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Abstract— HRDBMS is a novel distributed relational 

database that uses a hybrid model combining the best of 

traditional distributed relational databases and Big Data 

analytics platforms such as Hive.  This allows HRDBMS to 

leverage years worth of research regarding query optimization, 

while also taking advantage of the scalability of Big Data 

platforms.  The system uses an execution framework that is 

tailored for relational processing, thus addressing some of the 

performance challenges of running SQL on top of platforms such 

as MapReduce and Spark.  These include excessive 

materialization of intermediate results, lack of a global cost-

based optimization, unnecessary sorting, lack of index support, 

no statistics, no support for DML and ACID, and excessive 

communication caused by the rigid communication patterns 

enforced by these platforms. 

Keywords—SQL, Big Data analytics, distributed query 

processing, relational databases 

I. INTRODUCTION 

The increasing scale of data to be processed for analytics 
has brought traditional database systems that scale only to a 
few nodes to their limits. Massively Parallel Processing (MPP) 
databases provide better scale out by parallelizing query 
processing across multiple processors and nodes using a 
shared-nothing architecture.  While this proved to be effective 
at very small numbers of nodes, this approach did not scale to 
even medium-sized clusters.  Examples of this type of 
approach include DB2 from IBM.  DB2 is limited to clusters of 
1000 nodes or less, but in practice few customers go above 10s 
of nodes.  With extensive tuning, IBM has published some 
benchmarks using clusters of up to 256 nodes. [1] Another 
example of this type of solution is Netezza which is a database 
appliance sold by IBM.  The primary difference between 
Netezza and DB2 is that Netezza runs on customized hardware, 
which includes offloading some processing to FPGA cards.  
The largest Netezza model today has 58 nodes. [2] Likewise, 
Teradata and Greenplum, two popular MPP databases for large 
analytics environments, have cluster size limits of 1024 [3] and 
1000 [4] respectively. 

Main-memory database systems based on columnar storage 
proved to be more efficient than their row-based counterparts 
for analytical queries and better exploit current hardware.  
However, they suffer the same scalability issues as standard 

MPP databases.  For example, HANA is an extremely popular 
columnar in-memory database.  The largest HANA cluster that 
has been reported is 56 nodes [5]. The reality is that while 
many of these databases have system limits of around 1k 
nodes, they fail to scale well even to 100s of nodes. 

Recently, a new class of SQL engines has been built on top 
of Big Data platforms such as MapReduce and Spark. 
Examples of such systems are Hive [6], Spark SQL [7], Azure 
SQL[8], Dremel [9], and many others. While these approaches 
provide better scale out, their performance per node is poor, 
because query execution is restricted by the  programming and 
execution model of the underlying platform.  While the 
performance per node is poor, the platforms that these 
databases run on have been shown to scale to very large 
clusters.  For example, Yahoo! runs a 4.5k node Hadoop 
cluster. [10] 

HRDBMS, the system we present in this work, is an 
architectural hybrid that combines the scale out of Big Data 
analytics platforms with advanced query execution and 
optimization of traditional databases. The goal of HRDBMS is 
to create a database capable of scaling well past the 1k node 
limit, while achieving per-node performance on par with 
traditional MPP relational databases. 

II. RELATED WORK 

Traditional MPP databases, in-memory databases, and Big 
Data platform databases all have a few other shortcomings as 
well.  HRDBMS attempts to address these too. For example, 
many of these modern analytics databases do not support full 
Data Manipulation Language (DML) operations.  DML is a 
subset of standard SQL that includes the INSERT, UPDATE, 
and DELETE statements. Many of these databases also do not 
support full transactional isolation and consistency (known as 
ACID in the database world).  The table below summarizes the 
main shortcomings from section 1 plus these for some of the 
most popular analytics databases in the enterprise world. 

 

 

 

 



 

 

 

 Supports 
Large 
Clusters 

Full 
DML 

Full 
ACID 

Good 
performance 
data > mem 

Standard 
syntax 
for basic 
SQL 

Commodity 
Hardware 

DB2  X X X X X 

Netezza  X X X X  

Teradata  X X X X  

Greenplum  X X X X X 

HANA  X X  X X 

Hive X   X  X 

Spark  X    X X 

 

There’s also several database systems in the research world 
that are trying to address similar shortcomings.   

Most of these databases are only semi-relational and 
therefore frequently do not use standard SQL as their query 
language.  As pointed out by others, many people believe that 
large scale systems and relational models are mutually 
exclusive. [8] 

For example, Spanner [11] from Google is a semi-relational 
database designed to scale to millions of nodes. Only 
thousands of nodes at most would typically be used to support 
an individual query, but Spanner provides the ability to isolate 
different sets of data on different nodes and provides the ability 
to do a large number of replicas on a global scale.  The main 
focus of Spanner though is cross data center replication of data 
for availability in the event of data center loss.  They forego 
some of the things we expect from relational databases in order 
to achieve their goal.  For example, their query language is 
SQL-like but is different enough to pose problems for using 
Spanner with standard tooling.  They also use a semi-relational 
schema that is a cross between key/value pairs and standard 
relational schemas. It’s basically a relational view of the data 
built on top of a key/value store. But, it’s also a hierarchical 
data structure in that all tables are defined in terms of where 
they sit in the hierarchy that defines their relationship to other 
tables.  The authors state that this is for performance since the 
hierarchy automatically defines what data should be co-
located.  However, many real world data models can’t be 
expressed in terms of simple hierarchies such as these. 

Since the underlying storage engine is key/value store 
based, primary indexes are not needed for efficient lookup by 
primary key.  However, it does make it challenging to 
implement secondary index support, and in fact, Spanner does 
not offer secondary index support today.  The authors do point 
out that some applications that use Spanner have built 
application-side processes to mimic secondary indexes to get 
the performance they need. HRDBMS, on the other hand, 
allows you to create whatever secondary indexes you need.  

