
Towards Scalable Distributed Workload Manager with
Monitoring-Based Weakly Consistent Resource Stealing

Ke Wang
Illinois Institute of Technology

kwang22@hawk.iit.edu

Michael Lang
Los Alamos National Laboratory

mlang@lanl.gov

Xiaobing Zhou
Hortonworks Inc.

xzhou@hortonworks.com

Benjamin McClelland
Intel

benjamin.m.mcclelland@intel.com

Kan Qiao
Google

qiaokan.buaa@gmail.com

Ioan Raicu
Illinois Institute of Technology

iraicu@cs.iit.edu

ABSTRACT

One way to efficiently utilize the coming exascale machines is to

support a mixture of applications in various domains, such as

traditional large-scale HPC, the ensemble runs, and the fine-

grained many-task computing (MTC). Delivering high

performance in resource allocation, scheduling and launching for

all types of jobs has driven us to develop Slurm++, a distributed

workload manager directly extended from the Slurm centralized

production system. Slurm++ employs multiple controllers with

each one managing a partition of compute nodes and participating

in resource allocation through resource balancing techniques. In

this paper, we propose a monitoring-based weakly consistent

resource stealing technique to achieve resource balancing in

distributed HPC job launch, and implement the technique in

Slurm++. We compare Slurm++ with Slurm using micro-

benchmark workloads with different job sizes. Slurm++ showed

10X faster than Slurm in allocating resources and launching jobs

– we expect the performance gap to grow as the job sizes and

system scales increase in future high-end computing systems.

Categories and Subject Descriptors

C.5.1 [Computer System Implementation]: Large and Medium

("Mainframe") Computers – Super (very large) computers.

General Terms

Design, Algorithm, Performance.

Keywords

Workload manager, job launch, scheduling, resource balancing.

1. INTRODUCTION
With the predication that exascale supercomputers will have

billion-way parallelism [1], one way of efficiently utilizing the

whole machine is to support a mixture of applications in different

domains that include traditional large-scale high performance

computing (HPC), HPC ensemble runs, and fine-grained loosely

coupled many-task computing (MTC) [2].

Traditional large-scale HPC applications typically require many

computing processors (e.g. half or full-size of the whole machine)

for a long time (e.g. days or weeks). The jobs are tightly coupled,

and use the message-passing interface (MPI) programming model

[3] for communication and synchronization among all the

processors. Although it is necessary to support HPC applications

that demand the computing capacity of an exascale machine, it is

also important to enable ensemble runs of applications that have

uncertainty in high-dimension parameter space. Ensemble runs [4]

decompose applications into many small-scale and short-duration

coordinated jobs with each one doing a parameter sweep in a

much lower-resolution parameter space using MPI in parallel,

thus enabling a higher system utilization of exascale machines.

Another domain of applications involves the many-task

computing (MTC) [5] paradigm. MTC decomposes applications

as orders of magnitude larger number (e.g. millions to billions) of

embarrassingly parallel tasks with data-dependencies [6]. Tasks

are fine-grained in both size (e.g. per-core) and duration (e.g. sub-

second), and are represented as Direct Acyclic Graph (DAG)

where vertices are tasks and the edges denote the data flows.

Running a mixture of applications in all domains on large-scale

systems poses significant scalability challenges (e.g. grids [7][8],

storage [9][10]) on workload managers (e.g. Slurm [11], PBS

[12], and SGE [13]), which, up to date, have a centralized

architecture where a controller manages all the compute daemons

and are in charge of the activities, such as node partitioning,

resource allocation, job scheduling and launching. This

architecture cannot scale to exascale machines that will have

system sizes one or two orders of magnitude larger for thousands

of times more jobs with much wider distributions in both sizes

and durations. Future exascale machines, along with a

miscellaneous collection of applications, will demand orders of

magnitudes higher job-delivering rates to make full utilization of

the machine. The scalability challenge has driven us to develop

the next generation distributed workload managers [14][15].

We have developed the Slurm++ [16] workload manager targeting

all the applications at exascale. Slurm++ extends Slurm by

applying multiple controllers with each one managing a partition

of compute daemons and balancing resources among all the

partitions through resource stealing techniques. Slurm++ utilizes

ZHT [17], a distributed key-value store (KVS) [18][19], to keep

the resource state information. In this paper, we propose a

monitoring-based weakly consistent resource stealing technique to

achieve dynamic resource balancing. We implement the technique

in Slurm++, which shows 10X faster than Slurm in launching

jobs. We expect the performance gap to grow as the job sizes and

system scales increase in future high-end computing systems.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

HPDC'15, June 15 - 19, 2015, Portland, OR, USA

© 2015 ACM. ISBN 978-1-4503-3550-8/15/06$15.00

DOI: http://dx.doi.org/10.1145/2749246.2749249.

