
HRDBMS: Combining the Best of Modern and

Traditional Relational Databases

Jason Arnold, Boris Glavic, Ioan Raicu

Department of Computer Science

IIT

Chicago, USA

jarnold6@hawk.iit.edu, bglavic@iit.edu, iraicu@cs.iit.edu

Abstract— HRDBMS is a novel distributed relational

database that uses a hybrid model combining the best of

traditional distributed relational databases and Big Data

analytics platforms such as Hive. This allows HRDBMS to

leverage years worth of research regarding query optimization,

while also taking advantage of the scalability of Big Data

platforms. The system uses an execution framework that is

tailored for relational processing, thus addressing some of the

performance challenges of running SQL on top of platforms such

as MapReduce and Spark. These include excessive

materialization of intermediate results, lack of a global cost-

based optimization, unnecessary sorting, lack of index support,

no statistics, no support for DML and ACID, and excessive

communication caused by the rigid communication patterns

enforced by these platforms.

Keywords—SQL, Big Data analytics, distributed query

processing, relational databases

I. INTRODUCTION

The increasing scale of data to be processed for analytics
has brought traditional database systems that scale only to a
few nodes to their limits. Massively Parallel Processing (MPP)
databases provide better scale out by parallelizing query
processing across multiple processors and nodes using a
shared-nothing architecture. While this proved to be effective
at very small numbers of nodes, this approach did not scale to
even medium-sized clusters. Examples of this type of
approach include DB2 from IBM. DB2 is limited to clusters of
1000 nodes or less, but in practice few customers go above 10s
of nodes. With extensive tuning, IBM has published some
benchmarks using clusters of up to 256 nodes. [1] Another
example of this type of solution is Netezza which is a database
appliance sold by IBM. The primary difference between
Netezza and DB2 is that Netezza runs on customized hardware,
which includes offloading some processing to FPGA cards.
The largest Netezza model today has 58 nodes. [2] Likewise,
Teradata and Greenplum, two popular MPP databases for large
analytics environments, have cluster size limits of 1024 [3] and
1000 [4] respectively.

Main-memory database systems based on columnar storage
proved to be more efficient than their row-based counterparts
for analytical queries and better exploit current hardware.
However, they suffer the same scalability issues as standard

MPP databases. For example, HANA is an extremely popular
columnar in-memory database. The largest HANA cluster that
has been reported is 56 nodes [5]. The reality is that while
many of these databases have system limits of around 1k
nodes, they fail to scale well even to 100s of nodes.

Recently, a new class of SQL engines has been built on top
of Big Data platforms such as MapReduce and Spark.
Examples of such systems are Hive [6], Spark SQL [7], Azure
SQL[8], Dremel [9], and many others. While these approaches
provide better scale out, their performance per node is poor,
because query execution is restricted by the programming and
execution model of the underlying platform. While the
performance per node is poor, the platforms that these
databases run on have been shown to scale to very large
clusters. For example, Yahoo! runs a 4.5k node Hadoop
cluster. [10]

HRDBMS, the system we present in this work, is an
architectural hybrid that combines the scale out of Big Data
analytics platforms with advanced query execution and
optimization of traditional databases. The goal of HRDBMS is
to create a database capable of scaling well past the 1k node
limit, while achieving per-node performance on par with
traditional MPP relational databases.

II. RELATED WORK

Traditional MPP databases, in-memory databases, and Big
Data platform databases all have a few other shortcomings as
well. HRDBMS attempts to address these too. For example,
many of these modern analytics databases do not support full
Data Manipulation Language (DML) operations. DML is a
subset of standard SQL that includes the INSERT, UPDATE,
and DELETE statements. Many of these databases also do not
support full transactional isolation and consistency (known as
ACID in the database world). The table below summarizes the
main shortcomings from section 1 plus these for some of the
most popular analytics databases in the enterprise world.

 Supports
Large
Clusters

Full
DML

Full
ACID

Good
performance
data > mem

Standard
syntax
for basic
SQL

Commodity
Hardware

DB2 X X X X X

Netezza X X X X

Teradata X X X X

Greenplum X X X X X

HANA X X X X

Hive X X X

Spark X X X

There’s also several database systems in the research world
that are trying to address similar shortcomings.

Most of these databases are only semi-relational and
therefore frequently do not use standard SQL as their query
language. As pointed out by others, many people believe that
large scale systems and relational models are mutually
exclusive. [8]

For example, Spanner [11] from Google is a semi-relational
database designed to scale to millions of nodes. Only
thousands of nodes at most would typically be used to support
an individual query, but Spanner provides the ability to isolate
different sets of data on different nodes and provides the ability
to do a large number of replicas on a global scale. The main
focus of Spanner though is cross data center replication of data
for availability in the event of data center loss. They forego
some of the things we expect from relational databases in order
to achieve their goal. For example, their query language is
SQL-like but is different enough to pose problems for using
Spanner with standard tooling. They also use a semi-relational
schema that is a cross between key/value pairs and standard
relational schemas. It’s basically a relational view of the data
built on top of a key/value store. But, it’s also a hierarchical
data structure in that all tables are defined in terms of where
they sit in the hierarchy that defines their relationship to other
tables. The authors state that this is for performance since the
hierarchy automatically defines what data should be co-
located. However, many real world data models can’t be
expressed in terms of simple hierarchies such as these.

Since the underlying storage engine is key/value store
based, primary indexes are not needed for efficient lookup by
primary key. However, it does make it challenging to
implement secondary index support, and in fact, Spanner does
not offer secondary index support today. The authors do point
out that some applications that use Spanner have built
application-side processes to mimic secondary indexes to get
the performance they need. HRDBMS, on the other hand,
allows you to create whatever secondary indexes you need.

F1 [12] is another database from Google that is built on top
of Spanner. F1 addresses some of the shortcomings of Spanner
such as lack of secondary indexes and lack of standard SQL

support. However, it does this by basically using Spanner as a
storage engine. F1 implements its own optimizer and uses its
own cluster of servers to do the actual query processing.
Because it relies on Spanner as the underlying storage engine
only, it foregoes the possibility of taking advantage of existing
co-locality in the data storage. The authors state that F1 scales
well to hundreds of servers, so it does not appear to solve the
scalability problem that traditional MPP databases face.