F1 [12] is another database from Google that is built on top 
of Spanner.  F1 addresses some of the shortcomings of Spanner 
such as lack of secondary indexes and lack of standard SQL 

support.  However, it does this by basically using Spanner as a 
storage engine.  F1 implements its own optimizer and uses its 
own cluster of servers to do the actual query processing.  
Because it relies on Spanner as the underlying storage engine 
only, it foregoes the possibility of taking advantage of existing 
co-locality in the data storage.  The authors state that F1 scales 
well to hundreds of servers, so it does not appear to solve the 
scalability problem that traditional MPP databases face.  

Dremel [9], yet another database from Google is designed 
for analytics across thousands of cpus.  But, it does lack DML 
support.  The data is read-only.  Dremel also uses a nested data 
model instead of a standard relational model and only offers a 
SQL-like query language.  

None of the previously mentioned databases have 
published any performance data for TPC-H or other standard 
analytics workloads, so it’s difficult to ascertain where they lie 
in the performance spectrum. 

Azure SQL (SQL Azure / Cloud SQL Server) [8] is much 
more similar to HRDBMS in that their major focus is on 
supporting a standard relational model and standard SQL.  
They also are focused on supporting ACID in an analytics 
environment, although they only offer ACID guarantees for 
certain types of transactions today. 

Related to this area of research is the topic of key/value 
stores, such as ZHT. [13]  As previously mentioned Spanner is 
a semi-relational database built on top of a key/value store.  
Much more progress has been made in building scalable 
key/value stores, so it is a reasonable approach.  The problem 
is that key/value stores in and of themselves do not provide the 
features needed for analytics.  As mentioned with Spanner, the 
underlying key/value store makes it difficult to implement 
secondary indexes.  When F1 addressed these and other issues 
by building on top of Spanner it lost much of the scalability 
that Spanner had.  Furthermore, key/value stores in and of 
themselves do not offer a query language capable of expressing 
complex analytics queries.  They also generally do not have 
optimizers, since the means to respond to certain data requests 
is usually obvious.  Complex analytics queries on the other 
hand rely on a very expressive query language and heavy use 
of optimization. 

In the following sections, we will cover how HRDBMS 
combines the best of both the traditional relational database 
world and the Big Data platform database world. The key 
contributions of each area are summarized here. 

 Traditional relational databases 

o Query optimization 

o Pipelining 

o Use of statistics to optimize 

o Ability to perform operations externally if not 
enough memory is available 

 Big Data platform databases 

o Map/Combine/Reduce/Shuffle computation 
model 



o Phase combination (from Spark) to reduce 
communications 

HRDBMS combines the best of both of these worlds by: 

 Starting with a standard operator tree 
representation of the query 

 Applying standard relational optimizations, using 
statistics 

 Converting to a Map/Combine/Shuffle/Reduce 
representation 

 Pipelining in the execution engine 

 Using a custom non-blocking shuffle in the 
execution engine 

 Allowing operations to spill to disk (external) if 
need be 

 Using a more flexible map/reduce model that 
allows chaining of map and combine phases 
without intervening reduce phases 

The key novel contributions of HRDBMS are: 

 A database optimizer that is capable of performing 
traditional relational database optimizations but 
then converting that to an optimized MapReduce-
like job. 

 A custom MapReduce-like execution engine that 
is tailored for and tuned for database operations 
and relational algebra. 

 A more flexible shuffle that reduces the network 
communications burden for large clusters. 

 

 The rest of this paper is organized as follows.  Section 3 
defines key relational database concepts that are required for 
understanding the rest of the paper.  Section 4 describes the 
general architecture of an HRDBMS database cluster.  Section 
5 provides details on the custom execution engine.  Section 6 

explains the workings of the optimizer.  Section 7 shows 
experimental results to date.  Finally, section 8 discusses some 
of our thoughts for future research. 

III. KEY RELATIONAL DATABASE CONCEPTS 

Throughout the rest of this paper we will be discussing 
many concepts that are taken for granted in the database world 
that may be foreign to some of the readers.  This section 
provides an introduction to the key concepts that are required 
to understand the rest of the paper. 

SQL – SQL is the language used to communicate 
commands with a database server.  It consists both of SELECT 
statements, which represent queries, as well as 
INSERT/UPDATE/DELETE statements, which modify the 
data.  The statements that modify data are typically called Data 
Manipulation Language (DML) statements. 

Tables – Data in a relational database is organized and 
stored in tables.  Each table has a unique name.  The data in the 
tables is organized into rows and columns.  A row represents a 
record.  A row is made of multiple columns, each with a pre-
defined data type.  SQL statements are only valid if they 
perform valid operations against valid data types.  For 
example, we can’t add columns A and B if they are not both 
numeric.  We can’t perform a substring on a column unless it is 
character data. 

Indexes – Many queries contain predicates (filter 
conditions) that can be logically ANDed or ORed together in 
the WHERE clause of a SELECT statement.  If there are few 
enough rows that will satisfy a certain predicate (selectivity in 
DB jargon), it may be beneficial to build an index to support 
that predicate.  An index is an ordered tree structure that allows 
the database to quickly determine which rows in a table will 
satisfy a predicate instead of reading (scanning) the whole 
table. The index will return a set of row ids (RIDs) and then 
only these rows are fetched. 

Query optimization – When a SQL query enters the system, 
it is parsed and converted to a tree structure of relational 
operators that will produce the correct result.  The goal of an 
optimizer is to use relational algebra equalities to reorder and 
restructure the tree of relational operators so that the same end 
result is achieved in a much more efficient manner.  Query 
optimizers typically improve performance by several orders of 
magnitude over the naïve representation that comes out of the 
parser.  The decision of whether to use an index or do a table 
scan is an example of one of the types of decisions that the 
optimizer needs to make.  Query optimization is a notoriously 
hard problem with a huge search space, so frequently heuristics 
are used to limit the number of possibilities that have to be 
considered. 