2. Slurm++ WORKLOAD MANAGER
Slurm++ is a distributed workload manager with a partition-based

architecture, as shown in Figure 1. Slurm++ employs multiple

controllers with each one managing a partition of compute

daemons (cd). The partition size (the number of cd a controller

managers) is configurable according to the application domains.

We can also configure heterogeneous partition sizes to support

workloads with a wide distribution of job sizes and with special

requirements (e.g. only run on the partitions that have GPUs,

InfiniBand, or SSDs). The users can submit jobs to arbitrary

controller. Slurm++ deploys ZHT, a distributed key-value store

(KVS), to manage the entire resource metadata and system state.

One typical configuration is to co-locate a ZHT server with a

controller forming 1:1 mapping, such as shown in Figure 1. Each

controller is a ZHT client and uses the client APIs (e.g. lookup,

insert) to communicate with ZHT servers to store, query and

modify the metadata represented as (key, value) pair, for example,

(controllerId, free_node_list), of resources of all the partitions.

cd cd cd

…

Controller and

KVS server

Controller and

KVS Server

cd cd cd

…

Controller and

KVS Server

cd cd cd

…

…Fully-Connected

Client Client Client

Figure 1: Slurm++ distributed workload manager

Note that Slurm also divides the system into multiple partitions.

However, this is different from the partition management of

Slurm++. Firstly, Slurm layers the partitions hierarchically up to

the centralized controller, while Slurm++ is distributed by

employing one dedicated controller to manage a partition

independently from other partitions. The hierarchical layout leads

to longer latency as a job may need to go through multiple hops.

What’s more, the root controller is still a central piece with

limited capacity. Secondly, in Slurm, when a job is scheduled on

one partition, it can only get allocation within that partition. This

results in long job queueing time in over-loaded partitions, and

poor utilization if loads are not balanced among the partitions.

3. RESOURCE STEALING TECHNIQUE
Resource balancing means to find the required number of free

nodes in all the partitions as fast as possible to satisfy concurrent

job submissions. It is trivial in the centralized architecture, as the

controller has a global view of the system state. However, for the

distributed architecture, resource balancing is a critical goal, and

should be achieved dynamically in a distributed fashion by all the

controllers, in order to maintain an overall high system utilization.

Inspired by the work stealing technique [20] that achieves

distributed dynamic load balancing, we introduce the resource

stealing concept to achieve distributed dynamic resource

balancing. Resource stealing refers to a set of techniques of

stealing free nodes from other partitions if the local one cannot

satisfy a job in terms of job size. When a controller allocates

nodes for a job, it first checks the local free nodes. If there are

enough free nodes, then the controller directly allocates the nodes;

otherwise, it allocates whatever resources the partition has, and

queries ZHT for other partitions to steal resources from them. Our

previous work [16] proposed a straightforward random resource

stealing technique, which has poor performance for big jobs. This

section proposes a monitoring-based weakly consistent resource

stealing technique that has better scalability than the random one.

The proposed technique relies on a centralized monitoring service

and each controller conducts a two-phase tuning procedure.

3.1 Monitoring Service
One of the reasons that the random technique is not scalable is

because the controllers have no global view (even weakly

consistent) of the system resource state. One alternative to enable

all of the controllers to have global view is to alter the partition-

based architecture to that the controllers know all the compute

daemons. Then, there will be merely one (key, value) record of the

global resource stored in a specific ZHT server. This method of

strongly consistent global view is not scalable because all the

frequent KVS operations on the resources are processed by a

single ZHT server that stores the global resource (key, value) pair.

In order to keep a weakly consistent view of the global resources

in each controller, we apply a monitoring service (MS) to query

the free resources of all the partitions periodically. In each round,

the MS looks up the free resource of each partition in sequence,

and then gathers them together as global resource information and

puts the global information as one (key, value) record in a ZHT

server. This (key, value) record offers a global view of resource

states for all the controllers.

This is different from the alternative mentioned above in that the

frequency of querying this global (key, value) record is much less.

Although the MS is centralized and queries all the partitions

sequentially, we believe that it should not be a bottleneck.

