 1K 

neighbors, a reasonable number that each node can keep track of.  

The conclusion drawn about the simulation-based optimal parameters for the 

adaptive work stealing is to steal half the number of tasks from their neighbors, and to use 

the square root number of dynamic random neighbors. 

4.6.1.4 Centralized vs. Distributed Scheduling 

We compare the centralized and distributed schedulers, in terms of system 

efficiency and throughput. Each simulated node is configured to have 1000 cores. We do 

two groups of experiments. The first uses the AVE_5K workload, and the second uses 

ALL_1, for both schedulers. The results are shown in Figure 37 and Figure 38. 

We see that for AVE_5K, before 8K nodes, both the centralized and distributed 

schedulers have the efficiency higher than 95%. However, after that, the centralized 

scheduler drops its efficiency by half until almost 0 up to 1M nodes, and saturates the 
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throughput of about 1000 task/sec (due to 1ms process time of the dispatcher derived from 

Falkon) as the system scale doubles. On the other hand, the distributed scheduler has 

efficiency of 90%+ with nearly perfect scale-up to 1M nodes, where the throughput doubles 

as the system scale doubles, up to 174K tasks/sec. 

 

Figure 37. Efficiency of centralized and distributed scheduling (AV_5K)  

For ALL_1, the centralized scheduling saturates at about 8 nodes with upper bound 

throughput of about 1000 tasks/sec, while the distributed one slows down the increasing 

speed after 128K nodes with throughput of about 60M tasks/sec; it finally reaches 1M 

nodes with a throughput of 75M tasks/sec. The reason that the distributed scheduler begins 

to saturate at 128K nodes is because at the final stage when there is not much tasks, work 

stealing requires too many messages (because almost all nodes are out of tasks leading to 

more work staling events) as the system scales up, to the point where the number of 

messages is saturating either the network and/or processing capacity. After 128K nodes, 

the number of messages per task increases exponentially. One way to address this message 

chocking at large scales is to set an upper bound of the poll interval. When a node reaches 

the upper bound, it would not do work stealing anymore. In addition, we believe that having 
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sufficiently long tasks to amortize the cost of this many messages would be critical to 

achieve good efficiency at exascale. With an upper bound of 75M tasks/sec, the distributed 

scheduler could handle workloads that have an average length of at least 14 seconds with 

90%+ efficiency. It is worth noting that the largest trace of MTC workloads [53] has shown 

MTC tasks having average length of 95sec. 

 

Figure 38. Throughput of centralized and distributed scheduling 

 

Figure 39. Comparing distributed scheduling of SimMatrix with centralized Falkon 
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We also compare the distributed scheduling of work stealing of SimMatrix with the 

Falkon centralized MTC scheduler up to 160K cores, the full scale of the BG/P machine 

where Falkon was run. The results are shown in Figure 39. We see that the distributed 

scheduling architecture, along with work stealing, is able to maintain a 96%+ efficiency 

even with 1sec tasks, when Falkon was only able to achieve 2% efficiency with 1sec tasks 

at full 160K-core scale, requiring task lengths of 256sec to achieve 90%+ efficiencies. 

4.6.1.5 Visualization 

In order to aid the evaluation of the work stealing technique, we developed a 

visualization component to graphically show the load balancing by showing the changes 

of the load information across all nodes and the task executing progress in SimMatrix. We 

do visualization of the load of each node at 20 frames per second (about the minimum 

frequency the human eye cannot see). We map the loads of the nodes to colors, and each 

node is represented as a tile in a canvas. The nodes are mapped to tiles depending just on 

their ‘id’ and are assigned in a row-wise manner. Due to our neighbors’ distribution policy, 

the nodes that are beside each other row-wise are neighbors. This helps to visualize hot 

spots or starvation instances, due to poor scheduling configuration. 

Figure 40 gives an example about how the load is transmitted from the first tile to 

its neighbors (inside the black rectangles) and so on. The first tile is the node that receives 

all tasks from the client, and thus appears to be the most loaded. The mapping from load to 

color is achieved through a transformation that considers a load rate. The rate from 0 to 1 

represents how heavily loaded each node is. A fully loaded node will be mapped to the red 

color, and nearly idle nodes are mapped to a soft green. Completely idle nodes are mapped 

to white for easy differentiation. We reached a final transformation with some empirical 
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parameters in the HSB color space that gives us good results: Hue = (1-rate)*0.36, 

Saturation = 1.0-(0.4*(1-rate)), and Brightness = 1.0. 

 

Figure 40. Load distribution flow for 256 nodes, and 6 neighbors 

Figure 41 shows an example of 1024 nodes under different work stealing 

configurations, some lead to starvation (2 and squared root number of static neighbors), 

while others have relatively uniform load balancing (a quarter of static neighbors and 

squared root of dynamic neighbors). We present the representative graphs for different 

number of neighbors when the system is stable. 

We developed a tool for SimMatrix to show the task execution progress with 

respect to time visually. We show the visualization graph of the execution of SimMatrix 

up to exascale with millions of nodes, billions of cores, and hundreds of billions of tasks, 

using the real workload traces in Figure 42. The utilization is calculated as the area-of-

green-region / area-of-red-region. We could see that the work stealing has nearly 100% 

utilization after about 2K seconds elapsed; it takes that long to reach a stable load balancing 

where every node has tasks to execute, a total of 100 billion tasks. The overall utilization 
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of the work stealing is about 82% after taking into account the ramp up and ramp down 

periods of the experiment, with an average of 8.3M tasks/sec. 

           

                       (a) 2 static neighbors               (b) a squared root static neighbors 

            

               (c) a quarter static neighbors        (d) a squared root dynamic neighbors 

Figure 41. Visualization at 1024 nodes via SimMarix 

 

Figure 42. Visualization of at exascale via SimMatrix   
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Good Load-Balance Good Load-Balance 
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4.6.1.6 SimMatrix vs. SimGrid and GridSim 

We compare SimMatrix with SimGrid and GridSim, in terms of resource 

requirement per task with scales. As neither SimGrid nor GridSim supports explicit 

distributed scheduling, we compare them using centralized scheduling. 

SimGrid provides functionalities for the simulation of distributed applications in 

heterogeneous distributed environments. It is a PDES, being claimed the scalability of 2 

million nodes [88].  We examined SimGrid, went for the MSG interface, and used the basic 

Master/Slaves application. We used the AVE_5K workload, and converted the task length 

to the value of million instructions (MI), as the computing power is represented as MIPS. 

Each slave has 1000 cores, with each core 4000MIPS (about 1GFlops as 1 CPU cycle 

usually has 4 instructions), so the computing power of 1 million nodes is 

1GFlops×1M×1K=1EFlop, achieving the exascale computing.  

GridSim [109] allows simulation of entities in parallel and distributed computing 

systems, such as users, resources, and resource brokers (schedulers). A resource can be a 

single processor or multi-processor with shared or distributed memory and managed by 

time or space shared schedulers. It is a multi-threaded simulator, where each entity is a 

thread. We developed an application on top of GridSim, which consists of one user (has 

tasks) and one broker (centralized scheduler) and several resources (computing nodes). 

Each resource is configured having just one node (Machine), which then has 1000 cores 

(PEs).  

As the saturated throughput of SimGrid is about 2000, in order to make fair 

comparison, we configured SimMatrix having exactly the same throughput upper bound 

by setting the processing time per task to be 0.0005 sec (which is 0.001 sec before and 
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achieved the 1000 upper bound). The comparison results are shown in Figure 43 and Figure 

44.  

 

Figure 43. Comparison of time per task 

 

Figure 44. Comparsion of memory per task 

Notice that for GridSim, we just scaled up to 256 nodes, as it took significant time to 

run larger scales. The time per task of GridSim is significantly worse than other two. It is 

increasing as the system scales up, while SimMatrix and SimGrid experienced decreasing 

or constant time per task. This shows the inefficiency and poor scalability of the design of 

one thread per entity of GridSim. SimGrid could scale up to 65K nodes, however, after 

which point it ran out of memory (256GB). The memory per task of SimGrid decreases 

1 

10 

100 

1000 

10000 

100000 

1000000 

1 4 16
 

64
 

25
6 

10
24

 

40
96

 

16
38

4 

65
53

6 

26
21

44
 

10
48

57
6 

T
im

e
 P

e
r 

T
a
s

k
 (

u
s
) 

Scale (No. of Nodes) 

SimMatrix(Time/Task) 

SimGrid(Time/Task) 

GridSim(Time/Task) 

1 

10 

100 

1000 

10000 

100000 

1000000 

1 4 16
 

64
 

25
6 

10
24

 

40
96

 

16
38

4 

65
53

6 

26
21

44
 

10
48

57
6 

M
e

m
o

ry
 P

e
r 

T
a
s

k
 (

B
y

te
) 

Scale (No. of Nodes) 

SimMatrx(Mem/Task) 

SimGrid(Mem/Task) 

GridSim(Mem/Task) 



 

 

111 

two magnitudes from 1 node to 256 nodes and keeps constant after that. However, the 

SimMatrix scales up to 1M nodes without any problems (14.1GB memory, and 17.4 hours), 

and it is likely to simulate even greater scales with moderate resource requirement. What’s 

more, SimMatrix requires almost the same amount of memory as SimGrid at the scale of 

less than 512 nodes, however, after that SimMatrix is more memory efficient (memory per 

task keeps decreasing with scales) than SimGrid. We also noticed after 1 node, SimMatrix 

is more time efficient than SimGrid; the time per task of SimMatrix is one magnitude 

smaller than that of SimGrid. The conclusion is that SimMatrix is light-weight and has less 

resource requirement at larger scales. 

4.6.1.7 Application Domains of SimMatrix 

We believe that the work presented in SimMatrix on adaptive work stealing is 

generalizable to other domains, such as the data centers, the grid environment, the 

workflow systems [71] [72] [73] [74] [93], and the many-core computing. 

(1)  Data Centers 

Large-scale data centers are composed of thousands of (10 to 100× in near future) 

servers geographically distributed around the world. Load balancing among all the servers 

with data-intensive workloads is very important, yet non-trivial. SimMatrix is extensible 

to enable the study of different network topologies connecting all the servers and data-

aware scheduling, which could be applied in scheduling of data centers. 

(2) Grid Enviroment 

Not only could SimMatrix be configured as homogeneous scheduling system, it can 

also be tuned into heterogeneous one. Different Grids could configure SimMatrix and do 

scheduling individually without interaction with each other. 
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(3) Many-core Computing 

The processor clock frequency has plateaued since 2002 [97], despite Moore’s Law 

[98] being very much alive. The main reason stems from the power consumption increases 

with higher processor speeds, leading manufacturers to use the additional transistors 

towards implementing multiple simpler cores instead of making existing cores more 

complex with higher speed. This was the start of the multi-core era, soon to be many-core 

era, fueled by the development of tens to thousands of cores on a single processor (e.g. 

Intel MIC [99], NVIDIA GPU [100]).  

Predictions are that the number of general-purpose cores/threads per processor will 

be in thousands by the end of this decade [2]. With this level of concurrency in one node, 

the core topology within a node and load balancing in the core level are very important 

factors to the node efficiency and power consumption. 2D-mesh topology seem to be 

promising as they are easy to build, cheap to manufacture, and are power efficient. 3D-

mesh is also interesting as processor manufacturing is advancing to stacked cores and 

memory; this allows greater bandwidth interconnect between cores and memory, hence 

having greater scalability. We used SimMatrix to configure a 1K-core processor (instead 

of the 1M-node distributed system we evaluated in prior sections). SimMatrix supports 

multi-dimensional mesh topology interconnects; we explored both 2D-mesh and 3D-mesh 

at 1K-core scales. Cores have consecutive ids (from 0 to number of cores 1N  ).  

Workload: We generate a finer grained workload from the real workload traces 

than. In order to simulate a MTC workload tuned for a single many-core node (as opposed 

to a large-scale distributed system), we divided the task runtime of each task from the 

original MTC workload by 1000. The resulting workload has the following high-level 
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characteristics: minimum runtime of 0 seconds, maximum runtime of 1.469 seconds, 

average runtime of 95ms, and standard deviation of 0.188. Communication overheads were 

also reduced by one tenth compared to those found in a distributed system. The actual 

workload and communication latencies are not critical to be exact, as we aim to understand 

the trends in performance for the work stealing technique for many-core processors.    

The specification of the core topology is as follows:  

2D mesh: core i  has a two-dimension coordinate  ,x y , where   intx i N   

and   int mody i N . The hop distance between two cores  1 1,x y  and  2 2,x y is 

1 2 1 2x x y y   .   

3D mesh: core i  has a three-dimension coordinate  , ,x y z , where 

 
2

3intx i N
 

  
 

,  
2

33inty i x N N
  

      
  

, and   3int modz i N . The hop 

distance between two cores  1 1 1, ,x y z  and  2 2 2, ,x y z  is 1 2 1 2 1 2x x y y z z     . 

We used work stealing on the many-core processor, and the maximum hop count 

as the parameter for selecting the neighbors of each core. Limiting the number of hops aims 

at increasing data locality and avoiding expensive random all-to-all communication. We 

varied the number of maximum hop count and conducted experiments with up to 1024 

cores for 2D mesh, and 1000 cores for 3D mesh. Based on our previous results, we set the 

number of tasks to steal to half. For consistency with prior sections, we submit all tasks to 

the central core (with id = N / 2) and let the work stealing algorithm load balance all tasks. 

The communication overhead between two cores is proportional to their hop count.  
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In Figure 45 (left part), we see in order to achieve 90%+ efficiency at 1024 cores 

with 2D mesh topology, the hop count should be no less than 13 (the maximum number of 

neighbors is: 

13

1

4 364
i

i


  ). Figure 45 (right part) shows that, in order to achieve 90%+ 

efficiency at 1000 cores with 3D mesh topology, the hop count should be no less than 5 

(the maximum number of neighbors is: 5 6 4 4 3 6 84      ). It was not surprising that 

the 3D-mesh could do better than the 2D-mesh, but what was surprising was that it reduced 

the communication latency to a third from 13 hops down to 5 hops. It is noteworthy that 

coarser granularity workloads would require less number of hops to achieve the same level 

of efficiency, due to higher ratio between computing time and scheduling time.  

 

Figure 45. Simulating many-core processor 

We have begun working on exploring the support of many-task computing 

workloads on today’s 1K-core many-core systems, such as NVIDIA GPUs. We have 

developed the GeMTC [111] framework that allows parallel programming systems such as 

Swift to efficiently execute fine-grained tasks on hundreds of thousands of CUDA-cores. 

We plan to investigate the use of work stealing in improving the performance of GeMTC 

as accelerators are achieving ever-growing number of cores.  
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4.6.2  MATRIX Performance and Scalability. We run MATRIX on the BG/P up to 1K 

nodes (4K cores) with both homogeneous Bag-of-Task (BOT) workloads that include per-

core independent sleep tasks with different lengths (the workloads used in SimMatrix are 

all BOT workloads), and synthetic workloads with different DAG types of dependencies, 

such as Fan-In DAG, Fan-Out DAG, and Pipeline DAG. The workloads are represented in 

Figure 46.  
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Figure 46. Different types of dependent workloads 

Fan-In DAG and Fan-Out DAG are similar except that they are the inverse of each 

other. The performance of these workloads depends on the in-degree and out-degree of 

nodes in the graph. Pipeline DAG is a collection of pipes where each task within a pipe is 

dependent on the previous task. The system utilization depends on the number of pipelines, 

as at any instant of time the number of ready tasks is equal to the number of pipelines 

because only one task in a pipeline can be executed at any given time. To amortize the 

potential slow start and long trailing tasks at the end, we run 1000 seconds for all the 

experiments. 1000 seconds could balance well between the efficiency and the running time 
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of a large-scale experiment. The number of task would be 1000 * number of cores * number 

of nodes / task length. 

4.6.2.1 MATRIX with BOT Workloads 

Figure 47 (a) shows the efficiency (eff) and coefficient variance (cv) results for 

coarser grained tasks (sleep 1, 2, 4, 8 sec), while Figure 47 (b) shows these results for fine 

grained tasks (sleep 64, 128, 256 ms).  

  

                 (a) coarser-grained workloads                         (b) fine-grained workloads   

Figure 47. Scalability of the work stealing technique 

We see that up to 1K-nodes, MATRIX actually works quite well even for fine-

grained sub-second tasks. With 85% efficiency for sleep-64ms workload at 1024 nodes, 

MATRIX can achieve throughput of about 13K task/sec. The reason that efficiency 

decreases with the scale is that the run time of 1000 seconds is still not enough to amortize 

the slow start and long trailing tasks at the end of experiment. We believe that the more 

tasks per core we set, the higher the efficiency will be, with an upper bound because there 

are inevitable communication overheads, such as the submission time. The fact that all 

coefficient values are small indicates the excellent load balancing ability of the adaptive 

work stealing algorithm. A cv value of 0.05 means that the standard deviation of the 
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number of executed tasks of each node is 500-tasks when on average each node completed 

10K tasks. We also want to point out that efficiency does not drop much from coarser 

grained tasks to fine-grained tasks, which concludes that fine-grained tasks are quite 

efficiently executed with the work stealing algorithm. 

4.6.2.2 MATRIX with Task Dependency 

We evaluate MATRIX using workloads with different DAG types of dependencies, 

such as Fan-In DAG, Fan-Out DAG, and Pipeline DAG. We keep the BOT workloads as 

a baseline. The client has a workload generator that can generate different kinds of 

workloads with these dependencies, and then submits the tasks to schedulers. The 

efficiency results are shown in Figure 48. All tasks in the workloads are sleep tasks and 

have an execution time of 8 seconds. The BOT has highest efficiency because there is no 

dependency, and all tasks are in the ready queue immediately to be executed. For Fan-In 

and Fan-Out DAGs, completion of one task might satisfy the dependencies of many other 

tasks thus providing many ready tasks at any instant of time. 

 

Figure 48. Efficiency results of different types of dependencies of workloads 
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We set the degree of Fan-In and Fan-Out to 4, equal to the number of executing 

cores. For Pipeline DAG, the efficiency depends on the number of pipelines. In our 

experiment, we set the number of pipelines to 4. We see that the work stealing technique, 

even under a variety of task dependencies, is able to perform well (83%~95% efficient, 

depending on the dependency patterns and scale) at scale. 

4.6.2.3 System Utilization 

We show the system utilization when running MATRIX with different types of 

workloads in Figure 49. For the BOT and Fan-In workloads, it seems that the load gets 

balanced quickly on the entire system and thus takes shorter time to finish the workload 

when compared to Fan-Out workload. The reason for lower utilization for Pipeline 

workload is that, there are not sufficient tasks available to keep the entire system busy. This 

can be improved by increasing the number of pipelines. 

 

Figure 49. System utilization of MATRIX 

A more detailed analysis was made for BOT workload in terms of duration of each 

task. As seen from Figure 50, it is generally difficult to get higher efficiency for shorter 

jobs since load balancing is not perfect for shorter running tasks (32ms).  
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Figure 50. Visualization at 512 nodes for tasks of durations of 1s, 2s, 32ms and 64ms 

Figure 51 shows a comparison of load balancing for sleep 1s and sleep 32ms tasks 

on 512 nodes. The start figures (Figure 51 top half) indicate the convergence of the load 

(i.e. how quickly the entire load gets balanced) on 512 nodes. The sleep 32ms workload 

had more number of tasks so that the run time of the experiment is longer to amortize the 

ramp up and ramp down time. As seen for the sleep 32ms workload, the time taken for the 

entire workload to get distributed evenly is more than double than that required for sleep 

1s workload. The end figures (Figure 51 bottom half) tell us about the end of experiments 

when there are very few tasks left. 

The sleep 32ms workload has longer tail than the sleep 1s workload. There can be 

two reasons for such behavior. The sleep 32ms workload had more number of tasks. 

Another possible explanation for this behavior is that, when the task length is short, before 
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the tasks could be stolen for load balancing, it is executed at the node where it is present. 

This means the queues are changing state so fast that by the time for stealing work from a 

neighbor, there is nothing to steal. Tasks migration is very low as they all run fast, and any 

work stealing that tries to occur would likely fail. 

 

 

Figure 51. Comparison of work stealing performances at 512 nodes  
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(1)  MATRIX vs Falkon on BG/P  

Falkon is a centralized task scheduler with a hierarchical task dispatching 

implementation. Figure 52 shows the comparison between MATRIX and Falkon running 

on BG/P machine up to 512 nodes (2K cores) with sleep 1, 2, 4, and 8 sec workloads.  

 

Figure 52. Comparison between MATRIX and Falkon 

As Falkon is a centralized task scheduler with the support of hierarchical 
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Sparrow [81] and CloudKon [82]. We show the preliminary results of comparing MATRIX 

with both of them using BOT workloads. These comparisons aim at giving hints of how 

better MATRIX can achieve than others, and showing the potential broader impact of our 

technique on the Cloud data centers. 

Sparrow is a distributed scheduling system that employs multiple schedulers 

pushing tasks to workers (run on compute nodes). Each scheduler has a global view of all 

the workers. When dispatching tasks, a scheduler probes multiple workers (based on the 

number of tasks) and pushes tasks to the least overloaded ones. Once the tasks are 

scheduled to a worker, they cannot be migrated. CloudKon is another scheduling system 

specific to the cloud environment. CloudKon has the same architecture as MATRIX, 

except that it leverages the Amazon SQS [108] to achieve distributed load balancing and 

DynamoDB [34] for task metadata management. 

We compare MATRIX with Sparrow and CloudKon on the Amazon EC2 Medium 

testbed. We compare the raw speed of executing tasks of the three scheduling systems, 

which is measured as the throughput of executing the “sleep 0” NOOP tasks. We conduct 

weak-scaling experiments, and in our workloads, each instance runs 16K “sleep 0” tasks 

on average. For Sparrow, it is difficult to control the exact number of tasks to be executed, 

as tasks are submitted with a given submission rate. We set the submission rate as high as 

possible (e.g. 1us) to avoid the submission bottleneck, and set a total submission time to 

control the number of tasks that is approximately 16K tasks on average. We configured 

MATRIX with the best-case task submission scenario. The result is shown in Figure 53. 

we see that all of the three scheduling systems can achieve increased throughput trend with 

respect to the system scale. However, MATRIX is able to achieve much higher throughput 
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than CloudKon and Sparrow at all scales. At 64 instances, MATRIX shows throughput 

speedup of more than 5X (67K vs 13K) comparing with CloudKon, and speedup of more 

than 9X comparing with Sparrow (67K vs 7.3K). Comparing with MATRIX, CloudKon 

has a similar scheduling architecture (fully distributed). However, the workers of 

CloudKon need to pull every task from SQS leading to significant overheads for NOOP 

tasks, while MATRIX migrates tasks in batches through the work stealing technique that 

introduces much less communication overheads. Besides, CloudKon is implemented in 

Java that introduces JVM overhead, while MATRIX is implemented in C++, which 

contributes a portion to the 5X speedup. To eliminate the effects of different programming 

languages, we compare CloudKon and Sparrow, both were implemented in Java, but they 

have different scheduling architectures and load balancing techniques. CloudKon 

outperforms Sparrow by 1.78X (13K vs 7.3K) at 64-instances scale, because the schedulers 

of Sparrow need to send probing messages to push tasks and once tasks are submitted, they 

cannot be migrated, leading to poor load balancing, while CloudKon relies on SQS to 

achieve distributed load balancing. 

 

Figure 53. Throughput comparison results 
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For efficiency, we investigated the workloads from the real MTC application traces. 

Out of the 34.8M bag of tasks, we isolated only the sub-second tasks, resulting in about 

2.07M tasks with the minimum runtime of 0 seconds, maximum runtime of 1 seconds, 

average runtime of 343.99ms, and standard deviation of 265.98. We configured each 

instance to run 2K heterogeneous tasks on average. For each scale (from 1 to 64 instances), 

we generated workloads with large standard deviation of the average run time of the tasks 

that each worker executes. We sorted all the 2.07M tasks, and let each worker random 

uniformly select 2K tasks from different percentiles of the sorted 2.07M tasks. The results 

are shown in Figure 54.  