Join – In a relational database, a join is the union of 
columns from 2 different tables into a single row based on 
some predicate that spans the 2 tables. For example, assume we 
have the following 2 tables. 



 

 

A join on Advisor_ID would give us the following result. 

 

[14] 

Distributed Join – When a relational database runs on a 
cluster, it has to perform joins in a distributed manner.  In other 
words, it wants to be able to execute joins in parallel across all 
of the nodes of the cluster.  The most common method for 
doing this is to redistribute all of the data across the cluster by 
hashing on the join key (in the case of equality predicates).  
This guarantees that the rows that need to be joined together 
from the left and right side of the join will be on the same 
node.  This then allows the join to be computed as numerous 
parallel joins on each node followed by the union of all of the 
results. 

Semi-join – A semi-join is like a join except that none of 
the data from the right-hand part of the join is included in the 
output result.  Instead, only rows that have a match (based on 
the join predicate) in the right-hand side are included in the 
output result.  An anti-join is the opposite of this.  Only rows 
from the left-hand side that do not have a match on the right-
hand side (based on the join predicate) are included in the 
output result.  Therefore, semi-joins are frequently referred to 
as existence tests (in fact they correspond directly to the 
EXISTS keyword in SQL), and anti-joins are referred to as 
non-existence tests (NOT EXISTS in SQL). 

Two Phase Commit (2PC / XA) – Two phase commit is a 
standard protocol for ensuring that transactions that span 
multiple machines all commit together on every machine or all 
rollback together on every machine.  HRDBMS uses a custom 
variant of the 2PC protocol that uses hierarchical network 

communications and aggregated responses to make the 
protocol faster for larger clusters. 

IV. HIGH LEVEL ARCHITECTURE 

An HRDBMS cluster is divided into coordinator and 
worker nodes.  Coordinator nodes store metadata and are 
responsible for query optimization.  Worker nodes are used for 
user data storage and the majority of query execution work. 
Clients submit SQL commands to a coordinator node.  The 
coordinator node parses and optimizes incoming queries using 
data distribution statistics and partitioning information stored 
in system tables which are replicated across coordinators.  Like 
traditional relational systems, HRDBMS uses a cost-based 
optimizer (Section VI). The output of the optimizer is a query 
workflow, which is submitted for execution to the cluster. The 
workflow executes across the worker nodes on the custom 
MapReduce based platform (Section V). Query results are 
eventually sent back to the coordinator that planned the query.  
Final sorts or aggregations may occur on the coordinator, if 
they are cheap enough.  The coordinator then forwards the 
result set to the client.  

 

When a query is received by a coordinator node, it first has 
to go through parsing.  This is no different than any of the 
systems previously mentioned.  However, differences start 
coming up almost immediately after that. First of all after the 
query is parsed, it is converted from an abstract syntax tree to a 
tree of relational operators (select, project, union, join, etc). 
This is a standard representation for queries in traditional 
relational databases. Next, statistics are used to apply standard 
relational optimizations to the operator tree. Big Data databases 
like Spark SQL and Hive generally do not have statistics other 
than total data size. In contrast, traditional relational operator 
tree optimizations rely heavily on statistics (cardinality stats, 
distribution stats, and more). The statistics are stored in system 
metadata tables that reside on all coordinator nodes.  The data 
required to parse and verify that queries are valid is also stored 
in these system metadata tables. These system metadata tables 
are no different than user data tables, other than the fact that 
they (and they alone) reside on the coordinator nodes.  They 
are queryable, but not updatable, by users. 



From there, the query is converted to a workflow format 
and additional optimizations are carried out.  These will be 
covered in detail in section V. 

Finally, the coordinator submits the workflow to the 
execution engine and return results to the client. Since 
HRDBMS does support transactions, this workflow may be 
one of many that is part of the same transaction.  The 
coordinator is also responsible for tracking and managing 
transactions until they either commit or rollback. This requires 
the coordinator to have a number of other services available to 
it.  This includes logging services (both for changes to system 
metadata tables as well as a two phase commit log).  It has XA 
(2PC) coordinator services, which uses a custom hierarchical 
two phase commit protocol.  It has locking services.  For 
example, if someone is currently loading a table, you shouldn’t 
be able to query against it until the load finishes.  It has 
buffering services, so that pages need not always be read from 
disk.  This is another item noticeably lacking in Big Data 
databases.  Lastly, the coordinator nodes have full blown 
execution engine capabilities, although they are normally only 
used for executing single node workflows that handle metadata 
table queries. 

The worker nodes are very similar in architecture to the 
coordinator nodes.  They contain the logging services 
necessary for handling transactions against the user data.  They  
contain the locking services necessary for handling those 
transactions.  They also contain the buffering services to avoid 
as many reads to disk.  However instead of being able to act as 
XA coordinators, they have the ability to act as XA slaves, and 
XA intermediaries.  XA intermediaries are used to forward XA 
messages as part of the custom XA implementation I have 
written and to aggregate XA responses.  They also contain a 
full-blown execution engine, although the worker execution 
engines will typically be much more active than the 
coordinator execution engines since they handle the majority of 
query processing. 

HRDBMS has full DML support unlike Hive and Spark 
SQL.  These restrictions in Hive and Spark SQL primarily 
come about because they rely on HDFS, the Hadoop 
filesystem. HDFS only supports append operations to files.  It 
does not support rewriting existing contents.  This makes it 
very challenging to support full INSERT/UPDATE/DELETE 
capabilities.  Since HRDBMS does not use HDFS, it does not 
suffer these shortcomings. 

As mentioned previously, HRDBMS also deploys a 
handful of common services on each node which allows it to 
support transactions.  Hive and Spark SQL rely solely on the 
underlying workflow engine and do not have specialized 
components deployed to each node.  Thus they cannot handle 
transactions. 