Dremel [9], yet another database from Google is designed
for analytics across thousands of cpus. But, it does lack DML
support. The data is read-only. Dremel also uses a nested data
model instead of a standard relational model and only offers a
SQL-like query language.

None of the previously mentioned databases have
published any performance data for TPC-H or other standard
analytics workloads, so it’s difficult to ascertain where they lie
in the performance spectrum.

Azure SQL (SQL Azure / Cloud SQL Server) [8] is much
more similar to HRDBMS in that their major focus is on
supporting a standard relational model and standard SQL.
They also are focused on supporting ACID in an analytics
environment, although they only offer ACID guarantees for
certain types of transactions today.

Related to this area of research is the topic of key/value
stores, such as ZHT. [13] As previously mentioned Spanner is
a semi-relational database built on top of a key/value store.
Much more progress has been made in building scalable
key/value stores, so it is a reasonable approach. The problem
is that key/value stores in and of themselves do not provide the
features needed for analytics. As mentioned with Spanner, the
underlying key/value store makes it difficult to implement
secondary indexes. When F1 addressed these and other issues
by building on top of Spanner it lost much of the scalability
that Spanner had. Furthermore, key/value stores in and of
themselves do not offer a query language capable of expressing
complex analytics queries. They also generally do not have
optimizers, since the means to respond to certain data requests
is usually obvious. Complex analytics queries on the other
hand rely on a very expressive query language and heavy use
of optimization.

In the following sections, we will cover how HRDBMS
combines the best of both the traditional relational database
world and the Big Data platform database world. The key
contributions of each area are summarized here.

 Traditional relational databases

o Query optimization

o Pipelining

o Use of statistics to optimize

o Ability to perform operations externally if not
enough memory is available

 Big Data platform databases

o Map/Combine/Reduce/Shuffle computation
model

o Phase combination (from Spark) to reduce
communications

HRDBMS combines the best of both of these worlds by:

 Starting with a standard operator tree
representation of the query

 Applying standard relational optimizations, using
statistics

 Converting to a Map/Combine/Shuffle/Reduce
representation

 Pipelining in the execution engine

 Using a custom non-blocking shuffle in the
execution engine

 Allowing operations to spill to disk (external) if
need be

 Using a more flexible map/reduce model that
allows chaining of map and combine phases
without intervening reduce phases

The key novel contributions of HRDBMS are:

 A database optimizer that is capable of performing
traditional relational database optimizations but
then converting that to an optimized MapReduce-
like job.

 A custom MapReduce-like execution engine that
is tailored for and tuned for database operations
and relational algebra.

 A more flexible shuffle that reduces the network
communications burden for large clusters.

 The rest of this paper is organized as follows. Section 3
defines key relational database concepts that are required for
understanding the rest of the paper. Section 4 describes the
general architecture of an HRDBMS database cluster. Section
5 provides details on the custom execution engine. Section 6

explains the workings of the optimizer. Section 7 shows
experimental results to date. Finally, section 8 discusses some
of our thoughts for future research.

III. KEY RELATIONAL DATABASE CONCEPTS

Throughout the rest of this paper we will be discussing
many concepts that are taken for granted in the database world
that may be foreign to some of the readers. This section
provides an introduction to the key concepts that are required
to understand the rest of the paper.

SQL – SQL is the language used to communicate
commands with a database server. It consists both of SELECT
statements, which represent queries, as well as
INSERT/UPDATE/DELETE statements, which modify the
data. The statements that modify data are typically called Data
Manipulation Language (DML) statements.

Tables – Data in a relational database is organized and
stored in tables. Each table has a unique name. The data in the
tables is organized into rows and columns. A row represents a
record. A row is made of multiple columns, each with a pre-
defined data type. SQL statements are only valid if they
perform valid operations against valid data types. For
example, we can’t add columns A and B if they are not both
numeric. We can’t perform a substring on a column unless it is
character data.

Indexes – Many queries contain predicates (filter
conditions) that can be logically ANDed or ORed together in
the WHERE clause of a SELECT statement. If there are few
enough rows that will satisfy a certain predicate (selectivity in
DB jargon), it may be beneficial to build an index to support
that predicate. An index is an ordered tree structure that allows
the database to quickly determine which rows in a table will
satisfy a predicate instead of reading (scanning) the whole
table. The index will return a set of row ids (RIDs) and then
only these rows are fetched.

Query optimization – When a SQL query enters the system,
it is parsed and converted to a tree structure of relational
operators that will produce the correct result. The goal of an
optimizer is to use relational algebra equalities to reorder and
restructure the tree of relational operators so that the same end
result is achieved in a much more efficient manner. Query
optimizers typically improve performance by several orders of
magnitude over the naïve representation that comes out of the
parser. The decision of whether to use an index or do a table
scan is an example of one of the types of decisions that the
optimizer needs to make. Query optimization is a notoriously
hard problem with a huge search space, so frequently heuristics
are used to limit the number of possibilities that have to be
considered.

Join – In a relational database, a join is the union of
columns from 2 different tables into a single row based on
some predicate that spans the 2 tables. For example, assume we
have the following 2 tables.

A join on Advisor_ID would give us the following result.

[14]

Distributed Join – When a relational database runs on a
cluster, it has to perform joins in a distributed manner. In other
words, it wants to be able to execute joins in parallel across all
of the nodes of the cluster. The most common method for
doing this is to redistribute all of the data across the cluster by
hashing on the join key (in the case of equality predicates).
This guarantees that the rows that need to be joined together
from the left and right side of the join will be on the same
node. This then allows the join to be computed as numerous
parallel joins on each node followed by the union of all of the
results.

Semi-join – A semi-join is like a join except that none of
the data from the right-hand part of the join is included in the
output result. Instead, only rows that have a match (based on
the join predicate) in the right-hand side are included in the
output result. An anti-join is the opposite of this. Only rows
from the left-hand side that do not have a match on the right-
hand side (based on the join predicate) are included in the
output result. Therefore, semi-joins are frequently referred to
as existence tests (in fact they correspond directly to the
EXISTS keyword in SQL), and anti-joins are referred to as
non-existence tests (NOT EXISTS in SQL).