 

Figure 54. Efficiency comparison results 

We see that MATRIX and CloudKon can keep high efficiency (95%+ and 85%+) 

up to 16 instances. From 16 to 64 instances, the efficiency of MATRIX degraded from 

96% to 80%, while CloudKon experienced efficiency degradation from 85% to 80%. This 

is likely because the virtualized Cloud environment increases network communication 

overhead more seriously in MATRIX than in CloudKon, as CloudKon uses SQS for load 
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balancing and SQS is designed specifically for cloud environment, while MATRIX is 

designed for running on supercomputers that have much advanced inter-connection with 

significantly higher bandwidth and lower latency (MATRIX shows great scalability on the 

BG/P supercomputer). In Sparrow, efficiency starts to degrade from 1 to 4 instances, and 

keeps decreasing at larger scales (74% efficiency at 64 instances) showing the poor 

scalability of the probing and performing early binding of tasks to workers. It is likely that 

MATRIX would have significantly outperformed CloudKon and Sparrow if the task 

granularities are smaller (e.g. 3ms instead of 343ms), based on the raw throughput results 

presented in Figure 47. 

The conclusions we can draw after observing the performance of MATRIX is that 

work stealing can perform load balancing better than the probing and pushing mechanism. 

The cloud environment (including network virtualization) has a significant cost for 

MATRIX that likely generates a significant amount of network communication as the work 

stealing algorithm performs the load balancing. 

4.7 Conclusions and Impact 

Many-task computing applications are an important category of applications 

running on supercomputers. As supercomputers are approaching exascale and the MTC 

applications are growing significantly resulting in tremendously large amount of loosely 

couple fine-grained tasks. To achieve high system utilization for exascale computing, the 

MTC task scheduling system needs to be distributed, scalable, and available to deliver 

millions of tasks per second for fine-grained tasks, at the granularity of node/core levels. 

Distributed scheduling architecture, along with efficient load balancing techniques, is 

promising to achieve the highest job throughput and system utilization. 
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In this chapter, we proposed a fully distributed scheduling architecture, an adaptive 

work stealing technique to achieve distributed load balancing at extreme scales. In order to 

explore the scalability of work stealing technique, we developed a lightweight discrete 

event simulator, SimMatrix, which simulates task execution frameworks comprising of 

millions of nodes and billions of cores/tasks. Via SimMatrix, we explored a wide range of 

parameters of work stealing at exascale, and discovered the optimal parameter 

configuration of MTC: number of tasks to steal is half, number of dynamic random 

neighbors is a square root of the number of all nodes, and we need a dynamic polling 

interval policy. We applied work stealing to balance tasks across a variety of systems, from 

thousands of real-cores to billion-core simulated exascale systems. Guided by the insights 

gained from simulations, we implemented a real prototype of MTC task execution 

framework, MATRIX, which applies the proposed work stealing technique and is deployed 

on the BG/P machine with up to 1K-node (4K-core) scale, and was compared with Falkon, 

Sparrow and CloudKon with good results. 

We expect this work to have transformative impacts on the many-task computing 

research community that has been active and successful for a decade, owing to the radical 

distributed scheduling architecture and technique for compute management, making 

extreme scale computing more tractable. It will revolutionize asynchronous programming 

paradigms to address the challenges of locality and low latency of future exascale 

supercomputers, and open the door to a broader class of MTC applications that would have 

normally not been tractable at such extreme scales. It will also bring new research 

directions to the exascale computing area to better expose the extreme-scale parallelism in 

an asynchronous way, hide the latency, and optimize the power consumption. These 
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research directions include distributed architectures of resource management, task 

scheduling, task scheduling, distributed load balancing techniques, data-aware scheduling, 

topology-aware scheduling, and power-aware scheduling. The research contributions will 

catalyze the development of many MTC system software, such as parallel workflow 

systems (e.g. Swift [15] [67], Pegasus [69], Dryad [75]), asynchronous runtime systems 

(e.g. Charm++ [92], Legion [12], HPX [13], STAPL [14], Spark [160]), and distributed 

file systems (e.g. HDFS [117], FusionFS [42]). 
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CHAPTER 5 

DATA-AWARE SCHEDULING 

Data driven programming models such as many-task computing (MTC) have been 

prevalent for scheduling data-intensive scientific applications. We have proposed a fully 

distributed task scheduling architecture that employs as many schedulers as the compute 

nodes to make scheduling decision for MTC applications of exascale computing. 

Achieving distributed load balancing and best exploiting data-locality are two important 

goals for the best performance of distributed scheduling of data-intensive MTC 

applications. Chapter 4 focused on accomplishing the load balancing goal through an 

adaptive work stealing technique. In this chapter, we propose a data-aware work stealing 

technique to optimize both load balancing and data-locality by using both dedicated and 

shared task ready queues in each scheduler. Tasks are organized in queues based on the 

input data size and location. Distributed key-value store is applied to manage task metadata. 

We implement the technique in MATRIX, a distributed MTC task execution framework. 

We evaluate the technique using workloads from both real scientific applications and 

micro-benchmarks, structured as direct acyclic graphs. Results show that the proposed 

data-aware work stealing technique performs well. In addition, we devise an analytical sub-

optimal upper bound of the performance of the proposed technique; explore the scalability 

of the technique through simulations at extreme scales. Results show that the technique is 

scalable, and can achieve performance within 15% of the sub-optimal solution. 

Furthermore, we propose to overcome the Hadoop scaling issues through MATRIX for 

large-scale data analytic applications in the Internet domain. 
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5.1  Data Driven Programming Model 

Many-task computing (MTC) is one of the data-driven programming models. 

Large-scale scientific applications of MTC are data-intensive such that task execution 

involves consuming and producing large volumes of input and output data with data 

dependencies among tasks. The data-intensive MTC applications cover a wide range of 

disciplines, including data analytics, bioinformatics, data mining, and astronomy, 

astrophysics, and MPI ensembles [39]. The big data phenomenon has expedited the 

evolution of paradigm shifting from compute-centric model to data-centric one. MTC 

applications are usually structured as Direct Acyclic Graphs (DAG) [70], in which the 

vertices are small discrete tasks and the edges represent the data flows from one task to 

another. MTC will likely require a fully distributed task scheduling architecture (as 

opposed to the centralized one) that employs as many schedulers as the compute nodes to 

make scheduling decisions, in order to achieve high efficiency, scalability, and availability 

[24] for exascale machines with billion-way parallelism [2].  

The two important but conflicting goals of the distributed scheduling of data-

intensive MTC applications are load balancing and data-locality [24]. We focused on 

accomplishing load balancing [104] for compute-intensive MTC applications in Chapter 3, 

through an adaptive work stealing technique. On the other hand, for data-intensive 

applications, data-locality aware scheduling is another important goal [63] that requires 

mapping a task to the node that has the input data, aiming to minimize the overheads of 

moving large volumes of data through network [229]. Work stealing has been demonstrated 

as a scalable load balancing technique. However, the work stealing is data-locality 

oblivious, and the action of moving tasks randomly regardless of the data-locality may 
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incur significant data-transferring overhead. To best exploit data-locality, we need to map 

each task to where the data resides. This is infeasible because this mapping is NP-complete 

[115], and leads to poor load balancing due to the potential unbalanced data distribution. 

To optimize between both goals, in this chapter, we propose a data-aware work 

stealing (DAWS) technique that is able to achieve good load balancing and also tries to 

best exploit data-locality. Each scheduler maintains both dedicated and shared task ready 

queues that are implemented as max priority queues [116] based on the data size a task 

requires. Tasks in the dedicated queue are confined to be executed locally unless special 

policy is applied, while tasks in the shared queue may be migrated through work stealing 

among schedulers for balancing loads. A ready task is put in either queue based on the size 

and location of the required input data. A distributed key-value store (KVS) (i.e. ZHT [51]) 

is applied as a metadata service to keep task metadata, including data dependency and 

locality information, for all the tasks. We implement the technique in MATRIX [23] [230], 

a MTC task execution framework. In addition, we devise an analytical sub-optimal upper 

bound of the proposed technique; explore the scalability of the technique through 

simulations at extreme scales; and propose to overcome the Hadoop scaling issues through 

MATRIX for large-scale data analytic applications in the Internet domain. This chapter 

makes the following new contributions: 

 Propose a data-aware work stealing technique that combines load balancing 

with data-aware scheduling. 

 Devise an analytical model to analyze the DAWS technique. This model gives 

a sub-optimal upper bound of the performance of the technique and helps us 

understand it in depth from a theoretical perspective. 
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 Implement the technique in MATRIX and evaluate MATRIX up to hundreds 

of nodes showing good performance under different scheduling policies. 

 Explore the scalability of the DAWS technique through the SimMatrix 

simulator at extreme scales. 

 Propose to address scalability issues of Hadoop/YARN through decentralized 

scheduling with MATRIX. 

 An inclusive comparison between MATRIX and YARN using both 

benchmarking and real application workloads, up to 256 cores on the Amazon 

AWS Cloud. 

5.2  Data-Aware Work Stealing 

This section proposes the data-aware work stealing (DAWS) technique, the 

implementation details of the DAWS technique in both MATRIX and SimMatrix, and the 

analytic model that gives the sub-optimal performance of the proposed technique. 

5.2.1 Data-aware Work Stealing Technique. Chapter 3 presented the fully distributed 

scheduling architecture (Figure 25) and the adaptive work stealing technique (section 4.3) 

to achieve the distributed load balancing for compute-intensive MTC applications. The 

adaptive work stealing technique is data-locality oblivious. This may incur significant data 

movement overheads for data-intensive workloads. We present the ideals that combine 

work stealing with data-aware scheduling. 

5.2.1.1 Distributed KVS Used as a Meta-Data Service 

We applied the ZHT key value store to maintain the task metadata in MATRIX. 

The task metadata is stored as (key, value) records for all the tasks, the key is task id, and 

the value is the important information related to the task. We formally define the value of 
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a task metadata as the data structure, shown in Figure 55. The value includes the following 

information: the task status (e.g. queuing, being executed, and finished); data dependency 

conditions (num_wait_parent, parent_list, children); data locality information 

(data_object, data_size, all_data_size); task timestamps that record the times of different 

phases (e.g. submission, queued, execution, and end) of the task; and the task migrating 

history from one scheduler to another in the system. 

 

Figure 55. Task metadata stored in ZHT 

5.2.1.2 Task Submission 

Before submitting an application workload DAG to the schedulers for scheduling, 

the client generates a task metadata (focusing on the “num_wait_parent” and “children”) 

for each task and inserts all the task metadata to ZHT. The task metadata will be updated 

later by the schedulers when task state changes. There are different mechanisms through 

which the client submits the tasks to the schedulers. The first one is the worst case, in which 

the client submits all the tasks to only one arbitrarily chosen scheduler. This is the worst-

case scenario from load balancing’s perspective. The tasks will be spread out among all the 

schedulers through the work stealing technique. The second one is the best case, in which 

the client submits all the tasks to all the schedulers through some load balancing method 

typedef  TaskMetaData { 

        byte status;     // the status of the task: queuing, being executed, finished       

        int num_wait_parent;    // number of waiting parent 

        vector<string> parent_list;    // schedulers that run each parent task 

        vector<string> children;    // children of this tasks 

        vector<string> data_object;    // data object name produced by each parent 

        vector<long> data_size;    // data object size produced by each parent 

        long all_data_size;    // all data object size (byte) produced by all parents 

        List<long> timestamps;    // time stamps of a task of different phases 

        List<string> history;    // the provenance of a task, from one node to another 

} TMD; 
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(e.g. hashing the task ids among all the schedulers). In addition, the client is able to submit 

tasks to whatever groups of schedulers it wants to. 

5.2.1.3 Task Removal 

The client can conduct the task removal easily when it decides to remove a task in 

a workload after submission. The client can simply lookup the task metadata from ZHT, 

and finds out where the task is at present ‒ the last scheduler in the history field of the task 

metadata. Then, the client sends a message to the last scheduler to request removing the 

task. After the scheduler receives the message, it deletes the task in one of the task queues 

(will explain later). If the removed task has not been finished (identified by the status field), 

the client will need to remove all the tasks in the subtree rooted as the removed task, 

because they are waiting for the removed task to be finished while this will never happen 

due to the removal. 

5.2.1.4 Distributed Queues in Scheduler 

Each scheduler maintained four local task queues: wait queue (WaitQ), dedicated 

local ready queue (LReadyQ), shared work stealing ready queue (SReadyQ), and complete 

queue (CompleteQ), as shown in Figure 56. These queues [236] hold tasks in different 

states (stored as metadata in ZHT). A task is moved from one queue to another when state 

changes. With these queues, the system supports scheduling tasks with data dependencies 

specified by an arbitrary DAG. 

Figure 57 displays the flowchart of the execution procedure of a task, during which 

the task is moved from one queue to another. Initially, the scheduler puts all the incoming 

tasks from the client to the WaitQ. A program (P1 in Figure 56) keeps checking every task 

in the WaitQ to see whether the task is ready to run by querying the metadata from ZHT. 
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The task metadata has been inserted into ZHT by the client. Specifically, only if the value 

of the field of “num_wait_parent” in the TMD is equal to 0 would the task be ready to run. 

When a task is ready to run, the scheduler makes decision to put it in either the LReadyQ 

or the SReadyQ, or push it to another node. The decision-making procedure is shown in 

the rectangle that is marked with dotted-line edges in Figure 57. 
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Figure 56. Specification of task queues in a MATRIX scheduler 

When a task is done, it is moved to the CompleteQ. Another program (P2 in Figure 

56) is responsible for updating the metadata for all the children of each completed task. P2 

first queries the metadata of the completed task to find out the children, and then updates 

each child’s metadata as follows: decreasing the “num_wait_parent” by 1; adding current 

scheduler id to the “parent_list”; adding the produced data object name to the 

“data_object”; adding the size of the produced object to the “data_size”; increasing the 

“all_data_size” by the size of the produced data object. 
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Figure 57. Flowchart of a task during the execution procedure 

5.2.1.5 Decision Making Algorithm 

We explain the decision-making procedure (the dotted-line rectangle in Figure 57) 

that decides to put a ready task in either the LReadyQ or the SReadyQ, or push it to another 

node, given in Algorithm 3 shown in Figure 58. 

The SReadyQ stores the tasks that can be migrated to any scheduler for load 

balancing’s purpose (lines 1 – 13), the “load information” queried by work stealing is the 

length of the SReadyQ; these tasks either don’t need any input data or the demanded data 

volume is so small that the transferring overhead is negligible. The LReadyQ stores the 

tasks that require large volumes of data and the majority of the data is at the current node 
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(lines 14 – 15); these tasks are confined to be scheduled and executed locally unless special 

policy is used. If the majority of the input data is large but at a different node, the scheduler 

then pushes the task to that node (lines 16 – 18). When a scheduler receives a pushed task, 

it puts the task in the LReadyQ. The threshold t defines the upper bound of the ratio of the 

data-transferring overhead (data size divided by network bandwidth: net_band) to the 

estimated task execution length (est_task_length). The smaller t means the less tolerance 

of moving data: If t is smaller, in order to put the task in SReadyQ (meaning that the task 

can be migrated through work stealing technique and that moving the data is tolerable), the 

task’s all required data size (tm.all_data_size) needs to be smaller. This means less 

tolerance of moving a decent large amount of data. 

 

Figure 58. Algorithm of making decisions to put a task in the ready queue 

As we do not know ahead how long a task will be running, we will need to predict 

the est_task_length in some ways. One method is to use the average execution time of the 
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completed tasks as the est_task_length. This method works fine for workload of largely 

homogeneous tasks that have small variance of task lengths. For highly heterogeneous 

tasks, we can assume the task length conforms to some distributions, such as uniform 

random, Gaussian, and Gama, according to the applications. This can be implemented in 

our technique without much effort. Even though the estimation of the task length has 

deviation, our technique can tolerate it with the dynamic work stealing technique, along 

with the FLDS policy (will explain later). In addition, we have evaluated MATRIX using 

highly heterogeneous MTC workload traces (shown in Figure 24) that have 34.8M tasks 

with the minimum runtime of 0 seconds, maximum runtime of 1469.62 seconds, medium 

runtime of 30 seconds, average runtime of 95.20 seconds, and standard deviation of 188.08 

[96], and MATRIX showed great scalability. The executor forks configurable number 

(usually equals to number of cores of the node) of threads to execute ready tasks. Each 

thread first pops tasks from the LReadyQ, and then from the SReadyQ if the LReadyQ is 

empty. Both ready queues are implemented as max priority queue based on the data size. 

When executing a task, the thread first queries the metadata to find the size and location of 

the required data, and then collects the data either from local or remote nodes. If neither 

queue has tasks, the scheduler does work stealing, and puts the stolen tasks in the SReadyQ. 

5.2.1.6 Different Scheduling Policies 

We define four scheduling policies for the DAWS technique, specified as follows: 

MLB (maximized load balancing): MLB considers only the load balancing, and all 

the ready tasks are put in the SReadyQ allowing to be migrated. We achieve the MLB policy 

by tuning the threshold t in Algorithm 3 to be the maximum possible value (i.e. 

LONG_MAX). 
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MDL (maximized data-locality): MDL only considers data-locality, and all the 

ready tasks that require input data would be put in the LReadyQ, no matter how big the 

data is. This policy is achieved by tuning the threshold t in Algorihtm 3 to be 0. 

RLDS (rigid load balancing and data-locality segregation): RLDS sets the 

threshold t in Algorihtm 3 to be somewhere between 0 and the maximum possible value. 

Once a task is put in the LReadyQ of a scheduler, it is confined to be executed locally (this 

is also true for the MDL policy). 

FLDS (flexible load balancing and data-locality segregation): The RLDS policy 

may lead to poor load balancing when a task that produces large volumes of data has many 

children. To avoid this problem, we relax the RLDS to the flexible FLDS policy that allows 

tasks to be moved from the LReadyQ to the SReadyQ under certain circumstance. We set 

a time threshold tt and use a monitoring thread to check the LReadyQ periodically. If the 

estimated running time (est_run_time) of the LReadyQ is above tt, the thread then moves 

some tasks to guarantee that the est_run_time is below tt. The est_run_time equals to the 

LReadyQ length divided by the throughput of the scheduler. Assuming 1000 tasks are 

finished in 10sec, the LReadyQ has 5000 tasks, and tt=30sec. We calculate the number of 

moving tasks: throughput=1000/10=100tasks/sec, est_run_time=5000/100=50sec, 20sec 

longer than tt. 20sec takes 20/50=40% ratio, therefore, 40%*5000=2000 tasks will be 

moved. 

5.2.1.7 Write Locality and Read Locality  

The DAWS technique ensured the best write locality, and at the meanwhile, 

optimized the read locality. For write locality, every task writes the produced data locally. 

We had considered using ZHT as both a data and a task metadata service. However, it led 
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to extreme difficulty in optimizing the data-locality as ZHT relies on consistent hashing to 

determine where to store the data. We also considered leveraging distributed file system 

(e.g. HDFS [117], FusionFS [42]) to manage the data, especially as FusionFS is optimized 

for write operations. We argue that the scheduling strategies are not affected by the actual 

method of data storage. We envision allowing data to be stored in a distributed file system 

as future work. 

Read locality was optimized by migrating a task to where the majority of data 

resides for large data volumes. For small data volumes, tasks are run on wherever there are 

available compute resources to maximize utilization. 

5.2.1.8 Caching 

As in scientific computing, the normal pattern of data flows is write-once/ready-

many (according to the assumption HDFS made in the Hadoop system [118]), we have 

implemented a caching mechanism to reduce the data movement overheads. In some cases, 

moving data from one node to another is inevitable. For example, if a task requires two 

pieces of data that are at different nodes, at least one piece of data needs to be moved. In a 

data movement, we cached the moved data locally at the receiver side for the future use by 

other tasks. This would significantly expedite the task execution progress. As data is 

written once, all the copies of the same data would have the same view, and no further 

consistency management would be needed. 

5.2.1.9  Fault Tolerance 

Fault tolerance refers to the ability of handing failures (e.g. nodes are down) of a 

system. The goal of designing fault tolerance mechanisms is at least twofold: one is that 

the system should still be operable under the failures, the other one is that the system should 
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handle the failures without drawing much attention of the users. Fault tolerance is an 

important design concern of efficient systems software, especially for exascale machines 

that have high failure rates. Our distributed scheduling architecture has the ability to 

tolerate failures with a minimum effort because of the distributed nature, and the fact that 

the schedulers are stateless with the ZHT key-value store managing the task metadata. 

When a compute node is down due to hardware failures, only the tasks in the scheduler’s 

queues, data files in the memory and persistent storage, and metadata in the ZHT server, 

of that particular node are affected, which can be resolved as follows. (1) First of all, a 

monitoring system software could be applied, which detects the node failures by issuing 

periodic “heart-beat” messages to the nodes; (2) The affected tasks can be acknowledged 

and resubmitted to other schedulers by the clients; (3) A part of the data files were copied 

and cached in other compute nodes when they were transmitted for executing some tasks. 

In the future, we will rely on the underneath file system to handle the affected files; (4) As 

ZHT is used to store the metadata, and ZHT has implemented failure/recovery, replication 

and consistency mechanisms, MATRIX needs to worry little about the affected metadata. 

5.2.2 Implementation Details. We implement the proposed data-aware work stealing 

technique in the MATRIX task execution framework for scheduling data-intensive MTC 

applications and the big data applications in the Internet domains. In our new 

implementation, MATRIX simply uses ZHT as a black box through ZHT client APIs, this 

ensures easier maintainability and extensibility. The new version of MATRIX codebase is 

also made open source on Github: https://github.com/kwangiit/matrix_v2. It hs about 3K 

lines of C++ code implementing the MATRIX client, scheduler, the executor, and the 

DAWS logic, along with 8K lines of ZHT codebase, plus 1K lines of auto-generated code 
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from Google Protocol Buffer [95]. MATRIX has dependencies on ZHT [51] and Google 

Protocol Buffer. 

In order to study the proposed DAWS technique at extreme-scales, we also simulate 

it in SimMatrix. We add quite a few more event message types, such as moving data from 

one node to another, querying and updating the task metadata, monitoring the system status 

and the task execution progress, etc. The ZHT key-value store is simulated with an in-

memory hash table in each scheduler, which supports the lookup, insert, and remove 

operations. The new version of SimMatrix codebase is again made open source on Github: 

https://github.com/kwangiit/SimMatrix. The input to SimMatrix is a configuration file that 

specifies the parameters, such as the simulated system environment (including number of 

cores per compute node, the network bandwidth, latency, and packing/unpacking 

overheads), the workloads, the scheduling policy, etc. Except for a java virtual machine, 

SimMatrix has no other dependencies. 

5.2.3 Theoretical Analysis of the DAWS Technique. To understand the proposed 

DAWS technique in depth from a theoretical perspective, we give a theoretical analysis 

about the upper bound of the performance of the technique in terms of the overall timespan 

of executing a given data-intensive MTC workload. The theoretical analysis is a centralized 

algorithm that has a global knowledge of the system states (e.g. resource and task 

metadata), and aims to find the shortest overall timespan of executing a workload. 

The problem is modeled as follows. The workload is represented as an direct 

acyclic graph (DAG), 𝐺 = (𝑉, 𝐸) , along with several cost functions. Each vertex 

𝑣 (𝑣 ∈ 𝑉 ) is a task, which takes 𝑡𝑒𝑥𝑒𝑐(𝑣) unit of execution time and generates an output 

of data with size 𝑑(𝑣). Assume that each ready task 𝑣 gets queued to wait 𝑡𝑞𝑤𝑎𝑖𝑡(𝑣) unit 
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of time on average before being executed. The value of 𝑡𝑞𝑤𝑎𝑖𝑡(𝑣) is directly related to the 

compute node that runs the task 𝑣 and the individual task execution time. This is because 

a compute node has certain amount of processing capacity that can execute a limited 

number of tasks in parallel. The processing capacity is usually measured as the number of 

idle cores. We evaluate the 𝑡𝑞𝑤𝑎𝑖𝑡(𝑣) of task 𝑣 as the average task waiting time of all the 

tasks on one node to release some time constraints, with the following estimation. 