HRDBMS is also designed from the ground up to handle 
large data volumes and does not rely on being able to fit data in 
memory.  All possible workflow actions are also designed to be 
able to run in memory or externally depending on the amount 
of memory available versus the amount required. 

HRDBMS is not fully ANSI SQL 92 compliant, but all of 
the basic SQL constructs that are used in the majority of 

queries use standard SQL 92 syntax.  As previously mentioned, 
many of the other databases in this space do not support 
standard SQL syntax. 

Lastly, HRDBMS can run on any type of hardware.  It is 
written in Java and is easily portable to any system capable of 
supporting a Linux-like filesystem.  Additionally, HRDBMS 
can offload some of its processing to GPUs, if they are present. 

V. HRDBMS’S DISTRIBUTED EXECUTION ENGINE 

While also executing queries as tasks that run 
independently on worker nodes like Big Data platforms do, 
HRDMBS pipelines operations (even across nodes), enforces 
data locality, makes use of index structures, and 
opportunistically materializes intermediate results to disk if 
they do not fit into main memory. In HRDBMS there is no 
separation of jobs into phases. Operators of a query 
immediately start consuming their inputs when they become 
available. 

Some of the major enhancements of the custom execution 
engine are summarized in the following sub-sections. 

 Pipelined Execution. Pipelining is a standard practice in 
many traditional relational databases that greatly helps improve 
performance [15].  Basically, a call to retrieve the next record 
from one task produces a call to retrieve the next record out of 
the previous task.  The necessary transformations on that 
record are performed and the record is returned.  Pipelining 
such as this is frequently many levels deep in relational 
databases, as long as a blocking operation does not intervene. 
In fact, HRDBMS may choose to sort buckets in parallel and 
then mergesort even when a sort fits in memory because only 
the sorting of the buckets blocks, while the mergesort does not. 

A major contributor to the poor performance of Hive is 
excessive materialization. A query may require multiple map-
reduce phases and during each phase intermediate results are 
written to disk twice – once to local disk at the end of the map 
phase and once to HDFS at the end of the reduce phase. 
Systems such as  Spark address this problem, but still divide 
jobs into phases that execute sequentially. In HRDBMS, we 
forego the use of phases altogether and string a series of tasks 
together with shuffles in between them to redistribute data 
across nodes.  These tasks can perform any set of relational 
operators, including aggregation.  A task can start processing 
data before a previous task, producing its inputs, has finished 
execution.  In fact for some queries, all of the tasks involved in 
the query may immediately begin to do work when query 
execution starts. This is made possible by pipelining and other 
innovations such as the non-blocking shuffle covered next. 

Non-blocking Shuffle. In Hadoop and Spark, a shuffle 
operation redistributes records across the cluster.  In Hadoop a 
shuffle is always a blocking operation since it sorts the records 
it is shuffling.  This is because Reducer tasks expect the data to 
be received in sorted order within each key.  Almost all 
relational database operations can be performed without this 
requirement.  Therefore, we can eliminate this overhead, 
except where absolutely required.  Spark can sometimes skip 
the sort step, but it still finishes processing its entire input 
before it starts sending data.  Spark will still perform a sort 



during the shuffle if the shuffle will be followed by an 
aggregation operation.  This is unnecessary as aggregation 
operations can be performed equally as efficiently using 
hashing as long as your aggregation operation can spill hash 
buckets to disk.  Even when not sorting, Spark still uses a 
blocking shuffle since it hashes (and spills to disk) all of the 
records to be shuffled before sending any data out.  This is so 
that it can limit the number of socket connections that it needs 
to have open at any given time when sending data.  Basically it 
opens one hash bucket at a time and only needs to have open 
sockets for the nodes/keys that bucket contains.  Then it moves 
on to the next hash bucket. 

HRDBMS implements a non-blocking shuffle operation 
that partitions tuples across nodes using hashing. It does this 
without sorting and without spilling to disk.  Tuples with the 
same hash value are guaranteed to be sent to the same node, 
but the shuffle does not guarantee any sort order within the set 
of tuples sent to a node. This does mean that HRDBMS is 
sending over multiple sockets at the same time.  However, 
HRDBMS limits the amount of network overhead using a 
different approach that we call “hierarchical shuffle”.  When 
the number of other nodes that a node must communicate with 
becomes large, hierarchical shuffle kicks in.  In a hierarchical 
shuffle, each node only communicates with a set of neighbors, 
which is a subset of the cluster.  These neighbors can then 
forward data on to yet other nodes if needed.  The hierarchical 
shuffle gives us hard limits on the number of socket 
connections that a shuffle will concurrently open, while still 
giving us the ability to shuffle in a non-blocking manner 
without the need to externalize to disk. 

Intra Task Parallelism. Tasks within one node are 
inherently parallel.  Each task is defined in terms of the I/O and 
relational operations it will perform.  HRDBMS is designed 
such that it is easy to construct tasks which perform different 
relational operations in parallel, do I/O in parallel, and even use 
parallelism within the execution of a single relational operator.  
For example, table data is not only partitioned across nodes, 
but also partitioned across disk drives on each node. A separate 
I/O thread is assigned to each disk.  This means that if a table 
needs to be scanned on some worker node, all disks are 
scanned in parallel, and any filter conditions that can be pushed 
down to the scan level are applied to the data in parallel. 
Furthermore, other complex operations such as joins, sorts, and 
aggregation are inherently performed using parallelization 
within each task on each worker node. 

External Operations.  All relational operations that are 
pushed into tasks in the query workflow have the ability to be 
performed in memory or externally, spilling data to disk as 
needed. This decision is made at runtime based on the current 
available memory and statistics which predict the amount of 
memory that will be required.  Contrast this with Hadoop and 
Spark, which sometimes force data to be materialized for 
certain operations, although they may have been able to be 
performed in memory.  Also, there are cases where Hive or 
Spark just fails if something can’t fit in memory, whereas 
HRDBMS will just choose to perform that operation 
externally. 