Two Phase Commit (2PC / XA) – Two phase commit is a
standard protocol for ensuring that transactions that span
multiple machines all commit together on every machine or all
rollback together on every machine. HRDBMS uses a custom
variant of the 2PC protocol that uses hierarchical network

communications and aggregated responses to make the
protocol faster for larger clusters.

IV. HIGH LEVEL ARCHITECTURE

An HRDBMS cluster is divided into coordinator and
worker nodes. Coordinator nodes store metadata and are
responsible for query optimization. Worker nodes are used for
user data storage and the majority of query execution work.
Clients submit SQL commands to a coordinator node. The
coordinator node parses and optimizes incoming queries using
data distribution statistics and partitioning information stored
in system tables which are replicated across coordinators. Like
traditional relational systems, HRDBMS uses a cost-based
optimizer (Section VI). The output of the optimizer is a query
workflow, which is submitted for execution to the cluster. The
workflow executes across the worker nodes on the custom
MapReduce based platform (Section V). Query results are
eventually sent back to the coordinator that planned the query.
Final sorts or aggregations may occur on the coordinator, if
they are cheap enough. The coordinator then forwards the
result set to the client.

When a query is received by a coordinator node, it first has
to go through parsing. This is no different than any of the
systems previously mentioned. However, differences start
coming up almost immediately after that. First of all after the
query is parsed, it is converted from an abstract syntax tree to a
tree of relational operators (select, project, union, join, etc).
This is a standard representation for queries in traditional
relational databases. Next, statistics are used to apply standard
relational optimizations to the operator tree. Big Data databases
like Spark SQL and Hive generally do not have statistics other
than total data size. In contrast, traditional relational operator
tree optimizations rely heavily on statistics (cardinality stats,
distribution stats, and more). The statistics are stored in system
metadata tables that reside on all coordinator nodes. The data
required to parse and verify that queries are valid is also stored
in these system metadata tables. These system metadata tables
are no different than user data tables, other than the fact that
they (and they alone) reside on the coordinator nodes. They
are queryable, but not updatable, by users.

From there, the query is converted to a workflow format
and additional optimizations are carried out. These will be
covered in detail in section V.

Finally, the coordinator submits the workflow to the
execution engine and return results to the client. Since
HRDBMS does support transactions, this workflow may be
one of many that is part of the same transaction. The
coordinator is also responsible for tracking and managing
transactions until they either commit or rollback. This requires
the coordinator to have a number of other services available to
it. This includes logging services (both for changes to system
metadata tables as well as a two phase commit log). It has XA
(2PC) coordinator services, which uses a custom hierarchical
two phase commit protocol. It has locking services. For
example, if someone is currently loading a table, you shouldn’t
be able to query against it until the load finishes. It has
buffering services, so that pages need not always be read from
disk. This is another item noticeably lacking in Big Data
databases. Lastly, the coordinator nodes have full blown
execution engine capabilities, although they are normally only
used for executing single node workflows that handle metadata
table queries.

The worker nodes are very similar in architecture to the
coordinator nodes. They contain the logging services
necessary for handling transactions against the user data. They
contain the locking services necessary for handling those
transactions. They also contain the buffering services to avoid
as many reads to disk. However instead of being able to act as
XA coordinators, they have the ability to act as XA slaves, and
XA intermediaries. XA intermediaries are used to forward XA
messages as part of the custom XA implementation I have
written and to aggregate XA responses. They also contain a
full-blown execution engine, although the worker execution
engines will typically be much more active than the
coordinator execution engines since they handle the majority of
query processing.

HRDBMS has full DML support unlike Hive and Spark
SQL. These restrictions in Hive and Spark SQL primarily
come about because they rely on HDFS, the Hadoop
filesystem. HDFS only supports append operations to files. It
does not support rewriting existing contents. This makes it
very challenging to support full INSERT/UPDATE/DELETE
capabilities. Since HRDBMS does not use HDFS, it does not
suffer these shortcomings.

As mentioned previously, HRDBMS also deploys a
handful of common services on each node which allows it to
support transactions. Hive and Spark SQL rely solely on the
underlying workflow engine and do not have specialized
components deployed to each node. Thus they cannot handle
transactions.

HRDBMS is also designed from the ground up to handle
large data volumes and does not rely on being able to fit data in
memory. All possible workflow actions are also designed to be
able to run in memory or externally depending on the amount
of memory available versus the amount required.

HRDBMS is not fully ANSI SQL 92 compliant, but all of
the basic SQL constructs that are used in the majority of

queries use standard SQL 92 syntax. As previously mentioned,
many of the other databases in this space do not support
standard SQL syntax.

Lastly, HRDBMS can run on any type of hardware. It is
written in Java and is easily portable to any system capable of
supporting a Linux-like filesystem. Additionally, HRDBMS
can offload some of its processing to GPUs, if they are present.

V. HRDBMS’S DISTRIBUTED EXECUTION ENGINE

While also executing queries as tasks that run
independently on worker nodes like Big Data platforms do,
HRDMBS pipelines operations (even across nodes), enforces
data locality, makes use of index structures, and
opportunistically materializes intermediate results to disk if
they do not fit into main memory. In HRDBMS there is no
separation of jobs into phases. Operators of a query
immediately start consuming their inputs when they become
available.

Some of the major enhancements of the custom execution
engine are summarized in the following sub-sections.

 Pipelined Execution. Pipelining is a standard practice in
many traditional relational databases that greatly helps improve
performance [15]. Basically, a call to retrieve the next record
from one task produces a call to retrieve the next record out of
the previous task. The necessary transformations on that
record are performed and the record is returned. Pipelining
such as this is frequently many levels deep in relational
databases, as long as a blocking operation does not intervene.
In fact, HRDBMS may choose to sort buckets in parallel and
then mergesort even when a sort fits in memory because only
the sorting of the buckets blocks, while the mergesort does not.