Because the number of partitions for large-scale HPC applications

is not that many (e.g. 1K), and with the right granularity of

frequency of updating and gathering the global resource

information, the MS should be scalable. The MS could be

implemented either as a standalone process on one compute node

or as a separate thread in a controller. In Slurm++, the MS is

implemented as the latter case.

3.2 Two-Phase Tuning
Each controller will conduct a two-phase tuning procedure of

updating resources in the aid of allocating resources to jobs.

3.2.1 Phase 1: Pulling-based Macro-Tuning
As the MS offers a global view of the system free nodes (being

kept in one ZHT server), each controller will periodically pull the

global resource information by a ZHT lookup operation. In each

round when the controller gets the global resources, it organizes

the resources of different partitions as a binary-search tree (BST)

data structure. Each data item of the BST contains the controller

id (char*) and the number of free nodes (int) of a partition. The

data items are organized as a BST based on the number of free

nodes of all partitions. The BST guides a controller to steal

resources from the most suitable partitions.

We call this phase macro-tuning as it evicts the cached free

resource information in BST, and updates the BST with the new

information in each periodic query. This update is consistent for

all the controllers as the resource information is pulled from a

single place by all the controllers. Each controller pulls the

information before it is too obsolete to offer valuable guidance.

3.2.2 Phase 2: Weakly Consistent Micro-Tuning
The controller uses the BST as a guide to choose the most suitable

partitions to steal resources. The operations of the BST structure

we implement to best serve the job resource allocation are:

BST_insert(BST*, char*, int): insert a data item to the BST data

structure specifying the number of free nodes of a partition.

BST_delete(BST*, char*, int): delete a data item from the BST

data structure for a partition.

BST_delete_all(BST*): evict all the data items from the BST

data structure for all the partitions.

BST_search_best(BST*, int): for a given number of required

compute nodes of a job, this operation searches for the most

suitable partition to steal free nodes. There are 3 cases: (1)

multiple partitions have enough free nodes; (2) only one partition

has enough free nodes; (3) none of the partitions have enough free

nodes. For case (1), it will choose the partition that has the

minimum number of free nodes among all the partitions that have

enough free nodes. For case (2), it will choose the exact partition

that has enough free nodes. For case (3), it will choose the

partition that has the maximum number of free nodes.

BST_search_exact(BST*, char*): given a specific controller id,

this operation searches the resource information of that partition.

The complete resource allocation procedure is described as

follows. When a job is submitted to a controller, the controller

first tries to allocate free nodes in local partition. As long as the

allocation is not satisfied, the controller searches for the most

suitable partition to steal resources from the BST. The controller

then queries the actual free resource of that partition via a ZHT

lookup operation. After that, the controller issues a ZHT compare

and swap atomic operation to allocate resources. If the allocation

succeeds, the controller will insert the updated free node list of

that partition to the local BST. Otherwise, if the controller

experiences several failures in a row, it releases the allocated free

nodes for the job, waits some time, and tries this procedure again.

We call this the micro-tuning phase because only the data of the

resource of one partition is changed during one attempted

stealing. Every controller updates its BST individually. As time

increases, the controllers would have inconsistent view of the free

resources of all the partitions. In the meantime, the controller is

updating the whole BST with the most current resources of all the

partitions (macro-tuning phase). With both macro-tuning and

micro-tuning, the resource stealing technique has the ability to

balance the resources among all the partitions dynamically, to

aggressively allocate the most suitable resources for big jobs, and

to find the free resources quickly under high system utilization.

4. EVALUATION
We implement the monitoring-based weakly consistent resource

stealing technique in the Slurm++ workload manager. The

implementation source code is made open source on GitHub

repository: https://github.com/kwangiit/SLURMPP_V2. The

dependencies are Slurm [11], ZHT [17], and Google Protocol

Buffer [21]. We evaluate Slurm++ by comparing it with Slurm

using the micro-benchmark workloads up to 500 nodes.

4.1 Comparison between Slurm++ and Slurm
We run all the experiments on the Kodiak cluster from the

PROBE environment at LANL [22]. Kodiak has 500 nodes, and

each node has two 64-bit AMD Opteron processors at 2.6GHz and

8GB memory. For Slurm++, the partition size is set to be 50. At

the largest scale of 500 nodes, there are 10 controllers. The

workloads include the simplest possible NOOP “sleep 0” jobs that

require various numbers of nodes per job with 3 different

distributions: each controller runs 50 one-node jobs; each

controller runs 50 jobs with sizes having uniform distribution that

has an average of half partition – 25 (1 to 50), referred to half-

partition jobs; and each controller runs 20 jobs with sizes having

uniform distribution that has an average of full partition – 50 (25

to 75), referred to full-partition jobs.