Storage. Instead of using a distributed file system such as 
HDFS,  we store data directly on the local filesystem of worker 
nodes. Tables may be hash or range partitioned or duplicated 
across all nodes, in the case of small tables.  The coordinator 
nodes track how table data is spread across worker nodes and 
uses this information during optimization.  Data locality is 
enforced.  This means that data is always read on the worker 
node where it resides.  Contrast this with Hive or Spark SQL, 
where the database can only state this as a preference to the 
underlying execution engine.  This preference may or may not 
be honored.  This can result in non-local reads and destruction 
of any pre-existing co-location that may exist. 

Predicate Cache.  HRDBMS uses a predicate cache to 
further speed up table scan operations.  If HRDBMS has 
previously seen a predicate and determined that a certain page 
has no rows that qualify for the predicate, this information is 
cached.  If we then see the same or a stronger predicate, we 
don’t have to even read certain pages.   

 

Cache says: Page 5, no rows qualify for A > 5 

We know: Page 5, no rows qualify for A > 10 is 

also true   
 

The information in this cache is selectively invalidated if a 
page changes. I am aware of some databases that pre-calculate 
some of this information on selected columns ahead of time, 
with the assumption that deletes and updates will be rare and 
inserts will be appended.  This data will then be recalculated 
when a table reorganization occurs.  I am not aware of any 
database that calculates, caches, invalidates, and recalculates 
this information at runtime without reorganization. 

Hash Joins. HRDBMS exclusively uses hash joins for any 
join operations that have at least 1 equality join condition.  
Given the importance of hash joins in HRDBMS, it was 
important to make them perform well.  Therefore HRDBMS 
has a rather sophisticated hash join implementation.  First of all 
hash joins can be completely in-memory, partially in-memory, 
or fully external.  Partial in-memory hash joins are like hybrid 
hash joins where the first bucket is never written to disk.  
HRDBMS extends this by allowing the first n buckets to never 
be written to disk.  The value of n is dynamically determined at 
runtime based on current memory availability and statistical 
information that is included in the workflow. 

Secondly, data is stored in a compressed format in the in-
memory hash tables.  This allows us to fit more rows in 
memory and/or use less memory.  This is important for 
performance for 2 reasons.  First of all, it obviously has the 
potential to reduce the amount of data that must be written to 
and read from disk (by fitting more in memory).  But, since 
HRDBMS is written in Java, it also allows us to perform fully 
in memory hash joins using less memory than would be 
required otherwise.  This reduces the burden on the Java 
garbage collector and greatly improves performance.  Testing 
shows us that the biggest impediment to further performance 
gains is Java garbage collection overhead. 



Lastly, the hash join implementation makes heavy use of 
bloom filters.  Many other databases use bloom filters for semi-
joins [16].  HRDBMS uses bloom filters for hash joins, semi-
joins (existence), and anti-joins (non-existence) since all three 
operations are implemented using the same hash join code. 
Basically both sides of the join compute a bloom filter as they 
are reading.  When one side finishes reading its input data, it 
shares its bloom filter with the other side.  That bloom filter is 
then applied to any further data read by that side. 

Buffer Manager.  The buffer manager in HRDBMS is also 
rather complex given the impact that buffering can have.  The 
fact that HRDBMS even has a buffer manager is one of the 
major reasons why it so greatly outperforms Hive, as will be 
shown in section VII.  The buffer manager caches both table 
and index pages.  When part of the executing workflow needs a 
page, it informs the buffer manager.  This page request can be 
either synchronous (I need this page now) or asynchronous (I 
need this page soon, please go get it and I’ll tell you when I 
need it).  This allows the workflow to do other work while the 
I/O (if necessary) occurs.  If the page is present in the cache (or 
in DB jargon, the bufferpool), no disk I/O needs to occur. 

After trying many different traditional and non-traditional 
cache eviction policies, I determined that the best approach 
was a standard “clock” eviction policy with a twist.  The twist 
is that when a table scan operation starts, it informs the buffer 
manager about the entire set of pages that it will read (this 
starts off as being the whole table).  As it reads, it informs the 
buffer manager about its progress, and the buffer manager 
updates its list of pages that are still going to be requested in 
the near future.  When the buffer manager needs to evict a page 
to make room for a new one, it uses the standard clock eviction 
policy with the caveat that it attempts to find a page that is not 
currently registered as “still being needed” by any currently 
executing table scan.  If the clock pointer goes around in a full 
circle without finding a page to evict (all pages are still 
needed), then the buffer manager falls back to a traditional 
clock eviction policy. 

Lastly, the initial size of the bufferpool is specified as a 
database parameter, but the buffer manager has the ability to 
dynamically grow the bufferpool when needed to avoid 
bufferpool exhaustion errors.  It also has the ability to 
dynamically shrink the bufferpool to free up memory for other 
purposes and reduce the burden on the Java garbage collector. 

VI. THE HRDBMS OPTIMIZER 

The optimizer can be summarized as follows: 

 Phase 1 – traditional relational optimizations 

 Phase 2 – conversion to MapReduce-like 
workflow 

 Phase 3 – basic workflow optimizations 

 Phase 4 – advanced workflow optimizations 

 Phase 5 – indexes and miscellaneous 
optimizations 

Phase 1.  HRDBMS takes advantage of decades of research 
in relational query optimization to build efficient execution 
plans.  Query planning starts out very similar to query planning 
for a traditional relational database.  Standard transformations 
are applied.  This includes selection pushdown, where rows are 
eliminated as early as possible if it can be determined that they 
won’t be needed upstream.  We also do projection pushdown, 
where columns are eliminated as early as possible if they won’t 
be needed later.  These are not novel in and of themselves, and 
are well-documented elsewhere.  What is novel is the ability to 
apply these types of optimizations in a Big Data type of 
platform. 