A major contributor to the poor performance of Hive is
excessive materialization. A query may require multiple map-
reduce phases and during each phase intermediate results are
written to disk twice – once to local disk at the end of the map
phase and once to HDFS at the end of the reduce phase.
Systems such as Spark address this problem, but still divide
jobs into phases that execute sequentially. In HRDBMS, we
forego the use of phases altogether and string a series of tasks
together with shuffles in between them to redistribute data
across nodes. These tasks can perform any set of relational
operators, including aggregation. A task can start processing
data before a previous task, producing its inputs, has finished
execution. In fact for some queries, all of the tasks involved in
the query may immediately begin to do work when query
execution starts. This is made possible by pipelining and other
innovations such as the non-blocking shuffle covered next.

Non-blocking Shuffle. In Hadoop and Spark, a shuffle
operation redistributes records across the cluster. In Hadoop a
shuffle is always a blocking operation since it sorts the records
it is shuffling. This is because Reducer tasks expect the data to
be received in sorted order within each key. Almost all
relational database operations can be performed without this
requirement. Therefore, we can eliminate this overhead,
except where absolutely required. Spark can sometimes skip
the sort step, but it still finishes processing its entire input
before it starts sending data. Spark will still perform a sort

during the shuffle if the shuffle will be followed by an
aggregation operation. This is unnecessary as aggregation
operations can be performed equally as efficiently using
hashing as long as your aggregation operation can spill hash
buckets to disk. Even when not sorting, Spark still uses a
blocking shuffle since it hashes (and spills to disk) all of the
records to be shuffled before sending any data out. This is so
that it can limit the number of socket connections that it needs
to have open at any given time when sending data. Basically it
opens one hash bucket at a time and only needs to have open
sockets for the nodes/keys that bucket contains. Then it moves
on to the next hash bucket.

HRDBMS implements a non-blocking shuffle operation
that partitions tuples across nodes using hashing. It does this
without sorting and without spilling to disk. Tuples with the
same hash value are guaranteed to be sent to the same node,
but the shuffle does not guarantee any sort order within the set
of tuples sent to a node. This does mean that HRDBMS is
sending over multiple sockets at the same time. However,
HRDBMS limits the amount of network overhead using a
different approach that we call “hierarchical shuffle”. When
the number of other nodes that a node must communicate with
becomes large, hierarchical shuffle kicks in. In a hierarchical
shuffle, each node only communicates with a set of neighbors,
which is a subset of the cluster. These neighbors can then
forward data on to yet other nodes if needed. The hierarchical
shuffle gives us hard limits on the number of socket
connections that a shuffle will concurrently open, while still
giving us the ability to shuffle in a non-blocking manner
without the need to externalize to disk.

Intra Task Parallelism. Tasks within one node are
inherently parallel. Each task is defined in terms of the I/O and
relational operations it will perform. HRDBMS is designed
such that it is easy to construct tasks which perform different
relational operations in parallel, do I/O in parallel, and even use
parallelism within the execution of a single relational operator.
For example, table data is not only partitioned across nodes,
but also partitioned across disk drives on each node. A separate
I/O thread is assigned to each disk. This means that if a table
needs to be scanned on some worker node, all disks are
scanned in parallel, and any filter conditions that can be pushed
down to the scan level are applied to the data in parallel.
Furthermore, other complex operations such as joins, sorts, and
aggregation are inherently performed using parallelization
within each task on each worker node.

External Operations. All relational operations that are
pushed into tasks in the query workflow have the ability to be
performed in memory or externally, spilling data to disk as
needed. This decision is made at runtime based on the current
available memory and statistics which predict the amount of
memory that will be required. Contrast this with Hadoop and
Spark, which sometimes force data to be materialized for
certain operations, although they may have been able to be
performed in memory. Also, there are cases where Hive or
Spark just fails if something can’t fit in memory, whereas
HRDBMS will just choose to perform that operation
externally.

Storage. Instead of using a distributed file system such as
HDFS, we store data directly on the local filesystem of worker
nodes. Tables may be hash or range partitioned or duplicated
across all nodes, in the case of small tables. The coordinator
nodes track how table data is spread across worker nodes and
uses this information during optimization. Data locality is
enforced. This means that data is always read on the worker
node where it resides. Contrast this with Hive or Spark SQL,
where the database can only state this as a preference to the
underlying execution engine. This preference may or may not
be honored. This can result in non-local reads and destruction
of any pre-existing co-location that may exist.

Predicate Cache. HRDBMS uses a predicate cache to
further speed up table scan operations. If HRDBMS has
previously seen a predicate and determined that a certain page
has no rows that qualify for the predicate, this information is
cached. If we then see the same or a stronger predicate, we
don’t have to even read certain pages.

Cache says: Page 5, no rows qualify for A > 5

We know: Page 5, no rows qualify for A > 10 is

also true

The information in this cache is selectively invalidated if a
page changes. I am aware of some databases that pre-calculate
some of this information on selected columns ahead of time,
with the assumption that deletes and updates will be rare and
inserts will be appended. This data will then be recalculated
when a table reorganization occurs. I am not aware of any
database that calculates, caches, invalidates, and recalculates
this information at runtime without reorganization.

Hash Joins. HRDBMS exclusively uses hash joins for any
join operations that have at least 1 equality join condition.
Given the importance of hash joins in HRDBMS, it was
important to make them perform well. Therefore HRDBMS
has a rather sophisticated hash join implementation. First of all
hash joins can be completely in-memory, partially in-memory,
or fully external. Partial in-memory hash joins are like hybrid
hash joins where the first bucket is never written to disk.
HRDBMS extends this by allowing the first n buckets to never
be written to disk. The value of n is dynamically determined at
runtime based on current memory availability and statistical
information that is included in the workflow.

Secondly, data is stored in a compressed format in the in-
memory hash tables. This allows us to fit more rows in
memory and/or use less memory. This is important for
performance for 2 reasons. First of all, it obviously has the
potential to reduce the amount of data that must be written to
and read from disk (by fitting more in memory). But, since
HRDBMS is written in Java, it also allows us to perform fully
in memory hash joins using less memory than would be
required otherwise. This reduces the burden on the Java
garbage collector and greatly improves performance. Testing
shows us that the biggest impediment to further performance
gains is Java garbage collection overhead.