Assuming on average, every core of a compute node gets 𝑘 tasks that have an 

average execution time of 𝑙. Therefore, the 𝜆th task needs to wait (𝜆 − 1) × 𝑙 time before 

being executed. Thus, the 𝑡𝑞𝑤𝑎𝑖𝑡(𝑣) on average is: 

𝑡𝑞𝑤𝑎𝑖𝑡(𝑣) =
∑ ((𝜆 − 1) × 𝑙)𝑘

𝜆=1

𝑘
=

(𝑘 − 1) × 𝑙

2
    (1) 

Define the time taken to move 𝑑(𝑣) size of data to another compute node running 

a task 𝑤  that requires the data is 𝑡𝑚𝑣𝑑𝑎𝑡𝑎(𝑣, 𝑤)  unit of time. 𝑡𝑚𝑣𝑑𝑎𝑡𝑎(𝑣, 𝑤) =

𝑑(𝑣) 𝐵(𝑣, 𝑤)⁄ , in which 𝐵(𝑣, 𝑤) is the data transfer rate between the two compute nodes 

that run tasks 𝑣 and 𝑤, respectively. For any arc 𝑢𝑣 ∈ 𝐸, it represents that task 𝑢 is the 

parent of task 𝑣, meaning that task 𝑣 requires the data output of task 𝑢. The parents of a 

task 𝑣 is notated as 𝑃(𝑣) = {𝑢|𝑢𝑣 ∈ 𝐸}. Generally, there are two categories of locations 

where a task could be scheduled. One is on the compute node that is different from all the 

nodes that ran the task’s parents (case 1). In this case, the data items that are generated by 

all the parents need to be transmitted, and we assume that the task itself is not moved. The 

other one is on one of the compute nodes that ran at least one of the task’s parents (case 2). 

In this case, the data items generated by all the other parents that were run on different 

compute nodes need to be transmitted, and we assume the task itself is also moved.  
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We define the problem of as follows: 

 Define 𝑡𝑒𝑓(𝑣) as the earliest finishing time of task 𝑣. 

 The problem is to find out the largest 𝑡𝑒𝑓(𝑣), 𝑣 ∈ 𝑉 , which is the overall 

timespan of finishing a given workload. 

 Assume the time taken to move a task is a small constant value, 𝐶𝑚𝑣𝑡𝑎𝑠𝑘. 

We devise the following recursive formulas to compute 𝑡𝑒𝑓(𝑣):  

𝑡𝑒𝑓(𝑣) = min (𝑡𝑒𝑓
′(𝑣), 𝑡𝑒𝑓

′′(𝑣)) + 𝑡𝑒𝑥𝑒𝑐(𝑣) 

𝑡𝑒𝑓
′(𝑣) = max

𝑢∈𝑃(𝑣)
(𝑡𝑒𝑓(𝑢) + 𝑡𝑚𝑣𝑑𝑎𝑡𝑎(𝑢, 𝑣)) + 𝑡𝑞𝑤𝑎𝑖𝑡(𝑣) 

𝑡𝑒𝑓
′′(𝑣) = min

𝑢∈𝑃(𝑣)
( max

𝑤∈𝑃(𝑣)
(𝑡𝑒𝑓(𝑤) + 𝑡𝑚𝑣𝑑𝑎𝑡𝑎(𝑤, 𝑢))) +  𝑡𝑞𝑤𝑎𝑖𝑡(𝑣) + 𝐶𝑚𝑣𝑡𝑎𝑠𝑘 

In the formulas, 𝑡𝑒𝑓
′(𝑣)  is for case 1, and 𝑡𝑒𝑓

′′(𝑣)  is for case 2. Given an 

application workload that is represented as 𝐺 = (𝑉, 𝐸)  and the cost functions, as 

𝑡𝑒𝑥𝑒𝑐(𝑣), 𝑑(𝑣), 𝐵(𝑢, 𝑣), 𝐶𝑚𝑣𝑡𝑎𝑠𝑘, 𝑢 ∈ 𝑉, 𝑣 ∈ 𝑉, 𝑢𝑣 ∈ 𝐸  are given, and 𝑡𝑞𝑤𝑎𝑖𝑡(𝑣)  of each 

task is computed through equation (1), we could use dynamic programming to calculate 

𝑡𝑒𝑓(𝑣) for all the tasks starting with the tasks that have no parents. The biggest 𝑡𝑒𝑓(𝑣) is 

the earliest time to finish the whole workload. 

Assuming that the number of tasks is 𝑛, and every task has 𝑝 parents on average, 

the time complexity of the algorithm is (𝑛𝑝2). The 𝑝2 comes from the computation of 

𝑡𝑒𝑓
′′(𝑣), during which for all the 𝑝 possible locations of running the task, we need to wait 

until the data of the last finished parent arrives (the other 𝑝). In reality, 𝑝 is always much 

smaller than 𝑛. The memory complexity is (𝑛), as we need to memorize the values of 

𝑡𝑒𝑓(𝑣) and 𝑑(𝑣) of all the tasks in tables for looking up. 
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This analysis gives a sub-optimal lower bound of the overall timespan (performance 

upper bound) of executing a workload DAG. We call it sub-optimal, because for a task, the 

solution above just considers one-step backwards (parents). This does not consider the 

situation of scheduling a task to where the grand-parents or grand-grand-parents were 

scheduled, which will eliminate unnecessary data movements. However, finding an 

optimal solution is an NP-hard problem. 

We will show how close our DAWS technique can achieve in performance 

comparing to the theoretical sub-optimal upper bound in the evaluation section. 

5.3 Evaluation 

In this section, we present the performance evaluation of the DAWS technique. We 

first conduct experiments using workloads structured as DAGs coming from two scientific 

applications, namely image stacking from astronomy [113] and all-pairs from biometrics 

[53]. We compare our results with those achieved through data-diffusion technique in 

Falkon [78], which employed a centralized data-aware scheduler. Next, we compare 

different scheduling polices using the all-pairs workload. Then, we run benchmarking 

workload DAGs. We further present the results achieved from the theoretical analysis, and 

from running the SimMatrix simulator up to extreme scales. We run MATRIX on the 

Kodiak cluster and SimMatrix on the Fusion machine. 

5.3.1 Evaluations of Scientific Applications. We compare MATRIX with the Falkon 

centralized scheduler using two scientific applications: image stacking in astronomy [113] 

and all-pairs in biometrics [53] [121]. These two applications represent different data-

intensive patterns. 

5.3.1.1 Image Stacking in Astronomy 
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This application conducts the “stacking” of image cutouts from different parts of 

the sky. The procedure involves re-projecting each image to a common set of pixel planes, 

then co-adding many images to obtain a detectable signal that can measure their average 

brightness/shape. The workload DAG is represented as in Figure 59. The dotted lines 

represent independent tasks (t0 to tn) fetching ROI objects in a set of image files (f0 to fm) 

that are randomly distributed, and then generate an output individually. The last task (tend) 

waits until collecting all the outputs, and then obtains a detectable signal. 

f0 f1 f2 f3 fm

t0 t1 t2 t3 t4 tn

tend

 

Figure 59. Image Stacking Workload DAG 

Followed the workload characterization in [113], in our experiments, each task 

would require a file that has 2MB of data, and generates 10KB data of output. The ratio of 

the number of tasks to the number of files refers to locality number. Locality 1 means the 

number of tasks equals to the number of files, and each task requires a unique file. Locality 

n means that the number of tasks is n-times of the number of files, and each file is required 

by exactly n tasks. The higher the locality is, the less number of files and tasks there would 

be. The number of tasks and the number of files for each locality are given in [113]. We 

evaluate different locality values, i.e. 1, 1.38, 2, 3, 4, 5, 10, 20, 30. Each task would run for 

an average of 158 ms (as reported in [113]). 

We ran experiments up to 200 cores for all locality values. The MDL policy was 

applied, as 2MB of data was large. We compared the DAWS technique implemented in 
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MATRIX with Falkon data diffusion at 128 cores (the largest scale the data diffusion ran). 

The results are shown in Figure 60 (a). “GZ” meant the files were compressed while “FIT” 

indicated the files were uncompressed. In the case of GPFS, each task read its required data 

from the remote GPFS parallel file system. Data diffusion first read all the data from GPFS, 

and then cached the data in the memory for centralized data-aware scheduling of all the 

tasks. MATRIX read all the data from the GPFS parallel file system, and then randomly 

distributed the data files to the memory of all the compute nodes. The MATRIX client 

submitted tasks to all the schedulers in the best-case scenario. The schedulers applied the 

DAWS for distributed data-aware scheduling of all the tasks. In all cases, the time taken to 

finish the workload was clocked before the data was copied into the system, continued 

while the tasks were loaded into the schedulers, and then kept going until all tasks were 

finished.  

  

(a) Comparing DAWS with Data diffusion       (b) Utilization graph for locality 30 

Figure 60. Evaluations using the Image Stacking application 

We see that at 128-core scale, the average task running time of our DAWS 

technique kept almost constant as locality increases, and was close to the ideal task running 

time (158ms). This is because the files were uniformly distributed over all compute nodes. 
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The only overhead came from the schedulers making decisions to migrate tasks in the right 

spots. When locality was small, the Data Diffusion (GZ) experienced large average time, 

which decreased to be close to the ideal time when locality increased to 30. Because, data 

was initially kept in a slower parallel file system that needed to be copied to local disks. 

When locality was low, more amount of data accesses from the file system was required. 

The average times of GPFS (GZ) and GPFS (FIT) remained at a high constant regardless 

of locality, due to that data was copied from the remote GPFS upon every data access. The 

performance increases slightly with higher locality, likely due to OS-level caching.  

We show a visualization graph of MATRIX at 200 cores for locality 30 in Figure 

60 (b). The utilization is calculated as the ratio of the area of the red region to that of the 

green region. We see there is a quick ramp-up period, after which the load is balanced 

across all the compute nodes. There is also a relatively long tail ramp-down period in the 

end when there are few tasks remaining, which is because with the MDL policy, no work 

stealing happened leading to poor load balancing in the end. But MATRIX can still achieve 

75% utilization at 200 cores with fine-grained tasks (158ms). 

The time per task of DAWS experienced a slight increase from Locality 1 (167ms) 

to 30 (176ms). We explain the reason in Figure 61, which shows the efficiencies of 

different localities in terms of scale. From Figure 61, we see that the efficiency decreases 

slightly with respect to both scale and locality (but still keeps above 75% efficiency for 

task length of 158ms).  The reason is that the number of files per compute node is 

decreasing as the scale and locality increase. Therefore, more tasks on a compute node 

could not be run locally and need to be moved to the right nodes causing significant 

network traffic and load imbalance. At the extreme case where the locality is infinitely 
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large, there would be only one file on one compute node, eventually all the tasks need to 

be run on that node.   

 

Figure 61. Efficiency of DAWS with Localities at scales 

5.3.1.2 All-Pairs in Biometrics 

All-Pairs [53] [121] is a common benchmark for data-intensive applications that 

describes the behavior of a new function on sets A and sets B. For example, in Biometrics, 

it is very important to find out the covariance of two sequences of gene codes. In this 

workload, all the tasks are independent, and each task execute for 1 second to compare two 

12MB files with one from each set.  

Figure 62 shows the an example of the workload DAG, in which four independent 

tasks operate on two sets of two files, and each task requires one file from each set.  

f0,0 f0,1 f1,1

t0 t1 t2 t3

f1,0

 

Figure 62. All-Pair Workload DAG 
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We run strong-scaling experiments up to 100 nodes with a 500*500 workload size. 

Therefore, there would be 250K tasks in total. All the 1000 files from two sets are 

uniformly distributed to each compute node, and all the tasks are randomly distributed. As 

a task needs two pieces of data files that may locate at different nodes at the worst case, 

one piece of data may need to be transmitted. To make the workload more data-intensive, 

we reduced the task running time by 10X, resulting in 100-ms running time with 24MB of 

data requirement. This is the same workload referenced in [53]. We use the FLDS policy, 

and at the end (80% of the workload is done) of the experiments, we set the time threshold 

tt to be 20 seconds initially, which is then decreased by half when moving ready tasks from 

LReadyQ to SReadyQ.  

  

(a) Comparing DAWS with data diffusion  (b) Comparing different scheduling policies 

Figure 63. Evaluations using the all-pairs application 

We compared MATRIX DAWS technique with Falkon data diffusion [53] at 200 

cores, and Figure 63 (a) shows the results. The “active storage” term [121] meant all the 

files were stored in memory. For 100-ms tasks, our DAWS technique improved data 

diffusion by 10.9% (85.9% vs 75%), and was close to the best case using active storage 
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(85.9% vs 91%). This is because data diffusion applied a centralized index-server for data-

aware scheduling, while our DAWS technique utilized distributed KVS, which was much 

more scalable. It was also worthy to point out that without harnessing data-locality (Best 

Case parallel file system), the efficiency was less than 20%, because all the files needed to 

be transmitted from the remote file system. 

Although it is obvious that caching the data in the receiver’s memory will usually 

be helpful to applications that have the write-once/ready-many pattern, we show the effect 

of caching of the FLDS policy for the all-pairs application in Figure 64.  

 

Figure 64. Comparison between Caching and No-Caching 

We see that without caching, the FLDS policy is only able to achieve less than 50% 

efficiency at 200-core scales. This is because all the files are uniformly distributed and 

each task requires two files, therefore, from the probability’s perspective, about half of the 

tasks need to move data. With caching turned on, we record the cache-hit rate, which shows 

as high as above 80%. This helps significantly and contributes to 85%+ efficiency. 

However, we should not conclude to always caching everything, because memory size is 
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limited. Besides, depending on the access patterns, the cached data may never be reused. 

In the future, we will explore cache eviction mechanisms. 

5.3.1.3 Comparisons of Different Scheduling Policies 

We compared three scheduling polices using the all-pairs workloads, MLB, MDL, 

and FLDS, up to 200 cores with the results shown in Figure 63 (b).  

As we expected, the MLB policy performed the worst, because it considered only 

load balancing and the required data was so large that transmitting it took significant 

amount of time. The MDL policy performed moderately. From the load balancing’s 

perspective, MDL did quite well except for the ending period. Because it did not allow 

work stealing and loads might be imbalanced at the final stage leading to a long-tail 

problem. The FLDS policy was the best, because it allowed the tasks being moved from 

the LReadyQ to the SReadyQ as needed. This was helpful at the final stage when many 

nodes were idle while a few others were busy. To justify our explanation, we show the 

utilization figures of the FLDS and MDL policies in Figure 65.  

     

(a) Utilization of FLDS policy                    (b) Utilization of MDL policy 

Figure 65. Utilization graph of the FLDS and MDL policies at 200 cores 
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Both utilizations are quite high. The MDL policy has some long tail end where the 

utilization drops, while the FLDS policy does not exhibit this. Both policies have an initial 

ramp-up stage, during which one file (12MB) required by a task may be transferred. The 

transferred files are cached locally for future use. After that, because the number of files is 

relatively small (1000 in total), each compute node is able to cache enough files that could 

satisfy most of future tasks locally.  

The conclusions are: for applications in which each task requires large amount of 

data (e.g. several Megabytes), the FLDS policy should always be the first choice; Unless 

the tasks require extremely large data that can easily saturate the networking, the MDL 

policy should not be considered; The MLB policy should only be used when tasks require 

small data pieces; The RLDS policy is preferable when the required data pieces have a 

wide distribution of size (from few bytes to several Megabytes). Besides, MATRIX is able 

to change policies at runtime as explained later. 

5.3.2 Evaluations of Benchmarking Workload DAGs. We evaluate MATRIX using 

benchmarking workload DAGs, namely BOT, Fan-In, Fan-Out and Pipeline, represented 

in Figure 46. The difference between the workload DAGs in this section and those in 

section 4.6.4 is that the tasks are dependent on input and out data, while they were 

dependent on tasks themselves in section 4.6.4. BOT included independent tasks without 

data dependencies and was used as a baseline; Fan-In and Fan-Out were similar but with 

reverse tree-based shapes, and the parameters were the in-degree of Fan-In and the out-

degree of Fan-Out; Pipeline was a collection of “pipes”. In each pipe, a task was dependent 

on the previous one. The parameter was the pipe size, meaning number of tasks in a pipe. 

5.3.2.1 Representative Applications of the Benchmarking Workload DAGs 
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After studying the workload patterns of a category of MTC data-intensive 

applications using the Swift workflow system [15] [67], we summarize the four 

benchmarking workload DAGs that are representative and cater to the data-flow patterns 

of different applications. Some applications display a single type of workload DAG pattern, 

while others have a combination of several workload DAG types, out of the four DAGs.  

For example, the All-Pairs application in Biometrics is an example of the BOT 

workload DAGs, in which, the tasks are independent and every task requires two input files 

with each one coming from individual set. The Image Stacking application in Astronomy 

has a two-layer Fan-In DAG data-flow pattern. The top layer includes many parallel tasks 

with each one fetching an individual ROI object in a set of image files, and the bottom 

layer has an aggregation task that collects all the outputs to obtain a detectable signal. The 

workload DAGs of both applications were shown in Figure 59 and Figure 62. The 

molecular dynamics (MolDyn) application in Chemistry domain aims to optimize and 

automate the computational workflow that can be used to generate the necessary 

parameters and other input files for calculating the solvation free energy of ligands, and 

can also be extended to protein-ligand binding energy. Solvation free energy is an 

important quantity in Computational Chemistry with a variety of applications, especially 

in drug discovery and design. The MolDyn application is an 8-stage workflow. At each 

stage, the workload data flow pattern is either a Fan-Out or Fan-In DAG. The workload 

DAG was shown in [126]. The functional magnetic resonance imaging (fMRI) application 

in the medical imaging domain is a functional neuroimaging procedure that uses MRI 

technology to measure the brain activities by detecting changes in blood flow through the 

blood-oxygen-level dependent (BOLD) contrast [127]. In Swift, an fMRI study is 
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physically represented in a nested directory structure, with metadata coded in directory and 

file names, and a volume is represented by two files located in the same directory, 

distinguished only by file name suffix [128]. The workload to process each data volume 

has a 2-pipe pipeline pattern. The dominant pipeline consists of 12 sequential tasks. Figure 

66 shows the workload DAGs of both one volume and ten volumes. 

             

Figure 66. Workload DAGs of the fMRI applications 

5.3.2.2 Evaluation Results 

MATRIX client can generate a specific workload DAG, given the input parameters 
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transferring time to the task running time, the time threshold tt of the FLDS policy to 10 

sec, and the polling interval upper bound to 50 sec; the DAG parameters (in-degree, out-

reorientRun

reorientRun

reslice_warpRun

random_select

alignlinearRun

resliceRun

softmean

alignlinear

combinewarp

strictmean

gsmoothRun

binarize

reorient/01

reorient/02

reslice_warp/22

alignlinear/03 alignlinear/07alignlinear/11

reorient/05

reorient/06

reslice_warp/23

reorient/09

reorient/10

reslice_warp/24

reorient/25

reorient/51

reslice_warp/26

reorient/27

reorient/52

reslice_warp/28

reorient/29

reorient/53

reslice_warp/30

reorient/31

reorient/54

reslice_warp/32

reorient/33

reorient/55

reslice_warp/34

reorient/35

reorient/56

reslice_warp/36

reorient/37

reorient/57

reslice_warp/38

reslice/04 reslice/08reslice/12

gsmooth/41

strictmean/39

gsmooth/42gsmooth/43gsmooth/44 gsmooth/45 gsmooth/46 gsmooth/47 gsmooth/48 gsmooth/49 gsmooth/50

softmean/13

alignlinear/17

combinewarp/21

binarize/40

reorient

reorient

alignlinear

reslice

softmean

alignlinear

combine_warp

reslice_warp

strictmean

binarize

gsmooth



 

 

155 

degree and pipe size) were set to 10. Figure 67 shows the results of scheduling all the DAGs 

in MATRIX using the FLDS policy up to 200 executing threads.  

Table 7. Experiment Setup 

Workload Parameters  DAG Parameters  FLDS Policy Parameters 

# task 

per 

core 

average 

length 

(ms) 

average 

output 

(MB) 

 Fan-

Out 

degree 

Fan-In 

degree 

Pipeline 

pipe 

size 

 

t 
tt 

(sec) 

Polling 

interval upper 

bound (sec) 

1000 50 5  10 10 10  0.5 10 50 

 

   

Figure 67. Evaluations using benchmarking workload DAGs 
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it got slower and slower due to the lack of tasks, leading to a long tail that had worse effect 

than the slow ramp-up period of Fan-Out. 

MATRIX showed great scalability running the benchmarking workload DAGs. In 

addition, MATRIX is able to run any arbitrary DAG, in addition to the four examples. 

5.3.3  Exploring the Scalability through SimMatrix. We explore the scalability of the 

proposed DAWS technique through SimMatrix up to extreme scales. The same 

benchmarking workload DAGs, the FLDS policy, and the experiment setups as specified 

in section 5.3.4.2 for MATRIX are used in SimMatrix. We first validate SimMatrix against 

MATRIX up to 200 cores; then show the scalability of the DAWS technique in SimMatrix 

up to 128K cores; and finally show how close the performance achieved through DAWS 

technique to that is from the sub-optimal upper bound up to 128K cores. 

5.3.3.1 Validation of SimMatrix against MATRIX 

Before using SimMatrix to gain valuable insights for the DAWS technique, we 

choose to validate our simulation results gained from SimMatrix against those achieved 

from MATRIX up to 200 cores for all the DAGs. To make the simulation results more 

convincible, each simulation experiment is run 10 times and the throughput result is the 

average throughput of the 10 runs for every workload. The validation results are shown in 

Figure 68. 

The solid lines are the results of MATRIX, the round dotted lines represent the 

results of SimMatrix, and the dash dotted lines show the normalized difference between 

them (abs(MATRIX-SimMATRIX)/MATRIX). The results of BOT, Pipeline, Fan-Out 

and Fan-In are interpreted with the colors of blue, red, green, and black, respectively. We 

also display the 95% confidence intervals (both positive and negative) of the throughputs 
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of all workloads in SimMatrix, shown as error bars in the figure. The 95% confidence 

interval is calculated as: ±𝑡𝑛−1,0.975 × 𝜎 𝑛⁄ , in which 𝑛 is the sample size (10 in our case), 

𝜎  is the standard deviation, and 𝑡9,0.975 = 1.96  according to the standard normal 

distribution table. The values of the 95% confidence intervals are negligible when 

comparing with the throughput values. This indicates that our simulation results are stable 

and convincible. Furthermore, we see that the throughput results of SimMatrix match those 

of MATRIX with an average difference of less than 10% at all scales for all the workload 

DAG patterns. The small differences show that SimMatrix is accurate enough in simulating 

the fully distributed scheduling architecture and the DAWS scheduling technique.  

 

Figure 68. Validation of SimMatrix against MATRIX 
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messages are defined in the “Message” class that is general for all kinds of messages, thus 

including many unnecessary attributes for simple messages. For example, in work stealing, 

the messages of querying the load information of neighbors should be simple (e.g. the 

string “query load”). However, the general “Message” class of SimMatrix include many 

other attributes, such as “String content”, “Object obj”, “long eventId”, which enlarge the 

actual message sizes, leading to larger simulated communication overheads. However the 

small difference between SimMatrix and MATRIX indicate that this implementation has 

little impact on the accuracy of SimMatrix. 

5.3.3.2 Scalability Exploration through SimMatrix 

Since we have validated the results of SimMatrix, we explore the scalability of the 

fully distributed scheduling architecture and the DAWS technique towards extreme scales 

up to 128K cores in SimMatrix running weak-scaling experiments for all the benchmarking 

DAGs. The results are shown in Figure 69. 

 

Figure 69. Scalability of the DAWS technique up to 128K cores (128M tasks) 
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For the four benchmarking workloads, SimMatrix shows the same relative 

throughput results as MATRIX: BOT performs the best, and the second best is Pipeline, 

followed by Fan-Out, with Fan-In performing the worst. These results further validate 

SimMatrix and justify our explanations of the MATRIX results in section 5.3.2.2. The 

throughput trends with respect to the scale indicate that the DAWS technique has great 

scalability for all the workloads. At 128K-core (128M tasks) scale, the DAWS technique 

achieves extremely high throughput of 2.3M tasks/sec for BOT, 1.7M tasks/sec for 

Pipeline, 897.8K tasks/sec for Fan-Out, and 804.5K tasks/sec for Fan-In, respectively. 

These throughput numbers satisfy the scheduling needs of MTC data-intensive applications 

towards extreme scales. The trend is likely to hold towards million-core scales, and we will 

validate in the future. One fact is that our SimMatrix simulator does not have accurate 

network interconnection models. Currently, the communication overhead of a message is 

modeled as: 
𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑠𝑖𝑧𝑒

𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
+ 𝑙𝑎𝑡𝑒𝑛𝑐𝑦, and the latency is set as a fixed value (i.e. 10us) 

for all scales. To further explore the impact of network topology on SimMatrix, we 

leverage the data presented in [129], which is the state-of-the-art research work of 

modeling and simulating the exascale communication networks. The models and 

simulations were built on top of the ROSS parallel discrete event simulator [130] that has 

been validated extensively. We refer to the maximum latency values of torus network with 

different configurations at 256K-node scale, presented in [129]. We summarize the 

statistics of the maximum latency value, the torus network configuration, the message rate, 

of both SimMatrix with the four workloads and the referred work, in Table 8. 