Figure 2 shows throughput speedups between Slurm++ and Slurm

with the three workloads. We see that for all the workloads,

Slurm++ is able to launch jobs faster than Slurm. The

performance slowdown (9.3X from one-node to full-partition

jobs) of Slurm due to increasingly large jobs is much more severe

than that (2.3X from one-node to full-partition jobs) of Slurm++.

This highlights the better scalability of Slurm++. In addition, the

speedup is increasing as the scale increases for all the workloads,

indicating that at larger scales, Slurm++ would outperform Slurm

even more. Another important fact is that as the job size increases,

the speedup also increases (2.61X for one-node, 8.5X for half-

partition, and 10.2X for full-partition). This trend proves that the

proposed technique has great scalability for big jobs.

Figure 2: Speedup summary between Slurm++ and Slurm

5. RELATED WORK
Slurm [11] does scalable job launch via a tree based overlay

network. But as we have evaluated, as scales grow, the scheduling

cost per node increases, requiring coarser granularity workloads to

maintain efficiency. BPROC [23] was a single system image and

single process space clustering environment where all process ids

were managed and spawned from the head node. BPROC moved

virtual process spaces from the head node to the compute nodes

via a tree spawn mechanism. However, BPROC was a centralized

server with no failover mechanism. ALPS [24] is Cray’s resource

manager that constructs a management tree for job launch, and

controls separate daemon with each one having a specific

purpose. It is multiple single-server architecture, with many

single-point of failures. ORCM [25] is an Open Resilient Cluster

Manger originated from the Cisco runtime system for monitoring

enterprise-class routers, and is under development in Intel to do

resource monitoring and scalable job launching. Currently, the

state management of ORCM is centralized in the top layer

aggregator, which is not scalable. The use of KVS to manage the

state similar to Slurm++ is an alternative for ORCM.

6. CONCLUSIONS AND FUTURE WORK
Exascale machine require next generation workload managers to

deliver jobs with much higher throughput and lower latency for a

mixture of applications. With the proposed resource stealing

technique, Slurm++ showed performance 10X better than the

Slurm production system, and the performance gap is expected to

grow as the jobs and system scales increase. In the future, we will

explore elastic resource allocation that could dynamically expand

and shrink the allocated resources for the composed applications

in Slurm++. This will help Slurm++ maintain high system

utilization for a broader category of ensemble applications.

Additions to this work would also include the investigations of

distributed power-aware scheduling at the core level. Currently,

Slurm++ allocates the whole node to a job, and doesn’t consider

the power effect. We will over-decompose a node, and launch

jobs at the core level in order to save power. Another extension is

to integrate Slurm++ with the MTC task execution fabric,

MATRIX [26][27][28] (and the SimMatrix simulator

[29][30][31]) and CloudKon [32], and study the scheduling of

data-intensive HPC applications [33][10][34].

7. ACKNOWLEDGMENTS
This work was supported by the U.S. Department of Energy

contract AC52-06NA25396, and in part by the National Science

Foundation under award CNS-1042543 (PRObE). We thank

Ralph Castain from Intel for his thoughtful comments.

8. REFERENCES
[1] V. Sarkar, S. Amarasinghe, et al. “ExaScale Software Study:

Software Challenges in Extreme Scale Systems.” ExaScale

Computing Study, DARPA IPTO, 2009.

[2] Michael Wilde, et al. "Extreme-scale scripting: Opportunities

for large task-parallel applications on petascale computers",

SciDAC 2009.

[3] M. Snir, S.W. Otto, et al. “MPI: The Complete Reference.”

MIT Press, 1995.

[4] A. Basermann and K. Solchenbach. “Ensemble Simulations

on highly Scaling HPC Systems (EnSIM).” CiHPC -

Competence in High Performance Computing, June 2010.

[5] I. Raicu, Y. Zhao, et al. “Many-Task Computing for Grids

and Supercomputers.” IEEE MTAGS 2008.

[6] K. Wang, Z. Ma, I. Raicu. “Modelling Many-Task

Computing Workloads on a Petaflop IBM BlueGene/P

Supercomputer.” IEEE CloudFlow 2013.