Lastly, the hash join implementation makes heavy use of
bloom filters. Many other databases use bloom filters for semi-
joins [16]. HRDBMS uses bloom filters for hash joins, semi-
joins (existence), and anti-joins (non-existence) since all three
operations are implemented using the same hash join code.
Basically both sides of the join compute a bloom filter as they
are reading. When one side finishes reading its input data, it
shares its bloom filter with the other side. That bloom filter is
then applied to any further data read by that side.

Buffer Manager. The buffer manager in HRDBMS is also
rather complex given the impact that buffering can have. The
fact that HRDBMS even has a buffer manager is one of the
major reasons why it so greatly outperforms Hive, as will be
shown in section VII. The buffer manager caches both table
and index pages. When part of the executing workflow needs a
page, it informs the buffer manager. This page request can be
either synchronous (I need this page now) or asynchronous (I
need this page soon, please go get it and I’ll tell you when I
need it). This allows the workflow to do other work while the
I/O (if necessary) occurs. If the page is present in the cache (or
in DB jargon, the bufferpool), no disk I/O needs to occur.

After trying many different traditional and non-traditional
cache eviction policies, I determined that the best approach
was a standard “clock” eviction policy with a twist. The twist
is that when a table scan operation starts, it informs the buffer
manager about the entire set of pages that it will read (this
starts off as being the whole table). As it reads, it informs the
buffer manager about its progress, and the buffer manager
updates its list of pages that are still going to be requested in
the near future. When the buffer manager needs to evict a page
to make room for a new one, it uses the standard clock eviction
policy with the caveat that it attempts to find a page that is not
currently registered as “still being needed” by any currently
executing table scan. If the clock pointer goes around in a full
circle without finding a page to evict (all pages are still
needed), then the buffer manager falls back to a traditional
clock eviction policy.

Lastly, the initial size of the bufferpool is specified as a
database parameter, but the buffer manager has the ability to
dynamically grow the bufferpool when needed to avoid
bufferpool exhaustion errors. It also has the ability to
dynamically shrink the bufferpool to free up memory for other
purposes and reduce the burden on the Java garbage collector.

VI. THE HRDBMS OPTIMIZER

The optimizer can be summarized as follows:

 Phase 1 – traditional relational optimizations

 Phase 2 – conversion to MapReduce-like
workflow

 Phase 3 – basic workflow optimizations

 Phase 4 – advanced workflow optimizations

 Phase 5 – indexes and miscellaneous
optimizations

Phase 1. HRDBMS takes advantage of decades of research
in relational query optimization to build efficient execution
plans. Query planning starts out very similar to query planning
for a traditional relational database. Standard transformations
are applied. This includes selection pushdown, where rows are
eliminated as early as possible if it can be determined that they
won’t be needed upstream. We also do projection pushdown,
where columns are eliminated as early as possible if they won’t
be needed later. These are not novel in and of themselves, and
are well-documented elsewhere. What is novel is the ability to
apply these types of optimizations in a Big Data type of
platform.

The only other standard optimization worth mentioning is
join enumeration. In a standard relational database, join
enumeration is the process of figuring the best order for
performing joins when queries contain more than 2 tables.
This single step of the optimizer has more impact on the
performance of the query than any other step. There are
several approaches to join enumeration, but they all share a
common goal of trying to figure out a way of processing the
least amount of data while still generating the correct result.
As the number of tables involved in the query goes up, the
number of possible ways that the joins can be done goes up
dramatically. The costs of these different join possibilities are
usually several orders of magnitude in difference. All
traditional relational databases rely on statistics about the data
to determine a good join order. Since Big Data databases like
Hive and Spark SQL don’t have statistics information (they
only know the total size of each table), they do a very poor job
of figuring out a good join order.

There are many different algorithms developed over the
years for doing join enumeration in a traditional relational
database. HRDBMS uses one of the simpler traditional join
enumeration algorithms with a few changes. It’s basically a
greedy join enumeration [17]. HRDBMS uses statistics to
estimate the number of rows that will be output by each join
possibility. It then orders the joins in a manner that attempts to
minimize the sum of the number of rows processed by each
join. The optimizer sometimes will choose an option that does
not minimize this value if it instead allows us to take advantage
of pre-existing data co-locality and the impact to the sum is not
that great.

The HRDBMS optimizer also generates all the transitive
joins prior to doing join enumeration. This can lead to even
more possible join orderings and even faster query execution.

For example, if the user specifies in their query that A = B

AND B = C, we also that A = C as well even though it wasn’t

explicitly stated in the query.

Phase 2. After the standard relational optimizations are
applied, they operator tree is converted to a
Map/Shuffle/Reduce type of workflow by phase 2 of the
optimizer. This is a very naïve translation from an operator tree
to a workflow. It has all of the worker nodes read the
necessary data from their local filesystems, send all of that data
back to the coordinator node, and the coordinator node does all
the query processing.

Phase 3. In phase 3 of the optimizer, we start to convert
this into a much smarter workflow. We go through and figure
out how all the various relational operations can be applied in
parallel across the workers. For example, equi-joins can be
performed in parallel as long as the data is distributed across
workers based on the join key. Aggregations (count, min, max,
sum ,and average) can be performed in parallel without any
explicit partitioning. You just aggregate separately on each
worker and then aggregate the aggregates again on the
coordinator. You do have to convert average into separate sum
and count operations for this to work. Likewise, sorts can be
done in parallel by performing a final mergesort on the
coordinator. There’s corresponding rules for parallelization of
all of the relational operators.

Now that we’ve figured out how the data needs to be
partitioned at each step of the process, we build a workflow
that has map phases on each worker that do what work they
can with the current data partitioning, they then do a non-
blocking shuffle to repartition the data in the manner needed by
the next map phase. So, at this point we basically have a chain
of map-shuffle-map-shuffle-… and finally everyone maps back
to the coordinator where a reduce does final aggregations and
sorts.