From Table 8, we see that the referred torus network simulation had much higher 

message rate than SimMatrix. To amplify the impact of the torus network topology on 
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SimMatrix, we choose to replace the latency value (i.e. 10us) of SimMatrix with the 

maximum “maximum latency” value (i.e. 1500 us) of the torus network at the scales larger 

than 200 cores that were validated in Figure 68. Notice that this is exaggerating the network 

communication overhead in SimMatrix, because SimMatrix has much lower message rate, 

which contributes significantly to the maximum latency. 

Table 8. Statistics of SimMatrix and the referred simulation research 

 SimMatrix  Referred Torus Network 

 BOT Pipeline FanIn FanOut 
 512-ary 

2-cube 

64-ary 

3-cube 

8-ary 

6-cube 

Message rate (per 

nanosecond) 

0.05

5 
0.12 0.052 0.079 

 
2.5 14 54 

Maximum latency 

(microsecond) 
10 10 10 10 

 
1500 450 325 

 

We rerun our simulations configured with the 1500us latency at scales larger than 

200 cores, and compare the new simulation results with the 10us-latency results presented 

in Figure 69. Figure 70 shows the comparison results up to 128K cores. The solid lines are 

the 10us-latency throughput results of the four workloads, the round dotted lines represent 

the 1500us-latency results (Torus SimMatrix), and the dash dotted lines show the 

normalized performance degradation between them (SimMatrix-Torus SimMatrix) / 

SimMatrix). We see that the performance degradation due to the exaggerated network 

communication overhead is at most 12% for all the workloads at all scales. The small 

degradation values indicate that the time taken to execute all the tasks dominates the overall 

running of the workloads, and the network communication overheads are a minor factor. 

These results show that our simulation framework is accurate, even at extreme scales that 

have larger network communication overheads. 
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Figure 70. Comparing SimMatrix with SimMatrix of Torus network topology 

Through simulations, we have shown that the fully distributed scheduling 
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and we compute the throughput based on this. We compare the results of SimMatrix with 

those of the analytical sub-optimal solution for the four benchmarking workloads up to 

128K cores, shown in Figure 71.  

 

Figure 71. Comparison between SimMatrix and the analytical sub-optimal solution 

The solid lines are the results of SimMatrix, the round dotted lines represent the 

results achieved from the sub-optimal solution (Theory), and the dash dotted lines show 

the ratio of the simulation results to those of sub-optimal solutions. Similar to Figure 68, 

the results of BOT, Pipeline, Fan-Out and Fan-In are interpreted with the colors of blue, 

red, green, and black, respectively. We see that for all the workloads at different scales, our 

DAWS technique could achieve performance within 15% compared with the analytical 

sub-optimal solution. This relatively small percentage of performance loss indicates that 
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the BOT workload, our technique works almost as good as the sub-optimal solution with a 

quality percentage of 99%, due to no data movement. For the other three workloads, the 

DAWS technique achieves about 85.4% of the sub-optimal for Fan-Out, 88.6% of the sub-

optimal for Pipeline, and 90.3% of the sub-optimal for Fan-In, on average. The reason that 

the Pipeline and Fan-Out DAGs show bigger performance loss when comparing with the 

Fan-In DAG is because the former two DAGs have worse load balancing. For Fan-Out, 

every task (except for the leaf tasks) produces data of 5MB on average for 10 children, 

which may end up be run on the same node as their parent for minimizing the data 

movement overhead, leading to poor load balancing. Our FLDS policy mitigates this issue 

significantly. The same situation happens for the Pipeline DAG, but is less severe, because 

every task has only one child. However, the DAWS technique, configured with the FLDS 

policy, is still able to achieve 85.4% and 88.6% of the sub-optimal solution for the Fan-

Out and Pipeline DAG, respectively, which demonstrate the high-quality performance. 

Table 9. Comparing achieved performance with the sub-optimal 

Workloads BOT Pipeline FanOut FanIn 

Percentage of sub-optimal 99.043804% 88.572047% 85.381356% 90.2602799% 

 

These results show that the DAWS technique is not only scalable, but is able to 

achieve high quality performance results that are close to the bounded sub-optimal results 

within at most 15% performance loss. 

5.3.5 Analysis of the DAWS Technique. We have shown that the DAWS technique is 

not only scalable, but is able to achieve high quality performance within 15% of the sub-

optimal solution on average for different benchmarking workload DAGs. We justify that 

the technique is applicable to a general class of MTC data-intensive workloads. This is due 
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to the adaptive property of the DAWS technique. The adaptive property refers to the ability 

of adjusting the parameters for the best performance during the runtime according to 

system states. We have enunciated how the adaptive work stealing works, how to choose 

the best scheduling policies, individually. These should be considered together, along with 

the other parameters, such as the ratio threshold (t), and the upper bound of the execution 

time of the LReadyQ (tt) in the FLDS policy. The DAWS technique could always start with 

the FLDS policy. Based on the data volumes transferred during runtime, it is able to switch 

to other policies. If too much data is transferred, the technique would switch to the MDL 

policy; on the other hand, the technique would switch to the MLB policy if few data is 

transmitted. In addition, we can set the initial tt value in the FLDS policy, double the value 

when moving ready tasks from the LReadyQ to the SReadyQ, and reduce the value by half 

when work stealing fails. In order to cooperate with the FLDS policy, after the polling 

interval of work stealing hits the upper bound (no work stealing anymore), we set the 

polling interval back to the initial small value only if the threshold tt becomes small enough. 

This would allow to do work stealing again. 

However, things can become way more complicated when running large-scale data-

intensive applications that have very complex DAGs. There is still possibility that even 

with the adaptive properties, the DAWS technique may not perform well. The difficulties 

attribute to the constraint local views of each scheduler for the system states. In the future, 

we will explore some monitoring mechanisms to further improve the DAWS technique. 

5.4  Overcoming Hadoop Scaling Limitations through MATRIX  

 Data driven programming models like MapReduce have gained the popularity in 

large-scale data processing in the Internet domains. Although great efforts through the 
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Hadoop implementation and framework decoupling (e.g. YARN, Mesos) have allowed 

Hadoop to scale to tens of thousands of commodity cluster processors, the centralized 

designs of the resource manager, task scheduler and metadata management of HDFS file 

system adversely affect Hadoop’s scalability to tomorrow’s extreme-scale data centers. 

This section aims to address the YARN scaling issues through a distributed task execution 

framework, MATRIX, which is originally designed to schedule the executions of data-

intensive scientific applications of many-task computing (MTC) on supercomputers. We 

propose to leverage the distributed design wisdoms of MATRIX to schedule arbitrary data 

processing applications in the cloud domain. We compare MATRIX with YARN in 

processing typical Hadoop workloads, such as WordCount, TeraSort, RandomWriter and 

Grep, as well as the Ligand application in Bioinformatics on the Amazon Cloud. 

Experimental results show that MATRIX outperforms YARN by 1.27X for the typical 

workloads, and by 2.04X for the real application [227]. We also run and simulate MATRIX 

with fine-grained sub-second workloads. With the simulation results giving the efficiency 

of 86.8% at 64K cores for the 150ms workload, we show that MATRIX has the potential 

to enable Hadoop to scale to extreme-scale data centers for fine-grained workloads. 

5.4.1  Motivations. Applications in the Internet and Cloud domains (e.g. Yahoo! weather 

[161], Google Search Index [162], Amazon Online Streaming [163], and Facebook Photo 

Gallery [164]) are evolving to be data-intensive that process large volumes of data for 

interactive tasks. This trend has led to the programming paradigm shifting from the 

compute-centric to the data driven. Data driven programming models [165], in the most 

cases, decompose applications to embarrassingly parallel tasks that are structured as Direct 

Acyclic Graph (DAG) [166]. In a specific application DAG, the vertices are the discrete 
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tasks, and the edges represent the data flows from one task to another. This is the same for 

the data-intensive many-task computing application.  

MapReduce [76] is the representative of the data driven programming model that 

aims at processing large-scale data-intensive applications in the Cloud domains on 

commodity processors (either an enterprise cluster, or private/public Cloud). In 

MapReduce, applications are divided into two phases (i.e. Map and Reduce) with an 

intermediate shuffling procedure, and the data is formatted as unstructured (key, value) 

pairs. The programming framework is comprised of three major components: the resource 

manager manages the global compute nodes, the task scheduler places a task (either a map 

task or a reduce task) on the most suitable compute node, and the file system stores the 

application data and metadata. 

The first generation Hadoop [118] (Hadoop_v1, circa 2005) was the open-source 

implementation of the MapReduce. In Hadoop_v1, the centralized job tracker plays the 

roles of both resource manager and task scheduler; the HDFS is the file system [117] to 

store the application data; and the centralized namenode is the file metadata server. In order 

to promote Hadoop to be not only the implementation of MapReduce, but one standard 

programming model for a generic Hadoop cluster, the Apache Hadoop community 

developed the next generation Hadoop, YARN [112] (circa 2013), by decoupling the 

resource management infrastructure with the programming model. From this point, when 

we refer to Hadoop, we mean YARN. 

YARN utilizes a centralized resource manager (RM) to monitor and allocate 

resources to an application. Each application delegates a centralized per-application master 

(AM) to schedule tasks to resource containers managed by the node manager (NM) on the 
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allocated computing nodes. The HDFS file system and centralized metadata management 

remain the same. Decoupling of the resource management infrastructure with the 

programming model enables Hadoop to run different application frameworks (e.g. 

MapReduce, Iterative application, MPI, and scientific workflows) and eases the resource 

sharing of the Hadoop cluster. Besides, as the scheduler is separated from the RM with the 

implementation of the per-application AM, the Hadoop has achieved unprecedented 

scalability. Similarly, the Mesos [106] resource sharing platform is another example of the 

scalable Hadoop programming frameworks. 

However, there are inevitable design issues that prevent Hadoop from scaling to 

extreme scales, the scales that are 2 to 3 orders of magnitude larger than that of today’s 

distributed systems; similarly, today’s scales do not support several orders of magnitude 

fine grained workloads (e.g. sub-second tasks). The first category of issues come from the 

centralized paradigm. Firstly, the centralized RM of YARN is a bottleneck.  Although the 

RM is lightweight due to the framework separation, it would cap the number of applications 

supported concurrently as the RM has limited processing capacity. Secondly, the 

centralized per-application AM may limit the task placement speed when the task 

parallelism grows enormously for the applications in certain domains. Thirdly, the 

centralized metadata management of HDFS is hampering the metadata query speed that 

will have side effects on the task placement throughput for data-locality aware scheduling. 

The other issue comes from the fixed division of Map and Reduce phases of the Hadoop 

jobs. This division is simple and works well for many applications, but not so much for 

more complex applications, such as iterative MapReduce [12] that supports different levels 

of task parallelism, and the irregular applications with random DAGs. Finally, the Hadoop 
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framework is not well suited for running fine-grained workloads with task durations of sub-

seconds, such as the lower-latency interactive data processing applications [21]. The reason 

is twofold. One is that the Hadoop employs a pull-based mechanism. The free containers 

pull tasks from the scheduler; this causes at least one extra Ping-Pong overhead per-request 

in scheduling. The other one is that the HDFS suggests a relatively large block size (e.g. 

64MB) when partitioning the data, in order to maintain efficient metadata management. 

This confines the workload’s granularity to be tens of seconds. Although the administrators 

of HDFS can easily tune the block size, it involves manual intervention. Furthermore, too 

small block sizes can easily saturate the metadata server. 

This work proposes to utilize MATRIX and the DAWS technique to do scalable 

task placement for Hadoop workloads, with the goal of addressing the Hadoop scaling 

issues. We leverage the distributed design wisdoms of MATRIX in scheduling data 

processing applications in clouds. We compare MATRIX with YARN using typical 

Hadoop workloads, such as WordCount, TeraSort, RandomWriter, and Grep, as well as an 

application in Bioinformatics, on Amazon Cloud up to 256 cores. We also run and simulate 

MATRIX with fine-grained sub-second workloads and MATRIX shows the potential to 

enable Hadoop to scale to extreme scales. 

5.4.2  Hadoop Design Issues. Although YARN has improved the Hadoop scalability 

significantly, there are fundamental design issues that are capping the scalability of Hadoop 

towards extreme scales. 

5.4.2.1 Centralized resource manager  

The resource manager (RM) is a core component of the Hadoop framework. It 

offers the functionalities of managing, and monitoring the resources (e.g. CPU, memory, 
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network bandwidth) of the compute nodes of a Hadoop cluster. Although YARN decouples 

the RM from the task scheduler to enable Hadoop running different frameworks, the RM 

is still centralized. One may argue that the centralized design should be scalable as the 

processing ability of a single compute node is increasing exponentially. However, the 

achieved network bandwith from a single node to all the compute nodes is bounded. 

5.4.2.2 Application task scheduler  

YARN delegates the scheduling of tasks of different applications to each individual 

application master (AM), which makes decisions to schedule tasks among the allocated 

resources (in the form of containers managed by the node manager on each compute node). 

Task scheduling component is distributed in the sense of scheduling different applications. 

However, from per-application’s perspective, the task scheduler in the AM still has a 

centralized design that has too limited scheduling ability to meet the evergrowing task 

amount and granularity. In addition, Hadoop employs a pull-based mechanism, in which, 

the free containers pull tasks from the scheduler. This causes at least one extra Ping-Pong 

overhead in scheduling. One may have doubt about the exsistance of an application which 

can be decomposed as so many tasks that needs a resource allocation of all the compute 

nodes. But, it is surely happening given the exponential growth of the application data 

sizes. 

5.4.2.3 Centralized metadata management  

The HDFS is the default file system that stores all the data files in the datanodes 

through random distributions of data blocks, and keeps all the file/block metadata in a 

centralized namenode. The namenode monitors all the datanodes. As the data volumes of 

applications are growing in a fast rate, the number of data files are increasing significantly, 
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leading to much higher demands of the memory footprint and metadata access rate that can 

easily overwelm the centralized metadata management. Things could be much worse for 

abundant small data files. In order to maintain an efficient metadata management in the 

centralized namenode, the HDFS suggests a relatively large block size (e.g. 64MB) when 

partitioning the data files. This is not well suited for the fine-grained lower latency 

workloads.  

5.4.2.4 Limited data flow pattern  

The Hadoop jobs have the fixed two-layer data flow pattern. Each job is 

decomposed as embarasingly parallel map-phase tasks with each one processing a partition 

of the input data. The map tasks generate intermediate data which is then aggregated by 

the reduce-phase tasks. Although many applications follow this simple pattern, there are 

still quite a few applications that are decomposed with much more complex workload 

DAGs. One example is the category of irregular parallel applications that have 

unpredictable data flow patterns. These applications need dynamic scalable scheduling 

echniques, such as work stealing, to achive distributed load balancing. Another category 

of the applications with complex data flow patterns are the iterative applications that aim 

to find an optimal solution through the convergence after iterative computing steps. Though 

one can divide such an application as multiple steps of Hadoop jobs, Hadoop is not able to 

run these application steps seamlessly. 

These inherent design issues prevent the Hadoop framework scaling up to extreme 

scales, which should be addressed sooner rather than later. 

5.4.3  Leveraging MATRIX Distributed Design Wisdoms. Although MATRIX was 

designed for scheduling fine-grained MTC data-intensive applications on supercomputers, 
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we show how to leverage the MATRIX distributed design wisdoms to overcome the 

Hadoop scaling limitations for arbitrary data processing applications. 

5.4.3.1 Distributed Resource Management  

Instead of employing a single RM to manage all the resources as the Hadoop 

framework does, in MATRIX, each scheduler maintains a local view of the resources of 

an individual compute node. The per-node resource manager is demanded, because the 

physical computing and storage units are not only increasing in terms of sizes, but are 

becoming more complex, such as hetergeneous cores and various types of storages (e.g. 

NVRAM, spinning Hard Disk, and SSD). The demand is more urgent in a virtualized Cloud 

environment, in which, the RM also needs to conduct resource binding and monitoring, 

leading to more workloads.  

5.4.3.2 Distributed Task Scheduling  

The schedulers are not only in charge of resource management, but responsible for 

making scheduling decisions to map the tasks onto their most suitable resources, through 

the data-aware work stealing technique. The distributed scheduling architecture is scalable 

than a centralized one, since all the schedulers participate in making scheduling decisions. 

In addition, MATRIX can tune the work stealing parameters (e.g. number of tasks to steal, 

number of neighbors, polling interval) at runtime to reduce the network communication 

overheads of distributed scheduling. The distributed scheduling enables the system to 

achieve roughly the linear scalability as the computing system and workloads scale up. 

5.4.3.3 Distriuted Metadata Management  

We can leverage distributed KVS, as ZHT used in MATRIX, to offer a flat 

namespace in managing the task and file metadata. Comparing with other ways, such as 
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sub-tree partitioning [167] and consistent hashing [29], flat namespace hashing has the 

ability to achieve both good load balancing, and faster metadata accessing rate with zero-

hop routing. In sub-tree partitioning, the namespace is organized in sub trees rooted as 

individual directory, and the sub trees are managed by multiple metadata servers in a 

distributed way. As the directories may have wide distribution of number of files and file 

sizes, the sub-tree partitioning may result in poor load balancing. In consistency hashing, 

each metadata server has partial knowledge of the others. This partial connectivity leads to 

extra routing hops needed to find the right server that can satisfy a query. For example, 

MATRIX combines the task and file metadata as (key, value) pairs that represent the data 

dependencies and data file locations and sizes of all the tasks in a workload. For each task, 

the key is the “taskId”, and the value specifies the “parent” and “child” tasks, as well as 

the names, locations, and sizes of the required data files. One may argue that the full 

connectivity of the KVS will be an issue at extreme scales. However, our pervious 

simulation results [27] showed that in a fully connected architecture, the number of 

communication messages required to maintain a reliable service is trivial when comparing 

with the number of request-processing messages. 

5.4.3.4 Fault Tolerance 

Fault tolerance is an important design concern, especially for extreme-scale 

distributed systems that have high failure rates. MATRIX can tolerate failures with a 

minimum effort due to the distributed nature, the stateless feature of the schedulers, and 

the integration of ZHT. Failures of a compute node only affect the tasks, data files, and 

metadata on that node, and can be resolved easily as follows. The affected tasks can be 

acknowledged and resumitted to other schedulers; A part of the data files were copied and 
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cached in other compute nodes when they were transmitted for executing some tasks. In 

the future, we will rely on the underneath file system to handle the affected files; As ZHT 

is used to store the metadata, and ZHT has implemented failure/recovery, replication and 

consistency mechanisms, MATRIX needs to worry little about the affected metadata. 

5.4.3.5 Elastic Property  

MATRIX allows the resources to be dynamically expanded and shrinked in the 

elastic Cloud environment. The resource shrinking is regarded as resource failure in terms 

of consequences, and can be resolved through the same techniques of handing failures. 

When adding an extra compute node, a new scheduler and ZHT server will also be 

introduced. ZHT has already implemented a dynamic membership mechanism to undertake 

the newly added server. This mechanism can also be used in MATRIX to notify all the 

existing schedulers about the extra-added scheduler. 

5.4.3.6 Applicability to the MapReduce programming Model 

MATRIX is applicable to run the MapReduce applications. The applications are 

represented as a simple DAG that has two phases. In the first phase, each task takes the 

same amount of data of input files to do analysis and generates an output result. In the 

second phase, each task requires all the output results and aggregates a final output. We 

will show how MATRIX performs for typical Hadoop applications. 

5.4.3.7 Support of arbitrary application DAG  

MATRIX can support much broader categories of data-intensive applications with 

various data flow patterns, such as the Hadoop jobs, the iterative applications, and the 

irregular parallel applications. The MATRIX clients take any arbitrary application DAG as 

input. Before submitting the tasks, the clients insert the initial task dependency information 
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into ZHT. Later, the schedulers update the dependency with the added data size and locality 

information when executing tasks, through the ZHT interfaces. We believe that MATRIX 

could be used to accelerate a large number of parallel programming systems, such as Swift 

[15] [67], Pegasus [69], and Charm++ [92]. 

5.4.4  Evaluation of MATRIX with Hadoop Workloads. In this section, we evaluate 

MATRIX by comparing it with YARN in processing typical Hadoop workloads, such as 

WordCount, TeraSort, RandomWriter and Grep, as well as an application in 

Bioinformatics, on the Amazon EC2 Large testbed. We first run YARN with these 

workloads and obtain the trace files. Through the trace files, we generate workload DAGs 

that become the inputs of MATRIX. We also evaluate the scalability of MATRIX through 

simulations running on the Fusion machine up to extreme scales with sub-second 

workloads. We aim to show that MATRIX is not only able to perform better than YARN 

for the workloads that are tailored for YARN, but also has the ability to enable Hadoop to 

scale to extreme scales for finer-grained sub-second workloads. 

5.4.4.1 YARN Configuration 

In the experiments, we use YARN version 2.5.1. Although newer version of YARN 

is released very frequently, we argue that it does not have a perceivable impact on what we 

are trying to study and present in this paper. For example, the centralized design and 

implementation are not going to change significantly in the coming releases in the near 

future. Here, we configure the HDFS block size to be 16MB. The usual Hadoop cluster 

configuration is from 32MB to 256MB, but we believe this is a reasonable change as we 

focus on studying the scheduling overhead of the frameworks. Increasing the block size 

will only increase the task length (or execution time) of the map tasks and decrease the 
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total number of map tasks. Our conclusions on the scheduling performance improvement 

do not vary with the different HDFS block sizes. To fairly capture the traces of each task, 

we use the default map and reduce logging service. The logging mode is INFO, which is 

lightweight comparing with DEBUG or ALL. This is to minimize the impact of logging on 

Hadoop performance. To best characterize the overheads of the centralized scheduling and 

management, we use a stand-alone instance to hold the NameNode and ResourceManager 

daemons in all the experiments. The isolation of master and slaves guarantees that the 

performance of the Hadoop master is not compromised by co-located NodeManager or 

DataNode daemons. 

5.4.4.2 Benchmarking Hadoop Workloads 

The first set of experiments run typical Hadoop workloads, such as WordCount, 

Terasort, RandomWriter, and Grep. The input is a 10GB data file extracted from the 

Wikipedia pages. We do weak-scaling experiments that process 256MB data per instance. 

At 128 instances, the data size is 32GB including 3.2 copies of the 10GB data file. 

(1)  WordCount 

The WordCount is a typical two-phase Hadoop workload. The map task count the 

frequency of each individual word in a subset data file, while the reduce task shuffles and 

collects the frequency of all the words. Figure 72 and Figure 73 show the performance 

comparisons between MATRIX and YARN. 

From Figure 72, we see at all scales, MATRIX outperforms YARN by 1.26X on 

average for tasks with average lengths ranging from 13 to 26 sec. As scale increases from 

2 cores to 256 cores, YARN’s efficiency drops by 13%, while MATRIX’s drops by only 

5% and maintains 93%. These results indicate that MATRIX is more scalable than YARN, 
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due to the distributed scheduling architecture and technique that optimizes both load 

balancing and data locality. 

 

Figure 72. Efficiency for WordCount 

 

Figure 73. Average Task-Delay Ratio for WordCount 

Figure 73 compares the average Task-Delay Ratio between MATRIX and YARN, 

and shows the ideal average task turnaround time for all the scales. MATRIX achieves 

performance that is quite close to the ideal case. The added overheads (quantified by the 

average Task-Delay Ratio) of MATRIX are much more trivial (20X less on average) than 

that of YARN. This is because each scheduler in MATRIX maintains task queues, and all 

the ready tasks are put in task ready queues as fast as possible. On the contrary, YARN 

applies a pull-based model that lets the free containers pull tasks from the application 

master, incurring significant Ping-Pong overheads and poor data-locality. 
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(2) TeraSort 

TeraSort is another two-phase Hadoop workload that performs in-place sort of all 

the words of a given data file. Figure 74 and Figure 75 present the comparison results 

between MATRIX and YARN. 