The only other standard optimization worth mentioning is 
join enumeration. In a standard relational database, join 
enumeration is the process of figuring the best order for 
performing joins when queries contain more than 2 tables.  
This single step of the optimizer has more impact on the 
performance of the query than any other step.  There are 
several approaches to join enumeration, but they all share a 
common goal of trying to figure out a way of processing the 
least amount of data while still generating the correct result.  
As the number of tables involved in the query goes up, the 
number of possible ways that the joins can be done goes up 
dramatically.  The costs of these different join possibilities are 
usually several orders of magnitude in difference.  All 
traditional relational databases rely on statistics about the data 
to determine a good join order.  Since Big Data databases like 
Hive and Spark SQL don’t have statistics information (they 
only know the total size of each table), they do a very poor job 
of figuring out a good join order. 

There are many different algorithms developed over the 
years for doing join enumeration in a traditional relational 
database.  HRDBMS uses one of the simpler traditional join 
enumeration algorithms with a few changes.  It’s basically a 
greedy join enumeration [17].  HRDBMS uses statistics to 
estimate the number of rows that will be output by each join 
possibility.  It then orders the joins in a manner that attempts to 
minimize the sum of the number of rows processed by each 
join. The optimizer sometimes will choose an option that does 
not minimize this value if it instead allows us to take advantage 
of pre-existing data co-locality and the impact to the sum is not 
that great. 

The HRDBMS optimizer also generates all the transitive 
joins prior to doing join enumeration.  This can lead to even 
more possible join orderings and even faster query execution. 

For example, if the user specifies in their query that A = B 

AND B = C, we also that A = C as well even though it wasn’t 

explicitly stated in the query. 
 

Phase 2.  After the standard relational optimizations are 
applied, they operator tree is converted to a 
Map/Shuffle/Reduce type of workflow by phase 2 of the 
optimizer. This is a very naïve translation from an operator tree 
to a workflow.  It has all of the worker nodes read the 
necessary data from their local filesystems, send all of that data 
back to the coordinator node, and the coordinator node does all 
the query processing. 



Phase 3.  In phase 3 of the optimizer, we start to convert 
this into a much smarter workflow.  We go through and figure 
out how all the various relational operations can be applied in 
parallel across the workers.  For example, equi-joins can be 
performed in parallel as long as the data is distributed across 
workers based on the join key.  Aggregations (count, min, max, 
sum ,and average) can be performed in parallel without any 
explicit partitioning.  You just aggregate separately on each 
worker and then aggregate the aggregates again on the 
coordinator.  You do have to convert average into separate sum 
and count operations for this to work.  Likewise, sorts can be 
done in parallel by performing a final mergesort on the 
coordinator.  There’s corresponding rules for parallelization of 
all of the relational operators. 

Now that we’ve figured out how the data needs to be 
partitioned at each step of the process, we build a workflow 
that has map phases on each worker that do what work they 
can with the current data partitioning, they then do a non-
blocking shuffle to repartition the data in the manner needed by 
the next map phase.  So, at this point we basically have a chain 
of map-shuffle-map-shuffle-… and finally everyone maps back 
to the coordinator where a reduce does final aggregations and 
sorts. 

Phase 4.  In Phase 4 of the optimizer, we attempt to make 
the workflow better yet.  We now go through the workflow and 
track how the data is distributed in each map phase.  We then 
remove any shuffle operations that can be removed.  For 
example, if 1 map phase requires that the data is hash 
distributed by the value of column A (all rows with col A=x 
are on the same worker node) and the next map phase requires 
that the data is hash distributed by both column A (first) and 
column B (second), we can actually remove the shuffle 
operation since guaranteeing that all the common A values are 
on the same worker automatically implies that all the common 
(A,B) pairs are on the same worker.  Any time that we are able 
to remove a shuffle operation, we now have 2 map phases that 
are directly connected to each other.  These 2 map phases are 
then combined into a single map phase.  This is similar to the 
phase combination process used by Spark. 

Phase 5.  In Phase 5 of the optimizer, we evaluate replacing 
table scans with index scans or index probes.  If there is an 
index that contains all of the data that we need from the table 
and that index is smaller in number of pages than the table, we 
will scan the index instead of the table.  If there are predicates 
to be applied to the data that comes from the table scans, 
statistics estimate that a very small number of rows will pass 
the predicate, and we have an index available to support the 
predicate, we will replace the table scan with an index probe.  
In an index probe, we position in the index based on the 
predicate and then scan a very small subset of the index to find 
rows that qualify.  Instead of returning column data from the 
index probe, we return row identifiers (16 byte ID that unique 
represents a row in a table).  We then go fetch only the 
necessary pages and rows from the tables by row ID. 

Indexes in HRDBMS are represented both in memory and 
on disk as skip lists.  Skip lists for in memory indexes is fairly 
common in the database world, but I am not aware of indexes 
as skip lists being stored on disk.  Most databases store their 

indexes on disk as B+ trees.  HRDBMS originally had a B+ 
tree implementation, but it had a very negative impact on load 
performance due to pages splits and other reasons that records 
had to be moved around.  Replacing the B+ tree 
implementation with a (much simpler) skip list implementation 
greatly improved load performance and the difference in query 
performance was found to be statistically insignificant.  

In our implementation of skip lists on disk we are almost 
guaranteed that if we follow a down pointer that we remain on 
the same page.  If we follow a right pointer, we are almost 
guaranteed to go to a different page. If we use a promotion rate 
of 1/x, then the expected number of right pointers that have to 
be traversed at each level is x.  This means that for an index 
probe: 

Expected # page reads = x logx n 

If we solve for x to minimize this number, we get: 

  

 

 

So, we use a promotion rate of 1/e.  Just as with B+ tree 
indexes, the closer you get to the top of the skip list, the more 
likely that the page will be found in the bufferpool. 