Phase 4. In Phase 4 of the optimizer, we attempt to make
the workflow better yet. We now go through the workflow and
track how the data is distributed in each map phase. We then
remove any shuffle operations that can be removed. For
example, if 1 map phase requires that the data is hash
distributed by the value of column A (all rows with col A=x
are on the same worker node) and the next map phase requires
that the data is hash distributed by both column A (first) and
column B (second), we can actually remove the shuffle
operation since guaranteeing that all the common A values are
on the same worker automatically implies that all the common
(A,B) pairs are on the same worker. Any time that we are able
to remove a shuffle operation, we now have 2 map phases that
are directly connected to each other. These 2 map phases are
then combined into a single map phase. This is similar to the
phase combination process used by Spark.

Phase 5. In Phase 5 of the optimizer, we evaluate replacing
table scans with index scans or index probes. If there is an
index that contains all of the data that we need from the table
and that index is smaller in number of pages than the table, we
will scan the index instead of the table. If there are predicates
to be applied to the data that comes from the table scans,
statistics estimate that a very small number of rows will pass
the predicate, and we have an index available to support the
predicate, we will replace the table scan with an index probe.
In an index probe, we position in the index based on the
predicate and then scan a very small subset of the index to find
rows that qualify. Instead of returning column data from the
index probe, we return row identifiers (16 byte ID that unique
represents a row in a table). We then go fetch only the
necessary pages and rows from the tables by row ID.

Indexes in HRDBMS are represented both in memory and
on disk as skip lists. Skip lists for in memory indexes is fairly
common in the database world, but I am not aware of indexes
as skip lists being stored on disk. Most databases store their

indexes on disk as B+ trees. HRDBMS originally had a B+
tree implementation, but it had a very negative impact on load
performance due to pages splits and other reasons that records
had to be moved around. Replacing the B+ tree
implementation with a (much simpler) skip list implementation
greatly improved load performance and the difference in query
performance was found to be statistically insignificant.

In our implementation of skip lists on disk we are almost
guaranteed that if we follow a down pointer that we remain on
the same page. If we follow a right pointer, we are almost
guaranteed to go to a different page. If we use a promotion rate
of 1/x, then the expected number of right pointers that have to
be traversed at each level is x. This means that for an index
probe:

Expected # page reads = x logx n

If we solve for x to minimize this number, we get:

So, we use a promotion rate of 1/e. Just as with B+ tree
indexes, the closer you get to the top of the skip list, the more
likely that the page will be found in the bufferpool.

All index and table data in HRDBMS is stored in 128KB
pages. Every 3 pages makes up a 384KB superblock, which is
LZ4-HC compressed by itself before being stored on disk.
LZ4 was chosen as it has decent compression ratio and speed,
but more importantly it has extremely fast decompression [18].
The decent compression ratio combined with the extremely fast
decompression results in significant table/index scan
performance improvements over not using compression.

Lastly, phase 5 finishes with a few optimizations that didn’t
fit well in any other phase. These miscellaneous steps are
shown in the pseudocode below. Finally, the execution plan is
composed and it is submitted to the HRDBMS execution
framework.

The HRDBMS optimizer is over 11k lines of code (all of
HRDBMS is over 150k lines), but the high-level pseudo code
of the optimizer looks like this:

Optimizer Pseudocode

Phase 1

 1) Push down selects

 2) Join enumeration

3) Products and selects combine to
be joins

4) Selects get pushed into table
scans

5) Push down projects

6) Add projects for semi and anti
joins

Phase 2

1) Determine if we can skip any
nodes or disks when reading
table/index data

2) Build naïve workflow

Phase 3

 1) Push down group by across join

2) Implement hierarchical shuffle
where needed

3) Parallelize the relational
operations across the cluster by
stringing together map and shuffle
phases

Phase 4

1) Combine map phases by tracking
data partitioning

2) If we end up with a large sort at
the end of the query on the
coordinator, rewrite this as a
parallel sort across workers with a
mergesort on the coordinator

3) Swap left/right children of hash
joins so that the left side is
always the higher cardinality

Phase 5

1) Replace table scans with index
probes where it makes sense

2) Tell large hash group by’s that
they need to run externally (this is
the only internal/external decision
not made at runtime)

3) Populate the workflow with
statistics and cardinality
information

4) Parallel sorts across workers,
followed by a mergesort and a limit
on the coordinator get handled
specially

5) Replace table scans with index
scans where it makes sense

6) Figure out how to break the
workflow up into pieces to be sent
out such as to reduce the amount of
data that has to be sent

Here is an example of a query that joins a couple tables
together and does aggregation. This query will tell us how
much money Canadian customers have spent. The picture
below shows the initial operator tree when parsing is complete

and the final workflow that comes out of the HRDBMS
optimizer.

VII. EXPERIMENTAL RESULTS

We have run micro benchmarks as well as the TPC-H
benchmark at 100GB scale on clusters ranging from 4 to 32

nodes. All nodes are Amazon EC2 m3.2xlarge instances.
These instances all have 8 cpus and 30GB of RAM. HRDBMS
was compared against Hive and DB2.

Micro-benchmarks. First we performed some micro-
benchmarks which show that HRDBMS is competitive with
DB2 in all the key areas and greatly outperforms Hive.

The table scan performance test measured how quickly the
various databases could read a large table, apply a filter (where
almost all rows pass), and return the data. HRDBMS has
excellent table scan performance due to parallel I/O and LZ4
compression.

The distributed join test measured how quickly the various
databases could perform a non-local join. That is, data first
had to be shuffled before the join could be performed. Hive
suffers here because of its blocking shuffle and unnecessary
materializations.

The aggregation test scanned a table, applied a filter (where
most rows passed), and then performed aggregation. The filter
was applied so that the aggregation could not be pre-computed
and stored by the databases. Both Hive and DB2 are sorting
before doing the aggregation (Hive has no choice). HRDBMS
is instead doing hash aggregation, which we can see performs
much better in this case.