 

Figure 74. Efficiency for TeraSort 

Figure 74 illustrates the efficiency comparisons. We see that YARN can achieve 

performance that is close to MATRIX, however, there is still a 10% discrepancy on 

average. This is because in TeraSort, the time spent in the reduce phase dominates the 

whole process. The final output data volume is as large as the initial input one, but the 

number of reduce tasks is much less than that of the map tasks (In our configurations, there 

are 8 reduce tasks at 256 cores, and 1 reduce task at all other scales). Therefore, load 

balancing is less important. 

 

Figure 75. Average Task-Delay Ratio for TeraSort 
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However, in terms of the task turnaround time for each task, MATRIX can still 

achieve much faster responding time with way small overheads (10X less on average) than 

YARN, according to Figure 75.  

(3) RandomWriter 

The RandomWriter workload is consist of only map tasks, and each task writes an 

amount of random data to the HDFS with a summation of 10GB data per instance. Figure 

76 and Figure 77 give the performance comparison results. 

 

Figure 76. Efficiency for RandomWriter 

Figure 76 shows that at all scales, MATRIX achieves much better performance 

(19.5% higher efficiency on average) than YARN. In addition, as the scale increases, 

YARN’s efficiency drops dramatically, from 95% at 2 cores to only 66% at 256 cores. The 

trend indicates that at larger scales, YARN efficiency would continue to decrease. On the 

contrary, MATRIX has the ability to maintain high efficiency at large scales and the 

efficiency-decreasing rate is much slower comparing with YARN. We believe that as the 

scales keep increasing to extreme-scales, the performance gap between MATRIX and 

YARN would be getting bigger and bigger. 

The reason that MATRIX can significantly beat YARN for the RandomWriter 

workload is not only because the distributed scheduling architecture and technique can 
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perform better than the centralized ones of YARN, but also because MATRIX writes all 

the data locally while YARN writes all the data to the HDFS that may distribute the data 

to the remote data nodes.   

 

Figure 77. Average Task-Delay Ratio for RandomWriter 

In terms of the average Task-Delay Ratio presented in Figure 77, again, MATRIX 

can response to per-task much faster than YARN, due to the pushing mechanism used in 

the MATRIX scheduler that eagerly pushes all the ready tasks to the task ready queues. 

(4) Grep 

The last Hadoop benchmark is the Grep workload that searches texts to match the 

given pattern in a data file. In YARN, the Grep workload is divided into 2 Hadoop jobs, 

namely search and sort. Both jobs have a two-phase MapReduce data pattern. However, 

MATRIX converts the entire Grep workload to one application DAG that has a four-phase 

data flow pattern. The output of the reduce phase of the search job is the input of the map 

phase of the sort job. The comparison results between MATRIX and YARN with the Grep 

workload are shown in Figure 78 and Figure 79. 

Figure 78 shows that MATRIX performs much better than YARN at all scales with 
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efficiency, even at 2-core scale. The reasons are two-folds. First, the Grep workload has a 

wide distribution of task lengths. Based on the targeting text pattern, map tasks may 

execute significantly different amounts of times and generate results ranging from empty 

to large volumes of data when given different parts of the data file. This huge heterogeneity 

of task length leads to poor load balancing in YARN. The other reason is that YARN needs 

to launch 2 Hadoop jobs for the Grep workload, which doubles the job launching 

overheads.  

 

Figure 78. Efficiency for Grep 

 

Figure 79. Average Task-Delay Ratio for Grep 
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tasks once as fast as possible, introducing much less overheads. Figure 79 validates this 

justification by showing that MATRIX responses 20X faster on average than YARN. 

(5) Ligand Clustering Application in Bioinformatics 

The previous comparisons use typical benchmarking workloads, and MATRIX has 

shown better scalability than YARN for all the workloads. In this section, we show how 

they perform in processing a real data-intensive application in bioinformatics, namely the 

Ligand Clustering application [168]. 

Large dataset clustering is a challenging problem in the field of bioinformatics, 

where many researchers resort to MapReduce for a viable solution. The real-world 

application experimented in this study is an octree-based clustering algorithm for 

classifying protein-ligand binding geometries, which has been developed in the University 

of Delaware. The application is implemented in Hadoop and is divided into iterative 

Hadoop jobs. In the first job, the map tasks read the input datasets that contain the protein 

geometry information. Depending on the size of the problem, the input dataset size varies 

from giga bytes to tera bytes and the workloads are considered as both data-intensive and 

compute-intensive. The output of the first job is the input of the second one; this applies 

iteratively. The output data size is about 1% of the input data size in the first job. Thus, the 

map tasks of the first job dominate the processing. This provides an ideal scenario of testing 

the scheduling capability of both MATRIX and YARN. 

Like the benchmarking workloads, in this application, the input data size is 256MB 

per instance based on the 59.7MB real application data. We apply 5 iterative Hadoop jobs, 

including 10 phases of map and reduce tasks. We run the application in both MATRIX and 

YARN, and the performance results are given in Figure 80 and Figure 81. 
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Figure 80. Efficiency for the Bioinformatics application 

From Figure 80, we see that as the scale increases, the efficiency of YARN is 

decreasing significantly. At 256-core scale, YARN can only achieve 30% efficiency, which 

is one third of that achieved (91%) through MATRIX. The decreasing trend is likely to 

hold towards extreme-scales for YARN. On the other hand, the efficiency of MATRIX has 

a much slower decreasing trend and is becoming stable at 64-core scale. Even though it 

sounds too rush to conclude that MATRIX has the ability to maintain efficiency as high as 

90% at extreme-scales, these results show the potential extreme scalability of MATRIX, 

which we will explore through simulations later. 

 

Figure 81. Average Task-Delay Ratio for the application 
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The contributing factors of the large performance gain of MATRIX comparing with 

YARN include the distributed architectures of the resource management, task scheduling, 

and metadata management; the distributed scheduling technique; as well as the general 

DAG decomposition of any application with arbitrary data flow pattern. All these design 

choices of MATRIX are radically different from those of YARN. 

Like the Grep workload, YARN launches the 5 iterative Hadoop jobs of this 

application individually one by one, incurring tremendously large amount of launching and 

Ping-Pong overheads, whilst MATRIX launches the whole application DAG once. This 

difference is another factor that causes the speed gap between YARN and MATRIX in 

responding to per-task shown in Figure 81  (MATRIX achieves 9X faster than YARN on 

average). 

(6) Fine-grained Data Processing Workloads 

We have shown that MATRIX is more scalable than YARN in processing both 

typical benchmarking workloads and a real application in Bioinformatics. All the 

workloads evaluated so far are relatively coarse-grained (e.g. average task length of tens 

of seconds), comparing with the Berkeley Spark MapReduce stack [160] that targets finer-

grained workloads (e.g. average task length of hundreds of milliseconds). We have 

identified that YARN is not well suited for running fine-grained workloads, due to the pull-

based task scheduling mechanism and the HDFS centralized metadata management. To 

validate this, we run a fine-grained workload test of YARN at 64 cores for the Terasort 

workload by reducing the block size of HDFS to 256KB, 100X smaller than the previous 

course-grained experiments. The average task length should be only 1/100 of that of the 

course-grained workloads (286ms according to Figure 74). However, YARN’s logs show 
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that the average task execution time decreases only by half with about 14 sec, leading to 

the efficiency as low as 2.04% (286/14000). 

On the contrary, MATRIX is designed to process the fine-grained sub-second 

workloads. In Chapter 3, MATRIX showed the ability to achieve 85%+ efficiency for the 

workload with an average task length of 64ms at 4K-core scales on an IBM BG/P 

supercomputer. In addition, we have compared MATRIX with the Spark sparrow scheduler 

with NOOP sleep 0 tasks and MATRIX was 9X faster than sparrow in executing the tasks. 

To further justify that MATRIX has the potential to enable MapReduce to scale to 

extreme-scales, we explore the scalability of MATRIX through both real system (256-core 

scale) and simulations (64K-core scale) for fine-grained workloads. We choose the Ligand 

real application, reduce the task length of each task by 100X, increase the number of map 

tasks in the first iteration (there are 5 iterations of jobs in total) by 100X, and keep the task 

dependencies the same. The average task length in this workload ranges from 80ms to 

166ms at different scales (refers to Figure 80 about the coarse-grained workload ranging 

from 8sec to 16.6sec).  

We run MATRIX with this workload up to 256 cores. Besides, we conduct 

simulations of MATRIX for this workload at 64K-core scale, through the SimMatrix 

simulator. We feed the fine-grained workloads in SimMatrix. Beyond 256 cores, we 

increase the number of tasks linearly with respect to the system scales by repeating the 

workloads at 256 cores.  

We show the efficiency results of MATRIX running both the fine-grained and 

coarse-grained workloads, as well as SimMatrix running the fine-grained workloads in 

Figure 82. When the granularity increases by 100X, the efficiency only drops about 1.5% 
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on average up to 256 cores (blue line vs. the solid red line). This shows great scalability of 

MATRIX in processing the fine-grained workloads. From the simulation’s perspective, we 

run SimMatrix up to 64K cores and validate SimMatrix against MATRIX within 256-core 

scales. The normalized difference (black line) between SimMatrix and MATRIX within 

256 cores is only 4.4% on average, which shows that SimMatrix is accurate and the 

simulation results are convincible. At the 64K cores, the efficiency maintains 86.8% for 

the workload of average task length of 150ms. According to the efficiency trend, we can 

predict that at the 1M-core scale, the efficiency will be 85.4% for this fine-grained 

workload.  

These results show that MATRIX has the potential to enable Hadoop to scale to 

extreme scales, even for the fine-grained sub-second workloads. 

 

Figure 82. MATRIX for sub-second Bioinformatics workloads 

5.4.5  Summary. Large-scale Internet applications are processing large amount of data 

on the commodity cluster processors. Although the Hadoop framework has been prevalent 
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are increasing exponentially. This paper proposed to leverage the distributed design 

wisdoms of the MATRIX task execution framework to overcome the scaling limitations of 

Hadoop towards extreme scales. MATRIX addressed the scaling issues of YARN by 

employing distributed resource management, distributed data-aware task scheduling, and 

distributed metadata management using key-value stores.  

We compared MATRIX with YARN using typical Hadoop workloads and the 

application in Bioinformatics up to 256 cores on Amazon. Table 10 summarizes the 

average performance results of both MATRIX and YARN for different workloads for all 

scales. On average of all the Hadoop workloads, MATRIX outperforms YARN by 1.27X. 

For the application in Bioinformatics (BioApp), MATRIX outperforms YARN by 2.04X.  

Table 10. Efficiency results summary of MATRIX and YARN 

Workloads 
Average Task 

Length 

MATRIX 

Efficiency 

YARN 

Efficiency 

Average Speedup 

(MATRX/YARN) 

WordCount 21.19sec 95.2% 76.0% 1.26 

TeraSort 20.09sec 95.9% 87.0% 1.10 

RandomWriter 36.20sec 95.8% 81.4% 1.20 

Grep 11.48sec 93.0% 62.0% 1.53 

BioApp 12.26sec 94.9% 50.2% 2.04 

Fine-grained BioApp 128.5ms 93.5% N/A N/A 

 

We also explored the scalability of MATRIX through both real system and 

simulations at extreme scales for fine-grained sub-second workloads. The simulations 

indicate 86.8% efficiency at 64K-core scale for 150ms workloads. We predict that 

MATRIX has the potential to enable MapReduce to scale to extreme scale distributed 

systems. 
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5.5  Conclusions and Impact 

Data-intensive MTC applications for exascale computing need scalable distributed 

task scheduling system to deliver high performance, posing urgent demands on both load 

balancing and data-aware scheduling. This work combined distributed load balancing with 

data-aware scheduling through a data-aware work stealing technique. We implemented the 

technique in both the MATRIX task execution framework and the SimMatrix simulator. 

We devised an analytic model to analyze the performance upper bound of the proposed 

techniques. We evaluated our technique under four different scheduling policies with 

different workloads, and compared our technique with the data diffusion approach. We also 

explored the scalability and performance quality of the proposed data-aware work stealing 

technique up to 128K cores. Results showed that our technique is scalable to achieve both 

good load balancing and high data-locality. Simulation results showed that the technique 

is not only scalable, but is able to perform within 15% of the sub-optimal solution, towards 

extreme scales. We further compared MATRIX with YARN in processing the typical 

Hadoop workloads, and MATRIX showed significant performance gains and promising 

potential to overcome the scalability limitations of the Hadoop framework.  

With the advent of the big data era, applications run on both supercomputers and 

Internet domains are experiencing data explosion, involving archiving, processing and 

moving ever-growing amount of data volumes. The United States government has recently 

begun its multi-agency Big Data Initiative to address various big data issues [186]. We 

anticipate that the research contributions of this work will have profound influence in 

addressing the big data challenges through developing and deploying highly scalable and 

fault tolerant, and high performance big data infrastructures and scheduling frameworks. 
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The proposed scheduling architecture and technique are innovative, due to the distributed 

nature and the integration with scalable key-value store for state management. This work 

will open doors to many research topics that are related to big data computing, including 

complicated parallel machine learning models [183] that extract important information 

from big data volumes, data compression mechanisms [184] that can save storage spaces 

with a high compression ratio, erasure coding methods [20] that can replace the N-way 

replication one to maintain both fault tolerance and high storage utilization, data-locality 

aware scheduling for data-intensive high-performance computing applications with the aid 

of the burst buffer [187] intermediate storage layer, in situ data processing frameworks 

[185] for efficient scientific visualization, and many others. We believe that this work will 

be beneficial to many scheduling platforms by helping them address their scalability 

challenges in scheduling big data applications, such as the traditional data arrogant HPC 

resource management systems, the Hadoop framework, the Spark big data computing 

software stack, the Hive data warehouse [188]. 
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CHAPTER 6 

SLURM++ WORKLOAD MANAGER 

As supercomputers are growing exponentially, one way of efficiently utilizing the 

machines is to support a mixture of applications in various domains, such as traditional 

large-scale HPC, the HPC ensemble runs, and the fine-grained many-task computing 

(MTC). Delivering high performance in resource allocation, scheduling and launching for 

all types of jobs has driven us to develop Slurm++, a distributed workload manager directly 

extended from the Slurm centralized production system. Slurm++ employs multiple 

controllers with each one managing a partition of compute nodes and participating in 

resource allocation through resource balancing techniques. A distributed key-value store is 

integrated to manage the system states in a scalable way. To achieve dynamic resource 

balancing within all the partitions, we propose two resource stealing techniques, namely a 

random one and an improved weakly consistent monitoring-based one that aims to address 

the resource deadlock problem occurring in distributed HPC job launch for big jobs and 

under high system utilization. We implement the techniques in Slurm++ and enable 

Slurm++ to run real MPI applications by preserving the entire Slurm communication layer. 

We compare Slurm++ with Slurm using micro-benchmark workloads, workloads from 

application traces, and real MPI applications. Slurm++ shows 10X faster than Slurm in 

allocating resources and launching jobs, and the performance gap is expected to grow as 

the jobs and system scales increase. We also evaluate Slurm++ through simulations 

showing promising performance results towards extreme scales. 
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6.1  Distributed HPC Scheduling 

Predictions are that supercomputers will reach exascale with up to a billion threads 

of execution in less than a decade [2]. Exascale computing will enable the unraveling of 

significant mysteries for a diversity of scientific applications, such as Astronomy, Biology, 

Chemistry, Earth Systems, Neuroscience and Physics [2][39]. Given this extreme 

magnitude of concurrency, one way of efficiently utilizing the whole machine without 

requiring full-scale jobs is to categorize the applications into different domains and to 

support the running of a mixture of applications in all these domains. The application 

domains include traditional large-scale high performance computing (HPC), HPC 

ensemble runs, and fine-grained loosely coupled many-task computing (MTC). 

Scientific applications in the traditional HPC domain typically require many 

computing processors (e.g. half or full-size of the whole machine) for a long time (e.g. days 

or weeks) to achieve the experimental and simulation goals. Examples of these applications 

are exploring the structures of biological gene sequences, chemical molecules, and human 

brains; and the simulations of the origin of the universe, spacecraft aerodynamics, and 

nuclear fusion [141]. The jobs are tightly coupled, and use the message-passing interface 

(MPI) programming model [64] to communicate and synchronize among the processors.  

Although it is necessary to support HPC applications that demand the computing 

capacity of an exascale machine, only a few applications can scale to exascale. Most will 

be decomposed as ensemble runs of applications that have uncertainty in high-dimension 

parameter space. Ensemble runs [142] decompose applications into many small-scale and 

short-duration coordinated jobs with each one doing a parameter sweep in a much lower-

resolution parameter space using MPI in parallel, thus enabling a higher system utilization. 
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These high-order low-order methods can be used either in an integrated fashion, in a single 

job, or in ensemble to reduce the uncertainty of the high-resolution method. In [143], 

ensemble runs have been defined for exascale simulations: “One approach to dealing with 

uncertainty is to perform multiple ensemble runs (parameter sweeps) with various 

combinations of the uncertain parameters”. For example, to address the uncertainty in 

weather forecast, each of the parameters, such as the current weather, the atmosphere 

condition, the human interaction, can be simulated as an ensemble run to examine the 

effects of the parameter on the weather. Another example is scheduling regression tests 

used by many applications to validate changes in the code base. These tests are small-scale 

and scheduled on a daily basis. 

Furthermore, the high intra-node parallelism at exascale requires supporting 

embarrassingly parallel fine-grained many-task computing (MTC) [39] [40] workloads to 

increase utilization with efficient backfilling strategies. In MTC, applications are 

decomposed as orders of magnitude larger number (e.g. millions to billions) of fine-grained 

tasks in both size and duration, with data-dependencies. Workloads are represented as 

DAG. The tasks do not require strict coordination of processes at job launch, as do the 

traditional HPC workloads. The algorithm paradigms well suited for MTC are 

Optimization, Data Analysis, Monte Carlo and Un-certainty Quantification. Applications 

that demonstrate the MTC characteristics range from astronomy, bioinformatics, climate 

modeling, chemistry, economics, medical imaging, neuroscience, pharmaceuticals, to 

physics [53]. 

To better support our ascertain that tomorrow’s exascale supercomputers will likely 

be used to run all categories of the scientific applications of various job sizes, we analyze 
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the published trace data about the application jobs that were run on the IBM Blue Gene / P 

supercomputer in Argonne National Laboratory during an 8-month period (from Jan. 2009 

to Sept. 2009) [145]. The machine is comprised of 40960 homogeneous nodes with each 

one having 2 CPU cores. The trace includes 68,936 jobs with a wide range of job sizes and 

durations. We draw a CDF graph of the number of jobs with respect to the job size 

(represented as the percentage to the system scale of 40960 nodes) for all the jobs in Figure 

83, in which, the changing points are also explicitly displayed. 

 

Figure 83. CDF graph of the number of jobs with respect to the job size 

We observe that 19.52% jobs have job sizes no bigger than 1% of the system scale, 

90.01% jobs have job sizes no bigger than 5% of the system scale, and 99.78% jobs have 

job sizes no bigger than 80% of the system scale. This distribution indicates that in the 

workload, most of the jobs are small, with small amount of big jobs, and few full-scale jobs 

(152 out of 68,936). We believe that for exascale supercomputers, the distributions of the 

job sizes will likely be the same as those of the BG/P machine. In addition, we expect that 

more policies will be proposed to ensure much fairer resource sharing in the HPC research 

community, which will lead to orders of magnitudes more number of jobs and an increasing 

share of the small jobs. 
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Running a mixture of applications in all domains on an exascale machine is 

considerably different from running merely traditional HPC workloads, and poses 

significant scalability challenges on resource management systems (or workload 

managers), especially the resource allocation scheduler and the state manage-ment 

component. The majority of the state-of-the-art workload managers (e.g. Slurm [30], PBS 

[84], Condor [80] [83], Cobalt [114] and SGE [85]) for large-scale HPC machines have a 

centralized architecture where a controller manages all the compute daemons and is in 

charge of the activities, such as node partitioning, state management, resource allocation, 

job scheduling, and job launching. For example, the centralized controller of Slurm is 

comprised of three subcomponents: the Node Manager monitors the state of nodes; the 

Partition Man-ager allocates resources to jobs for scheduling and launching; and the Job 

Manager manages the job state. This architecture may still work at moderate scales for 

large-scale HPC workloads, given the facts that, at to-day’s scales, the number of jobs is 

small and each job is large and has long duration. Therefore, there are not many scheduling 

decisions to be made, nor is there much system state data to be maintained.  

However, the exascale machines will have system sizes one or two orders of 

magnitude larger, and be used to run many more numbers of jobs with wider distributions 

of job sizes and durations. These tremendous growths in both the job amount and 

granularity will easily overwhelm the centralized controller. The throughput metric makes 

sense, as so many small-scale short-duration jobs make the scheduler a bottleneck. The 

Slurm production-level workload manager claimed a maximum throughput of 500 jobs/sec 

[79]; the latest version (13.0) of the PBS Professional workload manager reported 

throughput of 100 jobs/sec on 100K nodes [153]. However, future exascale machines, 
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along with a miscellaneous collection of applications, will demand orders of magnitudes 

higher job-delivering rates to make full utilization of the machine. The scalability problem 

is growing even though the upcoming systems have relatively small numbers of nodes, 

such as Sierra at LLNL(5K-nodes with GPUs) [191] and Summit at ORNL(3.4K-nodes) 

[192], because the intra-node parallelism is increased by 100X to 1000X requiring much 

finer re-source allocation units than those of the current super-computers. As exascale 

machines will likely not follow IBM’s “many-thin-node” pattern, a minimum scheduled 

resource allocation of 64 nodes is perhaps not a good future choice due to the large intra-

node parallelism. The allocation unit should be fine-grained, down to a node, a NUMA 

domain, a core, even a hardware thread, requiring distributed resource allocation de-signs. 

This is also where a distributed scheduling sys-tem makes sense. In addition, the 

centralized system state management will become a bottleneck for fast queries and updates 

of the job and resource metadata, due to limited processing capacity and memory footprint 

on a single node. These challenges drive us to design and implement Slurm++, the next 

generation distributed workload manager that can maintain high job-scheduling rate and 

system state accessing speed.  

In this chapter, we propose a distributed partition-based architecture for the HPC 

resource management [234]. We devise two resource stealing techniques to achieve 

dynamic resource balancing within all the partitions, namely a random one and an 

improved weakly consistent monitoring-based one that aims to address the resource 

deadlock problem occurring in distributed HPC job launch for big jobs and under high 

system utilization. We develop the Slurm++ workload manager that implements the 

architecture and techniques. Slurm++ extends Slurm by applying multiple controllers to 
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allocate job resources, schedule and launch jobs. Each controller manages a partition of 

compute daemons and balances resources among all the partitions through resource 

stealing techniques when allocating job resources. Slurm++ utilizes ZHT [51], a distributed 

key-value store (KVS) [27], to keep the resource state information in a scalable way. This 

chapter makes the following contributions: 

 Propose a distributed architecture for exascale HPC resource management. 

 Devise two resource stealing techniques to achieve dynamic resource 

balancing, namely a random one and a weakly consistent monitoring-based one. 

 Develop both Slurm++ real resource management system and the SimSlurm++ 

simulator that implement the distributed architecture and techniques. 

 Evaluate Slurm++ by comparing with Slurm up to 500-nodes with micro-

benchmarks, workloads from real application traces, as well as real MPI 

applications, and through SimSlurm++ up to 1 million nodes. 

6.2  Distributed Architecture for Exascale HPC Resource Management 

6.2.1 Partition-based Distributed Architecture. As we have motivated that a 

centralized workload manager does not scale to extreme-scales for all the applications, we 

propose a partition-based distributed architecture of the Slurm++ workload manager, as 

shown in Figure 84. 

Slurm++ employs multiple controllers with each one managing a partition of 

compute daemons (cd), as opposed to using a single controller to manage all the cd as 

Slurm does. Here, a cd is a process running on a physical node that can have multiple 

concurrent cd. By default, each node is configured with one cd. The partition size (the 

number of cd a controller manages) is configurable, and can vary according to needs. For 
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example, for large-scale HPC jobs that require many nodes, we can configure each 

controller to manage thousands of cd, so that the jobs are likely to be satisfied within the 

partition; for MTC applications where a task usually requires one node, or one core of a 

node, we may have a 1:1 mapping between the controller and the cd. We can even have 

heterogeneous partition sizes to support workloads with wide job-size distributions, and 

with special requirements, such as only run on the partitions that have GPUs, InfiniBand, 

or SSDs. The users can submit jobs to any controller. 

cd cd cd

…

Controller and 

KVS server

Controller and 

KVS Server

cd cd cd

…

Controller and 

KVS Server

cd cd cd

…

…Fully-Connected

Client Client Client

 

Figure 84. Slurm++ distributed workload manager 

Note that Slurm also divides the system into multiple partitions. However, this is 

different from the partition management of Slurm++. Firstly, Slurm layers the partitions 

hierarchically up to the centralized controller, while Slurm++ is distributed by employing 

one dedicated controller to manage a partition independently from other partitions. The 

hierarchical layout leads to longer latency as a job may need to go through multiple hops. 