All index and table data in HRDBMS is stored in 128KB 
pages.  Every 3 pages makes up a 384KB superblock, which is 
LZ4-HC compressed by itself before being stored on disk.  
LZ4 was chosen as it has decent compression ratio and speed, 
but more importantly it has extremely fast decompression [18].  
The decent compression ratio combined with the extremely fast 
decompression results in significant table/index scan 
performance improvements over not using compression. 

Lastly, phase 5 finishes with a few optimizations that didn’t 
fit well in any other phase. These miscellaneous steps are 
shown in the pseudocode below.  Finally, the execution plan is 
composed and it is submitted to the HRDBMS execution 
framework. 

The HRDBMS optimizer is over 11k lines of code (all of 
HRDBMS is over 150k lines), but the high-level pseudo code 
of the optimizer looks like this: 

Optimizer Pseudocode 

Phase 1 

 1) Push down selects 

 2) Join enumeration 

3) Products and selects combine to 
be joins 

4) Selects get pushed into table 
scans 



5) Push down projects 

6) Add projects for semi and anti 
joins 

Phase 2 

1) Determine if we can skip any 
nodes or disks when reading 
table/index data 

2) Build naïve workflow 

Phase 3 

 1) Push down group by across join 

2) Implement hierarchical shuffle 
where needed 

3) Parallelize the relational 
operations across the cluster by 
stringing together map and shuffle 
phases 

Phase 4 

1) Combine map phases by tracking 
data partitioning 

2) If we end up with a large sort at 
the end of the query on the 
coordinator, rewrite this as a 
parallel sort across workers with a 
mergesort on the coordinator 

3) Swap left/right children of hash 
joins so that the left side is 
always the higher cardinality 

Phase 5 

1) Replace table scans with index 
probes where it makes sense 

2) Tell large hash group by’s that 
they need to run externally (this is 
the only internal/external decision 
not made at runtime) 

3) Populate the workflow with 
statistics and cardinality 
information 

4) Parallel sorts across workers, 
followed by a mergesort and a limit 
on the coordinator get handled 
specially 

5) Replace table scans with index 
scans where it makes sense 

6) Figure out how to break the 
workflow up into pieces to be sent 
out such as to reduce the amount of 
data that has to be sent 

Here is an example of a query that joins a couple tables 
together and does aggregation.  This query will tell us how 
much money Canadian customers have spent.  The picture 
below shows the initial operator tree when parsing is complete 

and the final workflow that comes out of the HRDBMS 
optimizer. 

 

 



 

VII. EXPERIMENTAL RESULTS 

We have run micro benchmarks as well as the TPC-H 
benchmark at 100GB scale on clusters ranging from 4 to 32 

nodes.  All nodes are Amazon EC2 m3.2xlarge instances.  
These instances all have 8 cpus and 30GB of RAM.  HRDBMS 
was compared against Hive and DB2.   

Micro-benchmarks.  First we performed some micro-
benchmarks which show that HRDBMS is competitive with 
DB2 in all the key areas and greatly outperforms Hive. 

 

The table scan performance test measured how quickly the 
various databases could read a large table, apply a filter (where 
almost all rows pass), and return the data.  HRDBMS has 
excellent table scan performance due to parallel I/O and LZ4 
compression. 

 

The distributed join test measured how quickly the various 
databases could perform a non-local join.  That is, data first 
had to be shuffled before the join could be performed.  Hive 
suffers here because of its blocking shuffle and unnecessary 
materializations. 



 

The aggregation test scanned a table, applied a filter (where 
most rows passed), and then performed aggregation.  The filter 
was applied so that the aggregation could not be pre-computed 
and stored by the databases.  Both Hive and DB2 are sorting 
before doing the aggregation (Hive has no choice).  HRDBMS 
is instead doing hash aggregation, which we can see performs 
much better in this case. 

 

Unfrotunately, sorting in Hive is not handled very 
intelligently, and it’s again due to limitations of the platform.  
MapReduce is capable of doing sorts very fast, but the results 
are placed into multiple HDFS files, which then have to be 
appended in the correct order.  Since Hive needs the entire 
sorted set to be available to be returned to the client, it 
essentially just hands all the data to 1 node and sorts it (1 
reducer).  DB2 and HRDBMS correctly parallelize this sort 
across the cluster. 

 

Joins of a large number of tables is notoriously difficult as 
the performance largely depends on the join order.  It’s good to 
see that the HRDBMS optimizer was up to the task and 
performed well compared to DB2.  Hive, on the other hand, 

had to use a large number of MapReduce jobs to compute this 
result.  This meant a lot of unnecessary materialization to disk. 

TPC-H.  Next we ran the TPC-H analytics benchmark on 
HRDBMS, DB2, and Hive.  TPC-H is an industry standard 
benchmark for database performance when handling analytics 
queries.  The data model consists of 8 tables: ORDERS, 
LINEITEM, CUSTOMER, PART, SUPPLIER, PARTSUPP, 
NATION, and REGION.  The LINEITEM table is the bulk of 
the data.  At the 100GB scale, the LINEITEM table contains 
approximately 600M rows. The benchmark then consists of 22 
SQL queries that are designed to stress and expose weaknesses 
in database performance.  The queries are very complex and 
include 1 query that has 2 levels of nested correlated sub-
queries.  A correlated sub-query is an inner query that is meant 
to be re-evaluated for every row in the outer query. The queries 
cover ever core SQL feature and do so in tricky ways that are 
likely to confuse optimizers, but are still very realistic as a type 
of analytics query that a business would be likely to run.   

The results for TPC-H at the 100GB scale are shown 
below. 

 

As you can see, both DB2 and HRDBMS were 
significantly faster than Hive.  HRDBMS was slightly faster 
than DB2, but in general the performance was nearly 
equivalent.  However, if we look at only DB2 and HRDBMS 
and look at performance by query we gain some more insight. 
Here is the performance per query at the 4 node scale. 