Unfrotunately, sorting in Hive is not handled very
intelligently, and it’s again due to limitations of the platform.
MapReduce is capable of doing sorts very fast, but the results
are placed into multiple HDFS files, which then have to be
appended in the correct order. Since Hive needs the entire
sorted set to be available to be returned to the client, it
essentially just hands all the data to 1 node and sorts it (1
reducer). DB2 and HRDBMS correctly parallelize this sort
across the cluster.

Joins of a large number of tables is notoriously difficult as
the performance largely depends on the join order. It’s good to
see that the HRDBMS optimizer was up to the task and
performed well compared to DB2. Hive, on the other hand,

had to use a large number of MapReduce jobs to compute this
result. This meant a lot of unnecessary materialization to disk.

TPC-H. Next we ran the TPC-H analytics benchmark on
HRDBMS, DB2, and Hive. TPC-H is an industry standard
benchmark for database performance when handling analytics
queries. The data model consists of 8 tables: ORDERS,
LINEITEM, CUSTOMER, PART, SUPPLIER, PARTSUPP,
NATION, and REGION. The LINEITEM table is the bulk of
the data. At the 100GB scale, the LINEITEM table contains
approximately 600M rows. The benchmark then consists of 22
SQL queries that are designed to stress and expose weaknesses
in database performance. The queries are very complex and
include 1 query that has 2 levels of nested correlated sub-
queries. A correlated sub-query is an inner query that is meant
to be re-evaluated for every row in the outer query. The queries
cover ever core SQL feature and do so in tricky ways that are
likely to confuse optimizers, but are still very realistic as a type
of analytics query that a business would be likely to run.

The results for TPC-H at the 100GB scale are shown
below.

As you can see, both DB2 and HRDBMS were
significantly faster than Hive. HRDBMS was slightly faster
than DB2, but in general the performance was nearly
equivalent. However, if we look at only DB2 and HRDBMS
and look at performance by query we gain some more insight.
Here is the performance per query at the 4 node scale.

Here we see that for the majority of the queries, HRDBMS
outperforms DB2 fairly significantly. On queries 1 and 2,
HRDBMS is slightly slower. But, on queries 9, 17, and 18
HRDBMS performance is significantly worse than DB2.
Queries 17 and 18 require further research on my part to see
what is going on. On query #9, DB2 is taking a fairly non-
standard approach. It is fetching only the columns that are
available in the indexes, along with the associated RIDs. It is
then applying all the predicates and the joins. At this point it
has a smaller set of RIDs that have passed all conditions. It is
then going back and fetching the necessary rows from all the
tables and actually joining those rows together.

This type of approach would be very tricky to implement in
an HRDBMS workflow. It would likely require 2 separate
workflows with materialization to disk in between. I think that
further testing will show that DB2’s method to executing this
query will not scale very well to larger clusters. I think that by
restricting ourselves to what can be expressed as an HRDBMS
worklow, the query will continue to scale well in HRDBMS.

If we go to the other end of the spectrum and look at per
query performance at 32 nodes, we get these results.

Now we see clearly that query #9 is the biggest problem,
and there may be minor improvements I can make there, but
again I believe that DB2 will start to scale poorly for query #9
when the cluster size is increased. Query #1 is still a little
slower. Queries 17 and 18 still need to be addressed. Query 2
should be added to the list to look into further as well.

These results show that we were able to meet goal #1 of
HRDBMS. We were able to create a MapReduce-like query
execution engine capable of per node performance on par with
a traditional MPP relational database. Further testing is
required to validate goal #2 of being able to scale to larger
clusters than a database like DB2.

VIII. FUTURE WORK

Besides looking further at the performance of queries 2, 9,
17, and 18, there are many other items on my list for future
work.

All testing so far has been done on clusters from 4 – 32
nodes in size. At these scales we still don’t see the point where
the traditional relational databases (like DB2) start to have
scalability issues. Since the major premise of HRDBMS is to
have on par per-node performance but scale further, we need to

do some testing at these larger scales. I’m sure this will
uncover bottlenecks in certain areas of HRDBMS that will
need to be researched and addressed.

One of the challenges in testing with larger clusters is that
we also need to use larger data sets. If we scale to clusters
larger than 32 nodes using the 100GB data set, we will hit the
point where data fits in memory. Traditional relational
databases, such as DB2, excel in these types of situations and
will out-perform HRDBMS by an order of magnitude. This is
not the intention or focus of HRDBMS to be a database for
small data. For doing analytics of big data on clusters, no one
would ever even set up a cluster as big as 32 nodes just for
100GB of data, so I don’t see this as a shortcoming of
HRDBMS. However, it does imply that we don’t want to scale
larger than 320 nodes with the 1TB TPC-H data set, and so
forth.

To test with these larger data sets, I will have to spend
some time researching and improving the load performance of
HRDBMS. Today it takes about 72 minutes to load the
LINEITEM table (about 75% of the data) at 100GB and 4
nodes. The load scales well in that the same load only takes 20
minutes at 16 nodes. But, the overall load performance needs
to be improved as taking 12 hours to load the LINEITEM table
at 1TB and 4 nodes is way too slow. I believe this is a result of
contention on locks used for synchronization (called latches in
the DB world).

I am also doing some other research and novel work with
loads. I have built a basic infrastructure that allows HRDBMS
to sit on top of an HDFS cluster and then load the data from
HDFS. By doing this, we allow all of the cluster nodes to be
reading and parsing the data. If we don’t load from HDFS, all
of this work is placed on a single coordinator node. I still have
a lot more research and work to do in this area before it is fully
ready to go.

Additionally, statistics collection performance needs a lot
of work. HRDBMS uses sampling to estimate the actual
statistical values. But, this sample-based statistics collection is
not scaling well today. It currently takes about 5 minutes at 4
nodes, but takes 20 minutes at 32 nodes. This needs to be
investigated further.

I would also like to add additional databases to the testing.
This should include at least Spark SQL if not others.

You’ll notice that query 13 is not listed in the charts in the
previous section. This is because HRDBMS does not yet have
support for outer joins. The majority of basic SQL
functionality is already built except for this. I consider this a
major shortcoming that needs to be addressed.