What’s more, the root controller is still a central piece with limited capacity. Secondly, in 

Slurm, when a job is scheduled on one partition, it can only get allocation within that 

partition. This results in long job queueing time in over-loaded partitions, and poor 

utilization if loads are not balanced among the partitions. 
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6.2.2 Key-Value Store for State Management. Another important component of 

Slurm++ is the distributed key-value store (KVS), the ZHT zero hop distributed KVS in 

our case. Slurm++ deploys ZHT on the machine to manage the entire resource metadata 

and system state information in a scalable way. The job and resource metadata are archived 

as (key, value) pairs that are stored in ZHT servers by hashing the key on all the ZHT 

servers through a modular function that enables load balancing. ZHT is fully connected, 

and each ZHT client has a global membership list of all the ZHT servers.  By hashing the 

key, a ZHT client can know and talk directly (zero-hop) to the exact server that manages 

the data an operation (e.g. lookup, insert) is working on. ZHT is scalable, and has been 

evaluated on the IBM BG/P supercomputer in ANL up to 32K cores. ZHT showed extreme 

throughput as high as 18M operations/sec [51]. One typical configuration is to co-locate a 

ZHT server with a controller forming 1:1 mapping, such as shown in Figure 84. Each 

controller is initialized as a ZHT client, and uses the simple client APIs (e.g. lookup, insert) 

to communicate with ZHT servers to query and modify the job and resource metadata 

information (some examples are listed in Table 11) transparently. In this way, the 

controllers do not need to communicate explicitly with each other.  

Table 11. Job and Resource Data Stored in DKVS 

Key Value Description 

controller id free node list Free nodes in a partition 

job id 
original controller 

id 

The original controller that is responsible for a 

submitted job 

job id + original controller id 
Involved controller 

list 
The controllers that participate in launching a job 

job id + original controller id 

+ involved controller id 

participated node 

list 

The nodes in each partition that are involved in 

launching a job 
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In addition, Slurm++ is fault tolerant by relying on ZHT, which already 

implemented failure/recovery, replication and consistency models, to maintain reliable 

distributed service. As the controllers are stateless, when a controller fails, the resource is 

still available to others through the replication and resource stealing protocols, no reboot 

is required. The controllers only keep weakly consistent temporary data comparing with 

that stored in ZHT. This eases the development and deployment. 

6.3 Dynamic Resource Balancing 

Resource balancing means to find the required number of free nodes in all the 

partitions fast to satisfy a job. It is trivial in the centralized architecture, as the controller 

has a global view of the system state. However, for the distributed architecture, resource 

balancing is a critical goal, and should be achieved dynamically in a distributed fashion by 

all the controllers during runtime, in order to maintain an overall high system utilization. 

Inspired by the work stealing technique [52] that achieves distributed dynamic load 

balancing, we introduce the resource stealing concept [235] to achieve distributed dynamic 

resource balancing.  Resource stealing refers to a set of techniques of stealing free nodes 

from other partitions if the local one cannot satisfy a job in terms of job size. When a 

controller allocates nodes for a job, it first checks the local free nodes. If there are enough 

free nodes, then the controller directly allocates the nodes; otherwise, it allocates whatever 

resources the partition has, and queries ZHT for other partitions (neighbors) to steal 

resources. For systems with heterogeneous interconnections that have different latencies 

among compute nodes, we can improve resource stealing by distinguishing the “near-by” 

and “distant” neighbors. The technique always tries to steal resources from the “nearby” 
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partitions first, and will turn to the “distant” ones if necessary. For ex-ample, in a Torus 

network, we can set an upper bound of number of hops between two controllers. If the hop 

count is within the upper bound, the two partitions are considered “nearby”; otherwise, 

they are “distant”. In a fat-tree network, “nearby” partitions can be the sibling controllers 

with the same parent. 

6.3.1 Resource Conflict. Resource conflict happens when different controllers try to 

modify the same resource. By querying ZHT, different controllers may have the same view 

of a specific resource of a partition. They may need to modify the resource concurrently 

based on the current view, either to shrink by allocating nodes, or to expand by releasing 

nodes. As the controllers have no knowledge about each other’s modification, the resource 

conflict would happen. 

One naive way to solve the resource conflict problem is to add a global lock for 

each queried (key, value) record in ZHT. This approach is not scalable considering the 

tremendously large volume of data record stored. Another scalable approach is to 

implement an atomic operation in ZHT that can tell the controllers whether the resource 

modification succeeds or not. Using the traditional compare and swap atomic instruction 

[144], we implement a specific compare and swap algorithm, shown as Algorithm 4 in 

Figure 85, which can address the resource conflict problem. 

When a controller attempts to modify the resource of a partition, it first looks up 

the current resource (see_value) of that partition. Then, it updates the resource to an 

attempted new resource value (new_value), and sends a compare and swap request to ZHT. 

The ZHT server executes the Algorithm 4 by first checking whether the current resource 

value has been changed (lines 1 – 2). If hasn’t, then the serve updates the resource value to 
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the new value and returns success to the controller (lines 3 – 4); otherwise, the server would 

return failure, along with the current resource value (curent_value) to the client (line 6). 

The client then uses the curent_value as the seen_value in the next round. This procedure 

continues repeatedly until the modification succeeded. We have implemented the compare 

and swap operation in ZHT. ZHT applies the “epoll” event driven model to process 

requests sequentially in each server. The atomic operation, along with the serialization of 

the requests, guarantees that at any time, there is only one controller modifying the resource 

of a partition. 

 

Figure 85. Algorithm of compare and swap 

6.3.2 Random Resource Stealing Technique. The simplest resource stealing technique 

does random stealing, which is given as Algorithm 5 in Figure 86. 

 As long as a job has not been allocated enough nodes, the controller randomly 

selects a partition and tries to steal free nodes from it (lines 4 – 16). Every time when the 

selected controller has no available nodes, the launching controller sleeps some time 

(sleep_length) and retries. We implemented an exponential back-off technique for the 

sleep_length to increase the chance of success (line 25). If the controller experiences 

several (num_retry) failures in a row because the selected controller has no free nodes, it 

will release the resources it has already allocated to avoid the resource deadlock problem 
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(lines 20 – 23), which happens when two controllers hold part of the resource for each job, 

but neither can be satisfied. 

 

Figure 86. Algorithm of random resource stealing 

6.3.2.2 Limitation Analysis through Simulation 

We implemented the random resource stealing technique in Slurm++ v0. The 

technique works fine for jobs whose sizes are small. Besides, the free resources could be 

balanced during runtime due to the distributed and random features. However, for big jobs, 

it may take forever to allocate enough nodes. Another case the random algorithm will have 

poor performance is under high system utilization where the system has few free nodes. 

To illustrate the scalability issues of the random technique, we consider a simplified 

case in which the system has only one job. We range the job size to be 25%, 50%, 75% 



 

 

202 

and 100% of the system scale, meaning that if the system has n nodes, the job size is 0.25n, 

0.5n, 0.75n, and n, respectively. We also range the utilization to be 0%, 25%, 50%, and 

75%, meaning that 0%, 25%, 50%, 75% of all the nodes are occupied, respectively. We 

simulate the random stealing scenario and count the number of stealing operations needed 

to satisfy a job for different combinations of job size and utilization. The results are shown 

in Figure 87.  

The notation (j,u) means the job size ratio and the utilization. We set the partition 

size to be 1024 and range the number of partitions from 1 to 1024. We see that the number 

of stealing operations is increasing linearly as the system scale increases. This does not 

mean the random technique is scalable, as there is only one job. We also observe that the 

stealing operation count is increasing exponential with both the job size and utilization. 

This justifies the scalability problems of the random technique for big jobs and under high 

system utilization. At 1M-node scale, a full-scale job needs about 8000 stealing operations 

to satisfy the allocation. Things could be much worse when there are multiple big jobs 

competing for resources. 

 

Figure 87. Stealing operation count for different job sizes and utilizations 
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6.3.2.3 Limitation Analysis through Analytical Model 

To understand the random technique in depth, we devise a mathematical model that 

analyzes the probability of satisfying the allocations for one, two, and more full-scale jobs 

with distinct large amounts of stealing operations. 

Assume that the job needs 𝑘 steps of stealing operations to satisfy only one full-

scale job, we show that the possibility of taking 𝜆𝑘  steps to satisfy 𝜆  full-scale jobs 

concurrently is negligible. For the case of 2 full-scale jobs competing to get a full allocation 

individually, 𝑝𝑘 represents the possibility that one job has got full allocation after 𝑘 steps. 

Without losing generality, we assume that job 1 gets the full-allocation after 𝑘 steps. This 

means job 2 must fail at each step and at each step, job 2 would try to steal from the 

partitions whose nodes have been stolen by job 1. Let 𝑛 be the number of all nodes, and 

after step 𝑖, job 1 has allocated 𝑐𝑖  compute nodes, in which, 1 ≤ 𝑖 ≤ 𝑘 and 1 ≤ 𝑐𝑖 < 𝑛, 

𝑐𝑖 ≤ 𝑐𝑖+1, 𝑐𝑘 = 𝑛. As in random resource stealing, all of the compute nodes have the same 

probability to be allocated, therefore, the probability that job 1 gets the full-allocation after 

𝑘 steps and job 2 failed at each step, notated as 𝑝𝑘 =
∏ 𝑐𝑖

𝑘
𝑖=1

𝑛𝑘  . 

Assuming after 𝑚 steps, job 1 starts with an allocation of half of all compute nodes, 

meaning that: 
𝑛

2
≤ 𝑐𝑖 < 𝑛 (𝑚 ≤ 𝑖 < 𝑘), and 1 ≤ 𝑐𝑖 <

𝑛

2
(1 ≤ 𝑖 < 𝑚). Therefore: 

𝑝𝑘 ≅
∏ 𝑐𝑖

𝑚
𝑖=1

𝑛𝑚 ≅
(

𝑛

2
)

𝑚

𝑛𝑚 =
1

2𝑚 . 

As our simulations show that the relationship between 𝑚 and 𝑘 is 𝑚 ≅
𝑘

10
 ,  at large 

scales when the number of partition and the number of all compute nodes 𝑛 are big, 𝑘 is 

large (for example, at 1M nodes’ scale with 1024 partitions, 𝑘 ≅ 8000). Therefore, 𝑚 is 
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large, indicating that 𝑝𝑘 ≅ 0. This means it is almost impossible to satisfy one full-scale 

job after 𝑘  steps if two full-scale jobs compete for resources. Therefore, there is little 

chance that the two jobs can be satisfied after 2𝑘 steps.  

Similarly, we can prove that if there are 𝜆 full-scale jobs competing for resources, 

there is little chance that they can be satisfied after 𝜆𝑘 steps. Therefore, it is better to 

allocate resources sequentially that can satisfy 𝜆 full-scale jobs after 𝜆𝑘 steps. 

6.3.3 Weakly Consistent Monitoring-based Resource Stealing Technique. This 

section proposes a weakly consistent monitoring-based resource stealing technique that has 

the potential to resolve the problems of random stealing. The proposed technique relies on 

a centralized monitoring service and each controller conducts two phases of tuning: macro-

tuning phase, and micro-tuning phase. 

6.3.3.1 Monitoring Service 

One of the reasons that the random technique is not scalable is because the 

controllers have no global view (even weakly consistent) of the system state. One 

alternative to enable all of the controllers to have global view is to alter the partition-based 

architecture so that the controllers know all the compute daemons. Then, there will be 

merely one (key, value) record of the global resource stored in a specific ZHT server. This 

method of strongly consistent global view is not scalable because a single ZHT server that 

stores the global resource (key, value) pair processes all the frequent KVS operations on 

the resources. Hence, we apply a monitoring service (MS) to query the free resources of 

all the partitions periodically described as Algorithm 6 in Figure 88. 

In each round, the MS looks up the free resource of each partition in sequence (lines 

4 – 10), and then gathers them together as global resource information and put the global 
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information as one (key, value) record in a ZHT server (line 12). This (key, value) record 

offers a global view of resource states for all the controllers. This is different from the 

alternative mentioned above in that the frequency of querying this global (key, value) 

record is much less. Though the MS is centralized and queries all the partitions, we believe 

that it should not be a bottleneck. Because the number of partitions for large-scale HPC 

applications is not that many (i.e. 1K), and with the right granularity of frequency 

(sleep_length) of updating and gathering the global resource information, the MS should 

be scalable. The MS could be implemented either as a standalone process on one compute 

node or as a separate thread in a controller. In Slurm++, the MS is implemented as the latter 

case. 

 

Figure 88. Algorithm of the monitoring service 

6.3.3.2 Two-Phase Tuning 

Each controller would conduct a two-phase tuning procedure of updating resources 

in the aid of allocating resources to jobs. 

(1) Phase 1: Pulling-based Macro-Tuning 

As the MS offers a global view of the system free nodes, each controller will 

periodically pull the global resource information by a ZHT lookup operation. In each round 
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when the controller gets the global resources, it organizes the resources of different 

partitions as a binary-search tree (BST). Each data item of the BST contains the controller 

id (char*) and the number of free nodes (int) of a partition. The data items are organized as 

a BST based on the number of free nodes of all partitions. The BST guides a controller to 

steal resources from the most suitable partitions. The logic of is given as Algorithm 7 in 

Figure 89. 

We call this phase macro-tuning as it evicts the cached free resource information 

of all partitions in BST (line 6), and updates the BST with the new information (lines 7 - 

9). This update is globally consistent for all the controllers as the resource information is 

pulled from a single place (the record is inserted by the MS) by all the controllers (line 3). 

Each controller pulls the global resource before it is too obsolete to offer valuable 

information. 

 

Figure 89. Algorithm of the pulling-based macro-tuning 

(2) Phase 2: Weakly Consistent Micro-Tuning 

The controller uses the BST as a guide to choose the most suitable partitions to steal 

resources when allocating nodes for a job. We implement the following operations for the 

BST structure to best serve the job resource allocation: 
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 BST_insert(BST*, char*, int): insert a data item to the BST data structure 

specifying the number of free nodes of a partition. This operation has already 

been used in Algorithm 7 (line 8). 

 BST_delete(BST*, char*, int): delete a data item from the BST data structure. 

 BST_delete_all(BST*): evict all the data items from the BST data structure for 

all the partitions. This operation has already been used in Algorithm 7 (line 6).  

 BST_search_best(BST*, int): for a given number of required compute nodes, 

this operation searches for the most suitable partition to steal free nodes. There 

are 3 cases: (1) multiple partitions have enough free nodes; (2) only one 

partition has enough free nodes; (3) none of the partitions have enough free 

nodes. For case (1), it will choose the partition that has the minimum number 

of free nodes among all the partitions that have enough free nodes. For case (2), 

it will choose the exact partition that has enough free nodes. For case (3), it will 

choose the partition that has the maximum number of free nodes. 

 BST_search_exact(BST*, char*): given a specific controller id, this operation 

searches the resource information of that partition. 

Algorithm 8 depicted in Figure 90 gives the complete resource allocation 

procedure. When a job is submitted, a controller first tries to allocate free nodes in its 

partition (line 2). As long as the allocation is not satisfied, the controller searches for the 

most suitable partition to steal resources from the BST (lines 23, 24, 27). The data of that 

partition is then deleted (line 25) to prevent different job allocations competing for the 

resources from the same partition in a controller. The controller then queries the actual free 

resource of that partition via a ZHT lookup operation (line 4). After that, the controller tries 
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to allocate free nodes for the job through a ZHT compare and swap operation (line 5). If 

the allocation succeeds, the controller will insert the updated free node list of that partition 

to the local BST (lines 6 – 16). Otherwise, if the controller experiences several failures in 

a row, it releases all the allocated free nodes, waits some time, and tries the resource 

allocation procedure again (lines 17 – 20). 

 

Figure 90. Algorithm of micro-tuning resource allocation 

We call the procedure the micro tuning phase because only the data of the resource 

of one partition is changed during one attempted stealing. Every controller updates its BST 

individually when allocating resources. As time increases, the controllers would have 

inconsistent view of the free resources of all the partitions. In the meantime, the controller 

is updating the whole BST with the most current resources of all the partitions (Macro-
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tuning phase as Algorithm 6). With both macro tuning and micro tuning, the resource 

stealing technique has the ability to balance the resources among all the partitions 

dynamically, to aggressively allocate the most suitable resources for big jobs, and to find 

the free resources quickly under high system utilization. 

Going back to the problem of finding the number of stealing operations required 

satisfying one, two, and more concurrent full-scale jobs. It is straightforward that one full-

scale job needs only 𝑛  stealing operations, where 𝑛  is the number of partitions. For 𝑘 

concurrent full-scale jobs, assuming all the controllers have the same pace of processing 

speed, it will take Θ(𝑘𝑛) stealing operations to satisfy all the jobs. This is much better than 

the random resource stealing technique. 

6.4 Implementation Details 

This section describes the Slurm production system and the implementation details 

of Slurm++ distributed workload manager. 

6.4.1 Slurm Production System. Slurm is a centralized workload manager for launching 

large-scale HPC workloads on several of the top supercomputers in the world. Slurm has a 

centralized controller (slurmctld) that manages all the compute daemons (slurmd) located 

on the compute nodes. Slurm keeps all the job and resource metadata in global data 

structures in both memory and a centralized file system. 

Upon receiving a job, the slurmctld first looks up the global resource data structure 

to allocate resource for the job. In this paper, we focus on the interactive jobs submitted by 

the “srun” command. All the jobs have the format: srun -N$num_node [-

n$num_process_per_node] [--mpi=pmi2] program parameters, for example srun -N2 

sleep 10 is a job that requires 2 nodes to sleep 10 seconds; srun -N10 -n2 --mpi=pmi2 pi 



 

 

210 

1000000 is an MPICH2 MPI job that requires 2 nodes with each one using 2 processes to 

calculate the value of pi with 1M points. Once a job gets its allocation, it can be launched 

via a tree-based network rooted at rank-0 slurmd by “srun”. When a job is done, the “srun” 

notifies the slurmctld to release the resource. In addition, all the slurmds return to slurmctld, 

which then terminates the job on all the involved slurmds. The input to Slurm is a 

configuration file read by slurmctld and all the slurmds, which specifies the identities of 

the slurmctld and slurmds so that they can communicate with each other. All the slurmds 

first register by sending a registration message to the slurmctld, and then wait for jobs to 

be executed. 

6.4.2 Slurm++ Workload Manager. We implement the Slurm++ workload manager in 

two steps. In the first step, we develop a simple orphan prototype that implements the 

random resource stealing technique. In the second step, we implement the weakly 

consistent monitoring-based resource stealing technique and enable to run real MPI 

applications. From this point, we distinguish the two implementations as Slurm++ v0 and 

Slurm++ in the two steps, respectively. 

6.4.2.1 Slurm++ v0 implementation  

In Slurm++ v0, we discard the bulk of the slurmctld functionality, and developed a 

lightweight controller that talks to slurmds directly. We moved the standalone “srun” 

command into the controller and modified it to allocate resources and launch jobs as a 

thread in the controller. Different partitions have different configuration files; a controller 

knows which slurmds it manages, and a slurmd knows which controller to talk to.  

Each controller was initialized as a ZHT client, and called the client APIs to query 

and modify the job and resource information. Upon receiving all the slurmds’ registration 
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messages in a partition, the controller inserted the available nodes to ZHT. The controller 

implemented the random resource stealing technique. 

6.4.2.2 Slurm++ implementation 

The Slurm++ v0 implementation broke the communication links among slurmctld, 

srun, and slurmds in Slurm because of the added simplified controller. We managed to 

enable Slurm++ v0 to run micro-benchmark sleep jobs, but it failed to run real MPI 

applications. In Slurm++, we preserve all the communication protocols and components of 

Slurm and majorly modify the code in the slurmctld source file folder. We add the 

initialization as ZHT client in the controller; replace the resource allocation part in Slurm 

with the ZHT KVS interactions and the proposed weakly consistent monitoring-based 

resource stealing technique. The modifications turn into about 5000 lines of code added to 

the Slurm codebase. The Slurm++ source code is made open source on GitHub repository: 

https://github.com/kwangiit/SLURMPP_V2. Slurm++ has several dependencies, such as 

Slurm [30], ZHT [51], and Google Protocol Buffer [95]. 

We examined developing a resource allocation plugin for Slurm to reduce the 

tedious labor of touching and modifying the Slurm code directly. However, this was 

unrealistic as the resource allocation is the core part and has been designed in a centralized 

manner in Slurm. 

6.5  Performance Evaluation 

We evaluate Slurm++ by comparing it with Slurm++ v0 and Slurm. Then, we 

compare Slurm++ with Slurm using workloads from real application traces and real MPI 

applications. All of the systems were run on Kodiak. Furthermore, we explore the 

scalability of Slurm++ through simulations up to millions of nodes on the Fusion machine. 
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6.5.1 Micro-Benchmark Workloads. This section aims to show how the proposed 

resource stealing technique is compared with the random one, and how much performance 

gain achieved by Slurm++ comparing with Slurm.  

We use the following workloads to compared Slurm++ with Slurm++ v0 and 

Slurm: the partition size is set to be 50, a reasonable number to insure a sufficient number 

of controllers. It is the default value of the following experiments, unless specified 

explicitly. At the largest scale of 500 nodes, there are 10 controllers. The workloads include 

the simplest possible NOOP “sleep 0” jobs that require different number of nodes per job. 

The workloads have 3 different distributions of job sizes: all one-node jobs; jobs with sizes 

having uniform distribution that has an average of half partition – 25 (1 to 50), referred to 

half-partition jobs; and jobs with sizes having uniform distribution that has an average of 

full partition – 50 (25 to 75), referred to full-partition jobs. We do weak-scaling 

experiments for all the workloads, and compare the throughputs of all the workload 

managers up to 500 nodes. Then, we focus on Slurm++ and show the speedups between 

Slurm++ and Slurm for the three workloads. 

6.5.1.1 One-node Jobs 

In this workload, each controller runs 50 jobs and all the jobs require only one node. 

The throughput comparison results of Slurm++, Slurm++ v0, and Slurm are shown in 

Figure 91. 

We see that the throughput of Slurm increases to a saturation point (51.6 jobs/sec 

at 250-node scale), and after that experiences a decreasing trend as the system scales up. 

This is because the centralized “slurmctld” has limited processing capacity that is unable 

to allocate resources fast enough to keep up with the increasing numbers of jobs and system 
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scales, leading to longer waiting time of resource allocation when scaling up, even though 

there are enough resources to satisfy all the jobs. The throughputs of both Slurm++ and 

Slurm++ v0 have a linearly increasing trend up to 500 nodes, because more controllers are 

added when scaling up. In addition, Slurm++ performs constantly better than Slurm++ v0 

by about 10%, due to the better resource stealing technique in Slurm++. Within 200-node 

scales, Slurm has the highest throughput because the distributed architecture has overheads, 

such as communications through ZHT. As the scale increases, the overhead is dwarfed by 

the performance gain of multiple controllers. At 500-node scale, Slurm++ can launch jobs 

2.61X faster than Slurm. We believe that the performance gap will be bigger at larger 

scales, given the throughput trends. 

 

Figure 91. Throughput comparison with one-node jobs 

6.5.1.2 Half-partition jobs 

In this set of experiments, each controller runs 50 jobs that have an uniform 

distribution of jobs sizes with an average of half partition – 25 (1 to 50). Figure 92 

illustrates the throughput comparison results with this workload. From Figure 92, we see 

that like the one-node job workload, the throughput of Slurm first ramps up to a saturation 

point (7 jobs/sec at 250 nodes) and then decreases when scaling up.  Slurm has the lowest 
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throughput at all scales. Again, for both Slurm++ and Slurm++ V0, the throughputs are 

increasing linearly up to 500 nodes, except that Slurm++ has a lower throughput number 

than Slurm++ at all scales. 