[7] Catalin Dumitrescu, Ioan Raicu, Ian Foster. "Experiences in

Running Workloads over Grid3", GCC 2005

[8] Catalin Dumitrescu, Ioan Raicu, Ian Foster. "The Design,

Usage, and Performance of GRUBER: A Grid uSLA-based

Brokering Infrastructure", JGC 2007.

[9] Dongfang Zhao, Ioan Raicu. “Distributed File Systems for

Exascale Computing”, Doctoral Showcase, IEEE/ACM

Supercomputing/SC 2012

[10] D. Zhao, Z. Zhang, et al. “FusionFS: Towards Supporting

Data-Intensive Scientific Applications on Extreme-Scale

High-Performance Computing Systems.” IEEE International

Conference on Big Data 2014.

[11] M. Jette, A. Yoo, M. Grondona. “SLURM: Simple Linux

utility for resource management.” JSSPP 2003.

[12] B. Bode, D. Halstead, et al. “The Portable Batch Scheduler

and the Maui Scheduler on Linux Clusters.” Usenix, 4th

Annual Linux Showcase & Conference, 2000.

[13] W. Gentzsch, et al. “Sun Grid Engine: Towards Creating a

Compute Power Grid.” CCGrid 2001.

[14] K. Wang, I. Raicu. “Towards Next Generation Resource

Management at Extreme-Scales.” IIT, PhD Proposal, 2014.

[15] X. Zhou, H. Chen, et al. “Exploring Distributed Resource

Allocation Techniques in the SLURM Job Management

System.” Tech Report, IIT, 2013.

[16] K. Wang, X. Zhou, et al. “Next generation job management

systems for extreme-scale ensemble computing.” ACM

HPDC 2014.

[17] T. Li, X. Zhou, et al. “ZHT: A Light-weight Reliable

Persistent Dynamic Scalable Zero-hop Distributed Hash

Table.” IEEE Conference on IPDPS, 2013.

[18] K. Wang, A. Kulkarni, et al. “Using Simulation to Explore

Distributed Key-Value Stores for Extreme-Scale Systems

Services.” IEEE/ACM Supercomputing/SC 2013.

[19] A. Kulkami, K. Wang, et al. “Exploring Design Tradeoffs for

Exascale System Services through Simulation.” Tech Report,

Los Alamos National Laboratory, 2013.

[20] J. Dinan, D.B. Larkins, et al. “Scalable work stealing.”

IEEE/ACM Supercomputing/SC, 2009.

[21] Google. “Google Protocol Buffers,” available at

https://github.com/google/protobuf/, 2015.

[22] G. Gibson, G. Grider, et al. “Probe: A thousand node

experimental cluster for computer systems research.” 2013.

[23] E. Hendriks. “BProc: The Beowulf distributed process

space.” ACM Proceedings of ICS, 2002.

[24] M. Karo, R. Lagerstrom, et al. “The application level

placement scheduler.” Cray User Group, pp. 1-7, 2006.

[25] Intel, ORCM, https://github.com/open-mpi/orcm, 2015.

[26] K. Wang, A. Rajendran, et al. “MATRIX: MAny-Task

computing execution fabRIc at eXascale.” Tech Report, IIT,

2013.

[27] K. Wang, I. Raicu. “Scheduling Data-intensive Many-task

Computing Applications in the Cloud.” NSFCloud

Workshop, 2014.

[28] K. Wang, A. Rajendran, et al. “Paving the Road to Exascale

with Many-Task Computing.” Doctoral Showcase,

IEEE/ACM Supercomputing/SC 2012.

[29] K. Wang, K. Brandstatter, I. Raicu, “SimMatrix: Simulator

for MAny-Task computing execution fabRIc at eXascale.”

ACM HPC, 2013.

[30] K. Wang, J. Munuera, et al. “Centralized and Distributed Job

Scheduling System Simulation at Exascale.” Tech Report,

IIT, 2011.

[31] D. Zhao, D. Zhang, et al. “Exploring Reliability of Exascale

Systems through Simulations.” ACM HPC 2013.

[32] I. Sadooghi, S. Palur, et al. “Achieving Efficient Distributed

Scheduling with Message Queues in the Cloud for Many-

Task Computing and High-Performance Computing.”

IEEE/ACM CCGrid, 2014.

[33] K. Wang, X. Zhou, et al. “Optimizing Load Balancing and

Data-Locality with Data-aware Scheduling.” IEEE

International Conference on Big Data 2014.

[34] K. Ramamurthy, K. Wang, et al. “Exploring Distributed HPC

Scheduling in MATRIX.” Tech Report, IIT, 2013.