Fault tolerance is not yet implemented in HRDBMS, but
the system is already rack-aware and aware of how data is
partitioned across nodes and disks. We plan to have HRDBMS
maintain on-rack and off-rack replicas that can be used in the
event of primary node failure. This could be extended to
preferring secondary copies of data for load balancing. Data
modifications affecting nodes that are down would be placed
into pending-work queues. The work in these queues must be
completed and successfully committed before a node is
allowed to rejoin the cluster.

Lastly in the current HRDBMS architecture, the
coordinator nodes can be a bottleneck. This is because all data
has to eventually flow back through the coordinator node
before being returned to the client. I’d like to do some research
into removing this requirement. I envision that the various
worker nodes could potentially open socket connections
directly back to the client and the client could receive from
multiple streams in parallel. Sorting could be handled by range
partitioning the data across the workers and sorting before
returning data to the client. As long as all the workers in the
sort were given an ID representing their position in the overall
range, the client could piece together the sorted data without
even needing to do a mergesort. Likewise, the other final
relational operations that are performed on the coordinator
today could all be made to work in this type of manner. This
now pushes the bottleneck all the way back to the client, and I
think it will result in some significant improvements.

REFERENCES

[1] IBM. (2007, Oct 15). TPC Benchmark™ H Full Disclosure Report
[Online]. Available:
http://c970058.r58.cf2.rackcdn.com/fdr/tpch/IBM_570_10000GB_2007
1015_FDR.pdf

[2] IBM. (2014, Oct 17). IBM PureData System for Analytics N3001
[Online]. Available: https://www-
304.ibm.com/connections/forums/html/topic?id=0e45d217-0912-442a-
9033-a221495e9ccc

[3] J. Dietz. (2007 Sep). At the core of the Teradata platform [Online].
Available:
http://apps.teradata.com//TDMO/v07n03/Tech2Tech/AppliedSolutions/
TeradataPlatform.aspx

[4] EMC. (2002 Jul 1). Greenplum Database Architecture [Online].
Available: http://www.greenplumdba.com/greenplum-database-
architecture

[5] J. Appleby. (2014, Dec 10). SAP HANA – Scale-up or Scale-out
Hardware? [Online]. Available:
https://blogs.saphana.com/2014/12/10/sap-hana-scale-scale-hardware/

[6] A. Thusoo, J. Sarma, N. Jane, et al, “Hive: a warehousing solution over
a map-reduce framework,”, PVLDB, Vol. 2, pp. 1626-1629, August
2009

[7] R. Xin, J. Rosen, M. Zaharia, et al, ”Shark: SQL and rich analytics at
scale,”, SIGMOD, pp. 13-24, 2013

[8] D. Campbell, G. Kakivaya, N. Ellis, “Extreme scale with full SQL
language support in microsoft SQL Azure,”, SIGMOD, pp. 1021-1024,
2010

[9] S. Melnik, A. Gubarev, J. Long, et al, “Dremel: interactive analysis of
web-scale datasets,”, PVLDB, Vol. 3, pp. 330-339, September 2010

[10] M. Asay. (2014, Sep 12). Why the world's largest Hadoop installation
may soon become the norm [Online]. Available:
http://www.techrepublic.com/article/why-the-worlds-largest-hadoop-
installation-may-soon-become-the-norm/

[11] J. Corbett, J. Dean, M. Epstein, et al, “Spanner: Google’s Globally
Distributed Database,”, TOCS, Vol. 31, Issue 3, Article 8, August 2013

[12] J. Shute, R. Vingralek, B. Samwel, etal, “F1: a distributed SQL database
that scales,”, PVLDB, Vol 6, Issue 11, pp. 1068-1079, August 2013

[13] T. Li, X. Zhou, D. Zhao, etl al, “ZHT: A Light-Weight Reliable
Persistent Dynamic Scalable Zero-Hop Distributed Hash Table,”,
IPDPS, pp. 775-787, 2013

[14] J. Standen. (2010, Feb 10). Inner and outer joins SQL examples and the
Join block [Online]. Available: http://www.datamartist.com/sql-inner-
join-left-outer-join-full-outer-join-examples-with-syntax-for-sql-server

[15] A. Wilschut, P. Apers, “Pipelining in Query Execution,”, PARBASE,
March 1990

[16] J. Mullin, “Optimal semijoins for distributed database systems,”,
Software Engineering, IEEE Transactions on, Vol. 16, Issue 5, pp. 558-
560, May 1990

[17] G.M. Lohman, “Is Query Optimization a ‘Solved’ Problem?,”,
Workshop on Database Query Optimization (CSB Tech. Report 89-
005), June 1989

[18] Collet, Yann. (2013). LZ4: Extremely fast compression algorithm
[Online]. Available: code. google. com

http://c970058.r58.cf2.rackcdn.com/fdr/tpch/IBM_570_10000GB_20071015_FDR.pdf
http://c970058.r58.cf2.rackcdn.com/fdr/tpch/IBM_570_10000GB_20071015_FDR.pdf
https://www-304.ibm.com/connections/forums/html/topic?id=0e45d217-0912-442a-9033-a221495e9ccc
https://www-304.ibm.com/connections/forums/html/topic?id=0e45d217-0912-442a-9033-a221495e9ccc
https://www-304.ibm.com/connections/forums/html/topic?id=0e45d217-0912-442a-9033-a221495e9ccc
http://apps.teradata.com/TDMO/v07n03/Tech2Tech/AppliedSolutions/TeradataPlatform.aspx
http://apps.teradata.com/TDMO/v07n03/Tech2Tech/AppliedSolutions/TeradataPlatform.aspx
http://www.greenplumdba.com/greenplum-database-architecture
http://www.greenplumdba.com/greenplum-database-architecture
http://www.techrepublic.com/article/why-the-worlds-largest-hadoop-installation-may-soon-become-the-norm/
http://www.techrepublic.com/article/why-the-worlds-largest-hadoop-installation-may-soon-become-the-norm/
http://www.datamartist.com/sql-inner-join-left-outer-join-full-outer-join-examples-with-syntax-for-sql-server
http://www.datamartist.com/sql-inner-join-left-outer-join-full-outer-join-examples-with-syntax-for-sql-server