 

Figure 92. Throughput comparison with half-partition jobs 

This does not mean the proposed resource stealing technique in Slurm++ performs 

worse than the random one in Slurm++ v0. This is because the implementation of the 

Slurm++ v0 replaced the complex “slurmctld” by a simplified lightweight controller, which 

reduced a large portion of communication messages when launching a job, such as the 

returning messages to the slurmctld from all the slurmds after a job is done. For this 

workload, the reduced messages dominate the communication overheads instead of the 

resource stealing technique. The resource stealing operation is not triggered too often 

because all of the jobs require not more than a full partition of nodes. This will be validated 

in the full-partition job workload results. Still, at 500 nodes, Slurm++ launches jobs 8.5X 

faster than Slurm; and the speedup will be bigger at larger scales. 

6.5.1.3 Full-partition jobs 

In this workload, each controller runs 20 jobs that have an uniform distribution of 

jobs sizes with an average of full partition – 50 (25 to 75). Figure 93 depicts the throughput 
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comparison results of the three systems with this workload. Not surprisingly, Slurm 

saturates after 400 nodes, with a maximum throughput of 4.3 jobs/sec at 500 nodes. Also, 

Slurm has the lowest throughput at all scales. On the other hand, both Slurm++ and 

Slurm++ v0 are able to keep a linear throughput increasing tread up to 500 nodes, and will 

keep this trend at larger scales. Furthermore, Slurm++ launches jobs 2.25X faster than 

Slurm++ v0 at 500-node scale. This validates the analysis of the performance difference 

between Slurm++ and Slurm++ v0 in section 6.5.1.2, and indicates that the proposed 

resource stealing technique performs better than the random one, especially for big jobs. 

At 500 nodes, Slurm++ is able to launch jobs 10.2X faster than Slurm; and again, the trends 

show that the speedup will be bigger at larger scales. 

 

Figure 93. Throughput comparison with full-partition jobs 

6.5.1.4 Speedup Summary 

In order to understand the impacts of different job sizes on the performance of job 

launching, we summarize the throughput speedups between Slurm++ and Slurm of the 

three workloads with different resource stealing intensities in Figure 94. 

Figure 94 shows that for all the workloads at all scales (except for the one-node job 

workload within 200 nodes), Slurm++ is able to launch jobs faster than Slurm. Besides, the 
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performance slowdown (9.3X from one-node jobs to full-partition jobs) of Slurm due to 

increasingly large jobs is much more severe than that (2.3X from one-node jobs to full-

partition jobs) of Slurm++. This highlights the better scalability of Slurm++. In addition, 

the speedup is increasing as the scale increases for all the workloads, indicating that at 

larger scales, Slurm++ would outperform Slurm even more. Another important fact is that 

as the job size increases, the speedup is also increasing. This trend proves that the proposed 

resource stealing technique can overcome the problems of the random method, and has 

great scalability for big jobs. 

 

Figure 94. Speedup summary between Slurm++ and Slurm 

6.5.2 Workloads from Application Trace. The micro-benchmark jobs are relatively 

small, even the largest-size jobs in the full-partition workload require only 75 nodes. To 

further show how Slurm++ performs under workloads that have a mixture distribution of 

job sizes including full-scale jobs, we run both Slurm++ and Slurm using workloads 

obtained from the real parallel application trace, whose job size duration is shown in Figure 

83. 

At each scale, we generate a workload that include all the 68,936 jobs and preserves 

the job size distribution of the original workload trace by applying the job size percentage 
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of the machine size of each job. For example, in the original workload trace, if a job 

requires k nodes, then at the scale of n nodes of our experiments, that job will require 

k/40960*n where 40960 is the number of nodes of the BG/P machine. Besides, we reduce 

the job duration of each job by 1M times to save the running time of the whole experiments. 

More importantly, this is to mimic the scheduling challenges of extreme-scale systems 

through a 500-node scale. As we do not have exascale machines yet, we make the 

scheduling granularity much finer. We believe the scheduling challenges at exascale with 

the current runtime could only be worse than that at 500-node scale with runtime of 1M 

times shorter. Because the job runtime should have decreasing trends as the nodes keep 

becoming more powerful. In the end, all the jobs have sub-second lengths. However, Slurm 

is only able to handle 10K jobs (crash beyond 10K jobs). Therefore, at each scale, we only 

run the first 10K jobs of the total 68,936 jobs.  

Figure 95 shows the performance comparison results between Slurm++ and Slurm 

with this workload. The experiments are strong scaling in terms of number of jobs and job 

length, and weak scaling in terms of job size. We see that as the system scales up, the 

throughput of Slurm has a decreasing trend, indicating that Slurm has increasing overheads 

to handle bigger jobs, and is not scalable to handle big and short jobs. On the contrary, the 

throughput of Slurm++ is increasing almost linearly with respect to the system scale, as 

well as the job sizes, showing the great scalability of Slurm++. At 500-node scale, Slurm++ 

outperforms Slurm by 8X, and this performance gain will be larger at larger scales.  

To understand the scalability of the proposed resource stealing technique, we show 

the average ZHT message count per job of Slurm++ in Figure 95, which presents a linear 

increasing relationship with respect to the system scale. This makes perfect sense as the 
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job size is also increasing linearly as the system scales up. It also confirms our induction 

that the proposed resource stealing technique takes Θ(𝑘𝑛) number of request to satisfy big 

jobs. 

In prior work on evaluating ZHT [51], micro-benchmarks showed ZHT achieving 

more than 1M ops/sec at 1024K-node scale. We see that at 500-node scale, the average 

ZHT message count per job is 51 (or about 510K messages for 10K jobs). Even with this 

workload achieving 36.9 jobs/sec at 500-node scale, ZHT generates throughput of 1882 

ops/sec, which is far from being a bottleneck for the workload and scale tested. 

 

Figure 95. Comparisons with workloads from real application traces 

6.5.3 Real MPI Applications. The ultimate goal is to enable Slurm++ to support the 

running of real scientific HPC applications that use MPI for synchronization and 

communication. PETSc library [152] is a portable, extensible toolkit for scientific numeric 

computation, developed by ANL. The library offers scientific programmers simple 

interfaces to operate on numeric vectors and matrices, and encapsulates the MPI 

communication layer to allow transparent and automatic parallelism without programmers’ 
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laborious efforts. One example of the scientific problems is to solve the complex partial 

differential equations (PDE). 

We studied the PETSc library and extracted 1000 PETSc jobs with different 

scientific applications, ranging from Physics, Chemistry, to Mathematics that include the 

matrix multiplication and the linear solutions of the equation Ax=b, which use MPI 

underneath for multi-processor scalable computing. We compile all the application 

programs, and use both Slurm++ and Slurm to launch and execute the jobs. We set the job 

size distribution the same as that shown in Figure 83, and each node forks 2 processes. 

Figure 96 shows the performance comparison between Slurm++ and Slurm with the real 

MPI applications. 

 

Figure 96. Comparisons with real MPI applications  

From Figure 96, we see that, within 300 nodes, Slurm has a lower average 

scheduling latency than Slurm++. This is because at small scales for Slurm++, the 

overheads of the distributed resource state and scheduling are relatively big comparing with 

the performance gain of distributed multiple schedulers. However, as the system scale 
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latency than Slurm, and the difference is getting bigger at larger scales. At 500 nodes, 

Slurm has average scheduling latency 3.8X longer than Slurm++, and the gap will increase 

at even larger scales. The trend indicates that Slurm++ is much more scalable towards 

larger scales for real scientific applications. This attributes to the partition-based distributed 

architecture and the proposed resource stealing technique. 

6.5.4 Exploration of Different Partition Sizes of MTC. This subsection explores the 

effects of different partition sizes on the performance of Slurm++. We focus on the NOOP 

“sleep 0” MTC workloads that all the jobs require 1 node. We do weak-scaling experiments 

launching 100 jobs per node; at 500 nodes, there are 50K jobs. We vary the partition sizes 

to be 1, 4, 16, 64 and 100, and show the throughput results in Figure 97. We see that as the 

partition size increases, the throughput decreases. Slurm++ gets the best performance when 

partition size is 1, meaning a 1:1 mapping between the controller and the slurmd. At 500 

node-scale with 1:1 mapping, Slurm++ achieves throughput as high as 3509 jobs/sec, and 

the linearly increasing trend will likely remain at larger scales. The reason that bigger 

partition size performs worse is that the bigger partition size leads to bigger (key, value) 

record size in ZHT, and results in a longer communication time per ZHT operation. 

 

Figure 97. Performances of different partition sizes with MTC workloads 
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Therefore, for MTC application, we conclude that the partition size should be set 

close to the average job size with a uniform size distribution. For a workload that has a 

large distribution of job sizes, it is better to configure heterogeneous partition sizes with a 

few large partition sizes to handle big jobs, and a lot more small partition sizes for other 

jobs.  

6.6 Exploring Scalability through the SimSlurm++ Simulator 

We have shown that Slurm++ is able to outperform Slurm by 10.2X regarding job 

throughput and by 3.8X in terms of average scheduling latency up to 500 nodes. This 

section explores the scalability of the proposed architecture and the resource stealing 

techniques towards extreme-scales via the SimSlurm++ simulator.  

6.6.1 SimSlurm++ Overview. SimSlurm++ is a sequential discrete event simulator 

(DES) [119] that was built on top of PeerSim [49], a lightweight and scalable peer-to-peer 

simulator that offers the framework and functionality of simulating distributed systems, 

developed in Java. SimSlurm++ simulates the exact behavior of the Slurm++ workload 

manager. All the activities in the system are modeled as events that are tagged with 

occurrence times, and are sorted chronologically in a global event queue. At each iteration, 

the simulation engine fetches the first event, executes the corresponding actions, and may 

insert the following events in the queue. The simulation terminates when the queue is 

empty. 

The simulator consists of many simulated nodes (a node is an object instance). 

Some nodes are controlling nodes that simulate controllers and ZHT servers with 1:1 

mapping; while others are computing nodes that simulate slurmds. All the nodes are 

identified with consecutive integers, ranging from 1 to the number of nodes. The ZHT 
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server we simulated has an in-memory hash table data structure that keeps all the (key, 

value) pairs, and can process 3 requests (lookup, insert, compare and swap) to the hash 

table. We implement the proposed resource stealing technique in SimSlurm++. The 

connectives among all the nodes are modeled as the same as those in Slurm++: a controller 

manages a partition of slurmds, and a slurmd has a dedicated controller to talk to.  

The input to SimSlurm++ is a configuration file that specifies the parameters, such 

as the simulation scale (number of nodes), the simulation network environment (e.g. 

network speed, latency, etc.), the partition size, the workload file, etc. The parameters are 

set based on the values of running Slurm++ on the Kodiak machine. We run SimSlurm++ 

on the “fusion” machine. SimSlurm++ is single-threaded, and at 64K nodes, it requires 

30GB memory and takes 5 hours. 

6.6.2 Validation of the SimSlurm++ Simulator. Before using SimSlurm++ to explore 

the scalability of Slurm++, we validate SimSlurm++ against Slurm++ to make sure it is 

accurate to gain valuable insights. The validation is conducted up to 500 nodes using the 

same configurations and workloads as in section 6.5.2. Figure 98 depicts the validation 

results. 

 

Figure 98. Validation of SimSlurm++ againt Slurm++ 
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We label the normalized difference in percentage in the figure, which is calculated 

as: Math.abs(Slurm++ throughput – SimSlurm++ throughput) / Slurm++ throughput. 

Smaller difference percentage indicates a more accurate simulation. We see that the 

differences are small at all scales, with an average of 4.8% and a maximum of 11.48% (at 

100 nodes). We believe the relatively small differences demonstrate that SimSlurm++ is 

accurate enough to produce convincible results. 

6.6.3  Exploring the Random Resource Stealing. We explore the scalability of the 

random resource stealing technique with both the 1024:1 HPC and 1:1 MTC 

configurations, up to millions of nodes. 

6.6.3.1 SimSlurm++ HPC Configuration (1024:1) 

We evaluate SimSlurm++ with HPC orientation of 1024:1 mapping between 

controller and slurmd. The workload used follows the same distribution as in section 6.5.2. 

We run experiments up to 64K nodes. Figure 99 shows the results of SimSlurm++ with 

HPC configuration.  

 

Figure 99. SimSlurm++ (1024:1) latency and ZHT messages 
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partitions and the average job size is bigger). At 64K-node scale, the average scheduling 

latency increases to 588ms from 6ms at 1K nodes, which is 1.5X of the average job length 

(i.e. 429ms). These results show the scalability problem of the random resource stealing 

technique for increasingly large jobs and more partitions. The increasing of average 

scheduling latency is due to the longer waiting time needed to get allocation at larger scales. 

We also show the average ZHT message count in Figure 99. The average message 

count is increasing with the same trend as that of the average scheduling latency, from 4 

ZHT messages at 1K nodes to 455 ZHT messages at 64K nodes. The increased messages 

are mainly lookup messages that are involved in the resource stealing procedure to find 

available resources, especially for the full-scale jobs. The bigger a job is, the longer it takes 

to find enough resources. This also exposes the scalability problems of the random resource 

stealing algorithm. 

6.6.3.2 SimSlurm++ MTC Configuration (1:1) 

The random resource stealing technique is supposed to achieve good performance 

for small jobs. We validate this through SimSlurm++ with the MTC configuration of 1:1 

mapping up to millions of nodes. The workload we used is micro-benchmark: each 

controller launches 10 “sleep 0” jobs, and each job requires 1 or 2 nodes randomly. 1-node 

jobs are processed locally, while 2-node jobs need to steal resources from other controllers. 

This workload limits the jobs to small MTC jobs, and at the meanwhile preserves the 

overheads of stealing resources among controllers.  

Figure 100 shows the results of SimSlurm++ with MTC configuration. We see that 

the throughput is increasing linearly with the system scale. At 1M-node scale with MTC 

configuration, SimSlurm++ achieves throughput as high as 1.75M jobs/sec, which is very 
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promising. At the same time, the average scheduling latency increases trivially from 4-

node scale (233ms) to 1M-node scale (329ms), and keeps within half-second bound. These 

numbers satisfy the requirements of high throughput and low latency of next-generation 

resource management systems towards exascale computing with MTC workloads. 

 

Figure 100. SimSlurm++ (1:1) throughput and latency 
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Figure 101. SimSlurm++ (1:1) ZHT message count 
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6.6.4 Exploring the Weakly Consistent Monitoring-based Resource Stealing. We 

also explore the scalability of the weakly consistent monitoring-based resource stealing 

technique through SimSlurm++ with the 1024:1 HPC configuration. The workloads used 

are the same as those in section 6.6.3.1: 10K jobs that have the same size duration as shown 

in section 6.5.2 at all scales. Figure 102 shows the simulation results of average scheduling 

latency per job and average ZHT message per job up to 65536 nodes (64 partitions).  

 

Figure 102. Simulation results, partition size = 1024 
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technique scales up much better than the random one, and has quite low overheads 

considering the extreme scale of the system and job sizes. 

The conclusions we can draw from the simulations are that the distributed 

architecture, along with the proposed resource stealing technique, is scalable towards 

extreme-scales with more partitions and increasingly big jobs.  

6.7 Conclusions and Impact 

Exascale supercomputers require next-generation workload managers to deliver 

jobs with much higher throughput and lower latency for a mixture of applications. We have 

shown that key-value store is a valuable building block to allow scalable system state 

management. With the distributed architectures and scheduling techniques, Slurm++ 

showed performance 10X better than the Slurm production system. Furthermore, 

simulations showed that Slurm++ can launch jobs that have a wide distribution of sizes 

with an average scheduling latency of 130ms, and an average message count of 86 at 64K-

node scale. The distributed architecture, along with the weakly consistent monitoring-

based resource stealing technique, is scalable towards extreme-scales with more partitions 

and increasingly big jobs. 

We expect our work of Slurm++ to have revolutionary impacts on tomorrow’s 

exascale supercomputers in doing scalable HPC resource management and job scheduling. 

The exascale machines are only several years away, and yet we still do not have certain 

answers to how the resource management system software will be architected and designed 

to maintain high performance. It is super urgent and vital to start exploring scalable 

distributed resource management systems to prepare for exascale machines. Without solid 

research in this space, we may be left with exascale machines that can only handle a few 
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extremely large jobs at once for days long. Not even to mention the challenges of 

decreasing mean-time-to-failure and increasing cost of checkpointing, which will likely 

render the exascale machines unusable. Even though the concept of running large-scale 

long-duration HPC applications on supercomputers is inveterate, the ideal of supporting a 

mixture of applications with wide distributions in both job sizes and durations seems 

controversial at present, we believe this will be the case for exascale machines that are 

expected to have billion-way parallelism, given the fact that few applications have the 

ability to scale up to exascale. Without efficiently supporting large numbers of small to 

moderate HPC jobs and MTC workloads, the future of exascale computing is not very 

bright. 

It is maybe immature to jump into the conclusion that “distributing” is the solution 

to address the resource management and scheduling challenges of exascale computing, 

However, Slurm++ is one of the pioneer work that seeks revolutionary and paradigm-

shifting solutions, comparing with the decades-old centralized ones. Slurm++ opens the 

doors to and encourages a wide range of research directions to find scalable non-centralized 

solutions, such as system state management, resource sharing and balancing, resource 

allocation, job queueing, job scheduling, job launching, monitoring. We hope these 

research contributions will become handy upon the advent of exascale machines.  
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CHAPTER 7 

RELATED WORK 

This chapter discusses the related work that covers six areas, namely system 

software taxonomy, fine-grained task scheduling systems, load balancing, data-aware 

scheduling, batch-scheduling RMS, and distributed system simulations. 

7.1  System Software Taxonomy 

Work that is related to the simulation of system software includes an investigation 

of peer-to-peer networks [54], telephony simulations [55], simulations of load monitoring 

[56], and simulation of consistency [57]. However, none of the investigations focused on 

HPC, or combine distributed features of replication, failure/recovery and consistency. The 

survey in [58] investigated six distributed hash tables and categorized them in a taxonomy 

of algorithms; the work focused on the overlay networks. In [59], p2p file sharing services 

were traced and used to build a parameterized model. Another taxonomy was developed 

for grid computing workflows [60]. The taxonomy was used to categorize existing grid 

workflow managers to find their common features and weaknesses. Nevertheless, none of 

these work targeted HPC workloads and system software, and none of them use the 

taxonomy to drive features in a simulation. M. Schwarzkopf et al. [107] proposed a 

taxonomy of resource management systems of clusters. Using the taxonomy, they defined 

three scheduling architectures, and conducted simulations to study the design choices. 

However, the taxonomy only focuses on cluster schedulers, cannot be generalized.  

Examples of the types of system software of interest in HPC are listed in Table 1. 

They include runtime systems (e.g. Charm++ [92], Legion [12], STAPL [14], and HPX 
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[13]); resource management systems (e.g. SLURM [30], Slurm++ [140], and MATRIX 

[23]); the I/O forwarding system, IOFSL [31], which is a scalable, unified I/O forwarding 

framework for HPC systems; the interconnect fabric managers, OpenSM [61], which is an 

InfiniBand subnet manager; and the data aggregation system, MRNet, which is a software 

overlay network that provides multicast and reduction communications for parallel and 

distributed tools. These are the types of system software that will be targeted for design 

explorations with our simulator. 

Distributed key-value stores (KVS) are a building block for extreme-scale system 

software. Dynamo [34] is a highly available and scalable KVS of Amazon. Data is parti-

tioned, distributed and replicated using consistent hashing, and eventual consistency is 

facilitated by object versioning. Voldemort [36] is an open-source implementation of 

Dynamo developed by LinkedIn. Cassandra [35] is a distributed KVS developed by 

Facebook for Inbox Search. ZHT [51] is a zero-hop distributed hash table for managing 

the metadata of future exascale distributed system software. Our simulator is flexible 

enough to be configured to represent each of these key-value stores. 

7.2  Fine-grained Task Scheduling Systems 

Fine-grained task scheduling systems of MTC and cloud computing have also been 

under development for years, such as Falkon [78], Mesos [106], YARN [112], Omega 

[107], Sparrow [81], CloudKon [82]).  

Falkon is a centralized task scheduler with the support of hierarchical scheduling 

for MTC applications, which can scale and perform orders of magnitude better than 

centralized HPC cluster schedulers perform. However, it has problems to scale to even a 

petascale system, and the hierarchical implementation of Falkon suffered from poor load 
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balancing under failures or unpredictable task execution times. Besides, the resource 

provisioner dynamic creations and releases executors on compute node to execute tasks 

under the guidance of a centralize dispatcher, incurring significant overheads of network 

communication and forking and killing processes. 

YARN [112] and Mesos [106] are two frameworks that decouple the resource 

management infrastructure from the task scheduler of the programming model to enable 

efficient resource sharing in general commodity Hadoop clusters for different data-

intensive applications. Both of them apply a centralized resource manager to allocate 

resources to applications. The application master then will be in charge of scheduling tasks 

onto the allocated compute nodes. The difference between them is that Mesos employs an 

application master for one category of applications, while YARN is much finer grained in 

that it uses an application master per application, which, in theory, should be more scalable. 

Although they have improved the scalability and efficiency of the resource sharing in 

Hadoop clusters significantly with the separation, the centralized resource manager is still 

a barrier towards extreme scales or of the support for fine-grained workloads. We have 

compared YARN with MATRIX in scheduling Hadoop workloads, and MATRIX 

outperformed YARN by 1.27X for typical workloads, and by 2.04X for the real application.  

Omega [107] is a cluster scheduling system that employs specific distributed 

schedulers for different applications. Like Slurm++, Omega shares global resource 

information to all the schedulers through a centralized master, and the schedulers cache the 

global information and use an atomic operation to resolve resource conflict on all the 

compute nodes. Unlike Slurm++, Omega does not group the nodes into partitions, each 

scheduler directly talks to potentially large number of compute nodes. Neither does Omega 
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use key-value store to manage the resource and job metadata. Instead, Omega keeps the 

metadata in the centralized master, leading to poor scalability. 

Another research direction aims to improve the Hadoop schedulers. Most of work 

focuses on optimizing the scheduling policies to meet different requirements in a 

centralized task scheduler. The Hadoop default schedulers include the Capacity Scheduler 

(CS) [169], the Fair Scheduler (FS) [170] and the Hadoop On Demand (HOD) Scheduler 

(HS) [171]. Each of them has a different design goal: the CS aims at offering resource 

sharing to multiple tenants with the individual capacity and performance SLA; the FS 

divides resources fairly among job pools to ensure that the jobs get an equal share of 

resources over time; the HS relies on the Torque resource manager to allocate nodes, and 

allows users to easily setup Hadoop by provisioning tasks and HDFS instances on the 

nodes. Rasooli and Down proposed a hybrid scheduling approach [172] that can 

dynamically select the best scheduling algorithm (e.g. FIFO, FS, and COSHH [173]) for 

heterogeneous systems. To optimize fairness and locality, Zaharia et. al proposed a delay 

scheduling algorithm [174] that delays the scheduling of a job for a limited time until highly 

possible to schedule the job to where the data resides. These efforts have limited 

advancement to the scalability because they work within a single scheduler. Some early 

work towards distributed resource management was GRUBER [175], which focused on 

distributed brokering of Grid resources.  

Sparrow [81] is similar to our work of MATRIX in that it implemented distributed 

load balancing for weighted fair shares, and supported the constraint that each task needs 

to be co-resident with input data, for fin-grained sub-second tasks. However, in Sparrow, 

each scheduler is aware of all the compute daemons, this design can cause many resource 
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contentions when the number of tasks are large. What’s more, Sparrow implements 

pushing mechanism with early binding of tasks to workers. Each scheduler probes multiple 

compute nodes and assigns tasks to the least overloaded one. This mechanism suffers long-

tail problem under heterogeneous workloads [96] due to early binding of tasks to worker 

resources. We have compared Sparrow and MATRIX using heterogeneous workloads in 

[82], and MATRIX outperforms Sparrow by 9X. Furthermore, there is an implementation 

barrier with Sparrow as it is developed in Java, which has little support in high-end 

computing systems.   

CloudKon [82] has similar architecture as MATRIX, except that CloudKon focuses 

on the Cloud environment, and relies on the Cloud services, SQS [108] to do distributed 

load balancing, and DynamoDB [34] as the distributed key-value stores to keep task 

metadata. Relying on the Cloud services could facilitate the easier development, at the cost 

of potential performance and control. Furthermore, CloudKon has dependencies on Cloud 

services, which makes its adoption in high-end computing impractical. 