 



Here we see that for the majority of the queries, HRDBMS 
outperforms DB2 fairly significantly. On queries 1 and 2, 
HRDBMS is slightly slower.  But, on queries 9, 17, and 18 
HRDBMS performance is significantly worse than DB2.  
Queries 17 and 18 require further research on my part to see 
what is going on.  On query #9, DB2 is taking a fairly non-
standard approach.  It is fetching only the columns that are 
available in the indexes, along with the associated RIDs.  It is 
then applying all the predicates and the joins.  At this point it 
has a smaller set of RIDs that have passed all conditions.  It is 
then going back and fetching the necessary rows from all the 
tables and actually joining those rows together. 

This type of approach would be very tricky to implement in 
an HRDBMS workflow.  It would likely require 2 separate 
workflows with materialization to disk in between.  I think that 
further testing will show that DB2’s method to executing this 
query will not scale very well to larger clusters.  I think that by 
restricting ourselves to what can be expressed as an HRDBMS 
worklow, the query will continue to scale well in HRDBMS. 

If we go to the other end of the spectrum and look at per 
query performance at 32 nodes, we get these results. 

 

Now we see clearly that query #9 is the biggest problem, 
and there may be minor improvements I can make there, but 
again I believe that DB2 will start to scale poorly for query #9 
when the cluster size is increased.  Query #1 is still a little 
slower.  Queries 17 and 18 still need to be addressed.  Query 2 
should be added to the list to look into further as well. 

These results show that we were able to meet goal #1 of 
HRDBMS.  We were able to create a MapReduce-like query 
execution engine capable of per node performance on par with 
a traditional MPP relational database.  Further testing is 
required to validate goal #2 of being able to scale to larger 
clusters than a database like DB2. 

VIII. FUTURE WORK 

Besides looking further at the performance of queries 2, 9, 
17, and 18, there are many other items on my list for future 
work. 

All testing so far has been done on clusters from 4 – 32 
nodes in size.  At these scales we still don’t see the point where 
the traditional relational databases (like DB2) start to have 
scalability issues.  Since the major premise of HRDBMS is to 
have on par per-node performance but scale further, we need to 

do some testing at these larger scales.  I’m sure this will 
uncover bottlenecks in certain areas of HRDBMS that will 
need to be researched and addressed. 

One of the challenges in testing with larger clusters is that 
we also need to use larger data sets.  If we scale to clusters 
larger than 32 nodes using the 100GB data set, we will hit the 
point where data fits in memory.  Traditional relational 
databases, such as DB2, excel in these types of situations and 
will out-perform HRDBMS by an order of magnitude.  This is 
not the intention or focus of HRDBMS to be a database for 
small data.  For doing analytics of big data on clusters, no one 
would ever even set up a cluster as big as 32 nodes just for 
100GB of data, so I don’t see this as a shortcoming of 
HRDBMS.  However, it does imply that we don’t want to scale 
larger than 320 nodes with the 1TB TPC-H data set, and so 
forth. 

To test with these larger data sets, I will have to spend 
some time researching and improving the load performance of 
HRDBMS.  Today it takes about 72 minutes to load the 
LINEITEM table (about 75% of the data) at 100GB and 4 
nodes.  The load scales well in that the same load only takes 20 
minutes at 16 nodes.  But, the overall load performance needs 
to be improved as taking 12 hours to load the LINEITEM table 
at 1TB and 4 nodes is way too slow. I believe this is a result of 
contention on locks used for synchronization (called latches in 
the DB world). 

I am also doing some other research and novel work with 
loads.  I have built a basic infrastructure that allows HRDBMS 
to sit on top of an HDFS cluster and then load the data from 
HDFS.  By doing this, we allow all of the cluster nodes to be 
reading and parsing the data.  If we don’t load from HDFS, all 
of this work is placed on a single coordinator node.  I still have 
a lot more research and work to do in this area before it is fully 
ready to go. 

Additionally, statistics collection performance needs a lot 
of work.  HRDBMS uses sampling to estimate the actual 
statistical values.  But, this sample-based statistics collection is 
not scaling well today.  It currently takes about 5 minutes at 4 
nodes, but takes 20 minutes at 32 nodes.  This needs to be 
investigated further. 

I would also like to add additional databases to the testing.  
This should include at least Spark SQL if not others. 

You’ll notice that query 13 is not listed in the charts in the 
previous section.  This is because HRDBMS does not yet have 
support for outer joins.  The majority of basic SQL 
functionality is already built except for this.  I consider this a 
major shortcoming that needs to be addressed. 

Fault tolerance is not yet implemented in HRDBMS, but 
the system is already rack-aware and aware of how data is 
partitioned across nodes and disks.  We plan to have HRDBMS 
maintain on-rack and off-rack replicas that can be used in the 
event of primary node failure.  This could be extended to 
preferring secondary copies of data for load balancing.  Data 
modifications affecting nodes that are down would be placed 
into pending-work queues.  The work in these queues must be 
completed and successfully committed before a node is 
allowed to rejoin the cluster. 



Lastly in the current HRDBMS architecture, the 
coordinator nodes can be a bottleneck.  This is because all data 
has to eventually flow back through the coordinator node 
before being returned to the client.  I’d like to do some research 
into removing this requirement.  I envision that the various 
worker nodes could potentially open socket connections 
directly back to the client and the client could receive from 
multiple streams in parallel.  Sorting could be handled by range 
partitioning the data across the workers and sorting before 
returning data to the client.  As long as all the workers in the 
sort were given an ID representing their position in the overall 
range, the client could piece together the sorted data without 
even needing to do a mergesort.  Likewise, the other final 
relational operations that are performed on the coordinator 
today could all be made to work in this type of manner.  This 
now pushes the bottleneck all the way back to the client, and I 
think it will result in some significant improvements. 
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