7.3  Load Balancing 

Load balancing strategies can be divided into two broad categories – those for 

applications where new tasks are created and scheduled during execution (i.e. task 

scheduling) and those for iterative applications with persistent load patterns [77]. 

Centralized load balancing has been extensive studied in the past (JSQ [131], least-work-

left [132], SITA [133]), but they all suffered from poor scalability and resilience. 

Distributed Load balancing employs multiple schedulers to spread out 

computational and communication loads evenly across processors of a shared-memory 

parallel machine, or across nodes of a distributed system (e.g. clusters, supercomputers, 
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grids, and clouds), so that no single processor or node is overloaded. Clients are able to 

submit workload to any scheduler, and each scheduler has the choice of executing the tasks 

locally, or forwarding the tasks to another scheduler based on some function it is 

optimizing. Although distributed load balancing is likely a more scalable and resilient 

solution towards extreme scales, there are many challenges that must be addressed (e.g. 

utilization, partitioning). Fully distributed strategies have been proposed, including 

neighborhood averaging scheme (ACWN) [101], [103], [104]. In [104], several distributed 

load balancing strategies are studied, such as Sender/Receiver Initiated Diffusion 

(SID/RID), Gradient Model (GM) and a Hierarchical Balancing Method (HBM). Other 

hierarchical strategies are explored in [103] and [134].  

Work stealing is an efficient distributed load balancing technique that has been used 

at small scales successfully in parallel languages such as Cilk [105], X10 [125], Intel TBB 

[139] and OpenMP, to balance workloads across threads on shared memory parallel 

machines [86] [87]. Theoretical work has proved that a work stealing scheduler can achieve 

execution space, time, and communication bounds all within a constant factor of optimal 

[86]. But the scalability of work stealing has not been well explored on modern large-scale 

systems. In particular, concerns exist that the randomized work stealing can lead to long 

idle times and poor scalability on large-scale clusters [87]. The work done by Diana et. al 

in [87] scaled work stealing to 8K processors using the PGAS programming model and the 

RDMA technique. A hierarchical technique that improved Diana’s work described work 

stealing as retentive work stealing. This technique scaled work stealing to over 150K cores 

by utilizing the persistence principle iteratively to achieve the load balancing of task-based 

applications [135]. However, these techniques considered only load balancing, not data-
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locality. On the contrary, our work optimized both work stealing and data-locality. Besides, 

through simulations, our work shows that work stealing with optimal parameters works 

well at exascale levels with 1-billion cores. 

Charm++ [77] supports centralized, hierarchical and distributed load balancing. It 

has demonstrated that centralized strategies work at scales of thousands of processors for 

NAMD. In [77], the authors present an automatic dynamic hierarchical load balancing 

method for Charm++, which scales up to 16K-cores on a Sun Constellation supercomputer 

for a synthetic benchmark. This paper [137] describes a fully distributed algorithm for load 

balancing that uses partial information about the global state of the system to perform load 

balancing. This algorithm, referred to as GrapevineLB, first conducts global information 

propagation using a lightweight algorithm inspired by epidemic [138] algorithms, and then 

transfers work units using a randomized algorithm. It has scaled the GrapevineLB 

algorithm up to 131,072 cores of Blue Gene/Q supercomputer in the Charm++ framework. 

However, this algorithm doesn’t work well for irregular applications that require dynamic 

load balancing techniques. 

Swift [15] [67] is a parallel programming system for running workflow 

applications. Tasks in Swift may be implemented as external programs, library calls, and 

script fragments in Python, R, or Tcl. Swift uses in-memory functions to compose 

applications, and the Turbine scheduler to schedule tasks. Turbine has a distributed load 

balancer, called ADLB [190], which applies work stealing to achieve load balancing. Swift 

has the ability to execute its dataflow-based programming model over an MPI-based 

runtime, or execute the tasks using the MPI library internally. Swift has been scaled to 

distribute up to 612 million dynamically load balanced tasks per second at scales of up to 
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262,144 cores [176]. Swift works at the programming laungauge level, and this extreme 

scalability would absolutely advance the progress of making MATRIX supporting large-

scale scientific application at extreme-scales. 

7.4  Data-aware Scheduling 

Falkon implemented a data diffusion approach [53] to schedule data-intensive 

workloads. Data diffusion acquires compute and storage resources dynamically, replicates 

data in response to demand, and schedules computations close to data. However, Falkon 

used a centralized index server to store the metadata, as opposed to our distributed key-

value store, which leads to poor scalability.   

Quincy [177] is a flexible framework for scheduling concurrent distributed jobs 

with fine-grain resource sharing. Quincy tries to find optimal solutions of scheduling jobs 

under data-locality and load balancing constraints by mapping the problem to a graph data 

structure. Even though the data-aware motivation of Quincy is similar to our work, it takes 

significant amount of time to find the optimal solution of the graph that combines both load 

balancing and data-aware scheduling. 

Dryad [75] is a general-purpose distributed execution engine for coarse-grained 

data-parallel applications. Dryad is similar with our work in that it supports running of 

applications structured as workflow DAGs. However, like the Hadoop scheduler [118], 

Dryad does centralized scheduling with a centralized metadata management that greedily 

maps tasks to the where the data resides, which is neither fair nor scalable.   

SLAW [122] is a scalable locality-aware adaptive work stealing scheduler that 

supports both work-first and help-first policies [123] adaptively at runtime on a per-task 

basis. Though SLAW aimed to address issues (e.g. locality-obliviousness, fixed task 



 

 

237 

scheduling policy) that limit the scalability of work stealing, it focuses on the core/thread 

level. The technique would unlikely to hold for large-scale distributed systems. 

The other work about data-aware work stealing technique improved data locality 

across different phases of fork/join programs [136]. This work relied on constructing a 

sample pre-schedule of work stealing tree, and the workload execution followed the pre-

schedule. This involved overheads of creating the sample and was not suitable for irregular 

applications. Furthermore, both this work and SLAW focused on the single shared-memory 

environment. 

Another work [124] that did data-aware work stealing is similar to us in that it uses 

both dedicated and share queues. However, it relies on the X10 global address space 

programming model [125] to statically expose the data-locality information and distinguish 

between location-sensitive and location-flexible tasks at beginning. Once the data-locality 

information of a task is defined, it remains unchanged. This is not adaptive to various data-

intensive workloads.  

Another related research direction is scalable metadata management. To optimize 

the metadata management and usage for small files, Machey et al. provided a mechanism 

that utilizes the Hadoop “harballing” compression method to reduce the metadata memory 

footprint [178]. Zhao et al. presented a metadata-aware storage architecture [179] that 

utilizes the classification algorithm of merge module and efficient indexing mechanism to 

merge multiple small files into Sequence File, aiming to solve the namenode memory 

bottleneck. However, neither work touched the base of addressing the scalability issues of 

the centralized namenode in processing the tremendously increased large amount of 

metadata access operations. Haceph [180] is a project that aims to replace the HDFS by the 
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Ceph file system [181] integration with the Hadoop POSIX IO interfaces. Ceph uses a 

dynamic subtree partitioning technique to divide the name space onto multiple metadata 

servers. This work is more scalable, but may not function well under failures due to the 

difficulty of re-building a tree under failures. 

7.5  Batch-Scheduling Resource Management Systems 

Traditional batch-scheduling systems are batch-sampled specific for large-scale 

HPC applications. Examples of these systems are SLURM [30], Condor [83], PBS [84], 

and Cobalt [114]. SLURM is one of the most popular traditional batch schedulers, which 

uses a centralized controller (slurmctld) to manage compute nodes that run daemons 

(slurmd). SLURM does have scalable job launch via a tree based overlay network rooted 

at rank-0, but as we have shown in our evaluation, the performance of SLURM remains 

relatively constant as more nodes are added. This implies that as scales grow, the 

scheduling cost per node increases, requiring coarser granularity workloads to maintain 

efficiency. Condor was developed as one of the earliest RMSs, to harness the unused CPU 

cycles on workstations for long-running batch jobs. Portable Batch System (PBS) was 

originally developed at NASA Ames to address the needs of HPC, which is a highly 

configurable product that manages batch and inter-active jobs, and adds the ability to 

signal, rerun and alter jobs. LSF Batch [182] is the load-sharing and batch-queuing 

component of a set of workload-management tools. All of these systems are designed for 

either HPC or HTC workloads, and generally have high scheduling overheads. Other 

RMSs, such as Cobalt [114], typically used on supercomputers, lack the granularity of 

scheduling jobs at node/core level. All of them have centralized architecture with a single 

controller managing all the compute daemons. They take scheduling algorithms as priority 
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over supporting fine-grained tasks. The centralized architecture works fine for HPC 

environment where the number of jobs is not large, and each job is big. As the distributed 

system scales to exascale, and the applications become more fine-grained, these centralized 

schedulers have bottleneck in both scalability and availability. 

There have also been several projects that addressed efficient job launch 

mechanisms. In STORM [146], the researchers leveraged the hardware collective available 

in the Quadrics QSNET interconnect. They then used the hardware to broadcast the 

binaries to the compute nodes. Though this work is as scalable as the intercon-nect, the 

server itself is still a single-point of failure.  

BPROC [147] was a single system image and single pro-cess space clustering 

environment where all process ids were managed and spawned from the head node, and 

then distributed to the compute nodes. BPROC trans-parently moved virtual process spaces 

from the head node to the compute nodes via a tree spawn mecha-nism. However, BPROC 

was a centralized server with no failover mechanism. 

LIBI/LaunchMON [148] is a scalable lightweight bootstrapping service 

specifically to disseminate con-figuration information, ports, addresses, etc. for a ser-vice. 

A tree is used to establish a single process on each compute node, this process then launches 

any subse-quent processes on the node. The tree is configurable to various topologies. This 

is a centralized service with no failover or no persistent daemons or state, therefore if a 

failure occurs they can just re-launch.  

PMI [149] is the process management layer in MPICH2. It is close to our work in 

that it uses a KVS to store job and system in-formation. But the KVS is a single server 

design rather than distributed and therefore has scalability as well as resilience concerns. 
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ALPS [150] is Cray’s resource man-ager that constructs a management tree for job 

launch, and controls separate daemon with each one having a specific purpose. It is 

multiple single-server architec-ture, with many single-point of failures.  

ORCM [151] is an Open Resilient Cluster Manger originated from the Cisco 

resilient runtime system for monitoring enterprise-class routers, and is under develop-ment 

in Intel to do resource monitoring and scalable tree-based job launching for high-end 

computing clusters. Currently, the state management of ORCM is centralized in the top 

layer aggregator, which is not scalable. The use of key-value stores to manage the state 

simi-lar to Slurm++ is a good alternative for ORCM.  

Borg [154] is Google’s cluster manager that offers a general interface for various 

workloads, such as the low-latency production jobs and long-running batch jobs. Borg 

applies a centralized resource manager (BorgMaster) to monitor and manage resources, 

and a separate scheduler process to allocate resources and schedule jobs. Although Borg 

managed to improve the scalability of the centralized architecture through techniques such 

as score caching, equivalence classes, and relaxed randomization, we believe that the 

continued growths of system size and applications will eventually hit the ultimate 

scalability limit, if the centralized architecture remains. 

7.6  Distributed Systems Simulations 

There are a vast number of distributed and peer-to-peer system simulation 

frameworks, which are typically performed at two different levels of abstraction: 

application level, which treats the network as just a series of nodes and edges, such as 

GridSim [109], SimGrid [88] and PeerSim [49]; and packet level, which models the details 

of the underlying network, such as OMNET++ [46], and OverSim [47].  
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SimGrid [88] provides functionalities for the simulation of distributed applications 

in heterogeneous distributed environments. SimGrid now uses PDES and claims to have 

2M nodes’ scalability. However, it has consistency challenge and is unpredictable. It is 

neither suitable to run exascale MTC applications, due to the complex parallelism. 

GridSim [109] is developed based on SimJava [110] and allows simulation of 

entities in parallel and distributed computing systems, such as users, resources, and 

resource brokers (schedulers). A resource can be a single processor or multi-processor with 

shared or distributed memory and managed by time or space shared schedulers. However, 

GridSim and SimJava use multi-threading with one thread per simulated element (cluster), 

this heavy-weight threading property makes them impossible to reach extreme scales of 

millions nodes or billions of cores on a single shared-memory system. We have examined 

the resource consumpitons of both SimGrid and GridSim, and the results showed that 

SimGrid simulated only 64K nodes while consuming 256GB memory, and GridSim could 

simulate no more than 256 nodes.  

PeerSim [46] is a peer to peer system simulator that supports for extreme scalability 

and dynamicity. Among the two simulation engines it provides, we use the discrete-event 

simulation (DES) engine because it is more scalable and realistic compared to the cycle-

based one for large-scale simulations. OMNeT++ [46] is an extensible, modular, 

component-based C++ simulation library and framework, primarily for building network 

simulators. Built on top of OMNeT++, OverSim [47] uses DES to simulate exchange and 

processing of network messages. All of PeerSim, OMNet++ and OverSim have standard 

Chord [28] protocol implementation, we compared them and found that PeerSim is much 

faster and consumes much less memory. 
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ROSS [130] is a parallel discrete event simulator that aims at simulating large-scale 

systems with up to millions of objects on supercomputers. ROSS simulator is a collection 

of logical processes (LP) with each one modeling a component of the simulated system. 

The LPs communicate with each other by exchanging events that are synchronized through 

the Time Warp mechanism using a detection-and-recovery protocol. Reverse Computation 

technique is used in Ross to achieve extremely high parallelism. Ross has been run on the 

BG/P supercomputer up to 13K processors, and reported event-rate of 12.26 billion events 

per second for the PHOLD benchmark at 64K processors. We have begun work in using 

the ROSS simulator to simulate distributed scheduling algorithms.  
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

This chapter highlights the research contributions, draws the conclusions, presents 

the future work, and envisons the long-term impacts of this dissertation. 

8.1  Research Contributions 

This dissertation has focused on delivering scalable resource management system 

software for tomorrows’s extreme-scale distributed systems and diverse applications. The 

current resource management systems employ the decades-old centralized design 

paradigm, thus are unlikely to scale up to extreme scales, leading to inefficient use of 

extreme-scale distributed systems. This dissertation has taken the paradigm-shifting 

distributed approaches to reimplement the resource management systems. We have 

evaluated the proposed architectures and techniques extensively and they showed huge 

performance gains over the centralzied ones. Furtheremore, our simulation work has 

demonstrated that these architectures and technqiues are scalable up to extreme scales. The 

research contributions of this dissertation are both envoluntionary and revolutionary, 

which are highlighted as follows : 

 We devised a comprehensive system software taxonomy by decomposing 

system software into their basic building blocks. As distributed systems 

approach exascale, the basic design principles of scalable and fault-tolerant 

system architectures need to be investigated for system software 

implementations. Instead of exploring the design choices of each system 

software individually and in an ad hoc fashion, this taxonomy has the ability to 
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reason about general system software as follows: (1) it gives a systematic way 

to decompose system software into their basic components; (2) it allows one to 

categorize system software based on the features of these components, and 

finally, (3) it suggests the configuration spaces to consider for evaluating 

system designs via simulation or real implementation. We have shown quite a 

few examples of system software that can be beneficial from this taxononmy. 

This taxonomy has also led us architecting, designing, simulating and 

implementing the next generation resource management systems successfully.  

 We proposed that key-value stores (KVS) are a viable buiding blocks for and 

can accelerate the development and deployment of extreme-scale system 

software. KVS had not yet been widely used in HPC environment before when 

neither of the system scale and the application metadata was large. This 

proposal is meaningful and enlightening to the HPC community as both the 

system and application scales are evolving towards extreme scalses. Many HPC 

system software have started to explore the use of KVS. In addition, both the 

MATRIX task scheduling system and the Slurm++ workload manager are built 

on top of the ZHT KVS, resulting in great performance.    

 We developed a KVS simulator that has been used to explore different 

architectures and distributed design choices up to extreme scales of millions of 

nodes. Our KVS simulator is configurable, and can be tuned to simulate many 

types of KVS. We have shown how easily to simulate a centralized KVS, a 

hiearchial KVS, distributed KVS with different configurations (e.g. Dynamo, 

ZHT) with our simulator. This simulator can be used as a basic tool to explore 
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the scalability and design choices of any KVS implementations. We have seen 

that the KVS simulator offered valuable insights to the ZHT KVS. 

 We proposed a data-aware work stealing technique to optimize the goals of 

achiving both load balancing and data locality for distributed MTC scheduling. 

The technique is crucial in making the distributed achitecture more scalable 

than the centralized one, and in enabling the MTC paradigm scalable towards 

extreme scales.  

 We developed the SimMatrix simulator of MTC task execution framework. 

Through SimMatrix, we explored the work stealing technique up to exascale of 

1-million nodes, 1-billion cores, and 100-billion tasks, and identified the 

optimal parameter configurations that scale work stealing up to exascale. The 

optimal parameters are: to steal half the number of tasks from the neighbors, to 

use the square root number of dynamic random neighbors, and to use a dynamic 

poll interval. We also studied the data-aware work stealing technique through 

SimMatrix up to 128K-core scale, and showed that the technique is highly 

scalable. In addition, we devised an alytical model, showing that the achieved 

performance of the technique is close to the sub-optimal solution. These 

simulation studies are insightful, help us understand the scalability of the 

techniques, and guide us to implement real systems.    

 We implemented a real task execution framework of many-task computing, 

MATRIX, which has applied the distributed scheduling architecture and the 

data-aware work stealing technique, and integrated the ZHT key-value store, 

for scheduling both the fine-grained MTC workloads and the Hadoop 
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workloads. We have deployed MATRIX on various platforms, compared 

MATRIX with other fine-grained task scheduling systems, and MATRIX 

showed huge performance gains over others. These results will encourage us to 

move towards the distributed designs on our way to approach extreme-scale 

computing. 

 We proposed a partition-based distributed architecture, and resource stealing 

techniques to achieve dynamic resource balancing among all the partitions, for 

the resource management system of future exascale supercomputers. These 

distributed designs are similar to those of MATRIX, with the differences of 

targeting the HPC applications. Notice that MATRIX targets the MTC 

applications and big data application in clouds, has a fine-grained fully 

distributed architecture instead of a partion-based one, and focuses on balancing 

workload tasks instead of computing resources.   

 We implemented both a real HPC workload manager named Slurm++ that is 

directly extended from the SLURM production system, and a simulator of 

Slurm++ named SimSlurm++. Slurm++ has implmented the partition-based 

distributed architecture and the resource balancing techniques, and has 

integrated the ZHT key-value store to keep resource and job metadata. We have 

evaluated Slurm++ by comparing it with SLURM, and Slurm++ showed up to 

10X speedup of performance. More importantly, Slurm++ has been able to 

perform well for increasingly large jobs. We have also explored the scalability 

through SimSlurm++ up to 65K nodes, and results showed that Slurm++ has 

the potential to scale up to extreme scales. 
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8.2  Conclusions 

We believe that the workloads of distributed systems are becoming diverse, 

including the traditional large-scale HPC application, the HPC ensemble runs, the MTC 

applications, as well as the big data applications across all the application domains, as the 

distributed systems are evolving towards extreme scales. These developing trends pose 

significant challenges on distributed system software, such as concurrency and locality, 

resilicence, memory and storage, energy and power, which need to be addressed sooner 

than later. 

Resource management system is a vital system software for distributed systems. It 

is responsible for managing, monitoring, and allocating resources, and scheduling, 

launching and managing jobs. Current RMS are still designed around the decades-old 

centralized paradigm, thus not scalable towards extreme scales due to the capped 

processing capacity and single-point-of failure. There are urgent needs of developing next 

generation RMS that are signifticanly more scalable and fault tolerant. Distributed designs 

are the ways to overcome the shortcomings of the centralized ones, for both the tightly 

coupled HPC environment and the loosely coupled MTC and cloud computing 

envrionments. Challenges of distributed designs, such as maintaining failure/recovery, 

replication and consistency protocols, load balancing, data locality-aware scheduling, 

resource balancing, need to be studied in depth through both simulations and real 

implementations, in order to perform themselves better than the centralized ones and enable 

scalability up to extreme scales. 

This dissertation has achieved the goal of delivering scalable resource management 

system software that can manage the numerous computing resources of extreme-scale 
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systems and efficiently schedule the workloads onto these resources for execution, in order 

to maintain high performance. Our early work on the general system software taxonomy 

and KVS simulations is fundamental and necessary. The conclusions drawn from the early 

work are very meaningful and enlighting in guiding the designs and implementations of 

distributed RMS, such as KVS is a viable building block, fully distributed architecture is 

scalable under the circumstance where the client requrests dominate the communications. 

For distributed MTC scheduling, fine-grained fully distributed architecture is necessary 

with the challenges of achieving both load balancing and data-locality. The data-aware 

work stealing technique is scalable and can address both challenges in an optimized way. 

For distributed HPC scheduling, the partition-based distributed architecture is a great 

option, with the challenges of achieving resource balancing and gathering global state. The 

proposed weakly consistent monitoring-based resource stealing technique can address the 

challenges efficiently. We believe that the research contributions and conclusions of this 

dissertation are meaningful to the extreme-scale system software community. 

8.3  Future Work 

My future work plans to run MATRIX with more scientific applciations and 

Hadoop workloadss, and to study HPC data-aware scheduling through Slurm++. 

We plan to integrate MATRIX with Swift to run more data-intensive scientific 

applciations. Swift [15] [67] is a parallel programming system and workflow engine for 

MTC applications. Swift will serve as the high-level data-flow parallel programming 

language between the applications and MATRIX. Swift would essentially output many 

parallel and/or loosely coupled distributed jobs/tasks with the necessary task dependency 

information, and submit them to MATRIX. Swift has been scaled to distribute up to 612 
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million dynamically load balanced tasks per second at scales of up to 262,144 cores [176]. 

This extreme scalability would absolutely advance the progress of making MATRIX 

supporting large-scale scientific application at extreme-scales. We also plan to use 

integrate MATRIX with the FusionFS [42] distributed file system to better support data-

intensive applciations. FusionFS assumes that each compute node will have local storage, 

and all the file servers are writing the data files locally to eliminate the data movement 

overheads introduced by stripping the data files as the HDFS does. MATRIX will rely on 

FusionFS for scalable data management. 

  To run more Hadoop applications with MATRIX, we plan to integrate MATRIX 

with the Hadoop application layer, by developing interfaces between the Hadoop 

applications and MATRIX and exposing the same APIs as YARN does, and by developing 

interfaces between MATRIX with the HDFS and exposing the HDFS APIs to MATRIX, 

so that the Hadoop application codes can be run in MATRIX seamlessly. 

We  also believe that data-aware scheduling is important for data-intensive HPC 

appliatins. The storage systems of the HPC machines are involving to include high 

bandwidth and low latency storage devices (e.g. SSD, NVRAM), refer to burst buffer 

[187], in the I/O forwarding layer. The burst buffer enables overlapping the computations 

with I/O requests, which makes great contributions to reduce the runtime of data-intensive 

applications. However, the HPC resource managers are data ignorance, resulting in 

dwarfing the significance of the burst buffer. We plan to build models to quantify the 

overheads of scheduling with different layers of storage systems, and implement the 

models in Slurm++ to schedule data-intensive HPC workloads on the Trinity machine 

[189] with burst buffer hardware that will be deployed in Los Alamos National Laboratry. 
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8.4  Long-Term Impacts 

We believe that the reserach contributions of this dissertation are both 

envoluntionary and revoluntionary. We have high hope that this dissertation will have long-

term impacts on the extreme-scale system software commuty, and can lay the foundations 

of addressing the extreme-scale computing challenges through building scalable resource 

management system software that is able to effciently harness the extreme paralleslim and 

locality. The radical distributed architecture and scheduling techniques of the resource 

management system make extreme-scale computing more tractable, and will also open 

doors to many research directions, such as developing more inclusive taxonomies to 

address the challenges of the HPC system software at all layers of the software stack ; 

developing scalable key-value stores for HPC environments ; topology-aware scheduling; 

power-aware scheduling; many big data computing areas, including complicated parallel 

machine learning models [183], data compression mechanisms [184], erasure coding 

methods [20], in situ data processing frameworks [185] for efficient scientific visualization, 

and many others. 
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