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ABSTRACT 

One way to efficiently utilize the coming exascale machines is to 

support a mixture of applications in various domains, such as 

traditional large-scale HPC, the ensemble runs, and the fine-

grained many-task computing (MTC). Delivering high 

performance in resource allocation, scheduling and launching for 

all types of jobs has driven us to develop Slurm++, a distributed 

workload manager directly extended from the Slurm centralized 

production system. Slurm++ employs multiple controllers with 

each one managing a partition of compute nodes and participating 

in resource allocation through resource balancing techniques. In 

this paper, we propose a monitoring-based weakly consistent 

resource stealing technique to achieve resource balancing in 

distributed HPC job launch, and implement the technique in 

Slurm++. We compare Slurm++ with Slurm using micro-

benchmark workloads with different job sizes. Slurm++ showed 

10X faster than Slurm in allocating resources and launching jobs 

– we expect the performance gap to grow as the job sizes and 

system scales increase in future high-end computing systems. 

Categories and Subject Descriptors 

C.5.1 [Computer System Implementation]: Large and Medium 

("Mainframe") Computers – Super (very large) computers. 

General Terms 

Design, Algorithm, Performance. 

Keywords 

Workload manager, job launch, scheduling, resource balancing. 

1. INTRODUCTION 
With the predication that exascale supercomputers will have 

billion-way parallelism [1], one way of efficiently utilizing the 

whole machine is to support a mixture of applications in different 

domains that include traditional large-scale high performance 

computing (HPC), HPC ensemble runs, and fine-grained loosely 

coupled many-task computing (MTC) [2]. 

 

Traditional large-scale HPC applications typically require many 

computing processors (e.g. half or full-size of the whole machine) 

for a long time (e.g. days or weeks). The jobs are tightly coupled, 

and use the message-passing interface (MPI) programming model 

[3] for communication and synchronization among all the 

processors. Although it is necessary to support HPC applications 

that demand the computing capacity of an exascale machine, it is 

also important to enable ensemble runs of applications that have 

uncertainty in high-dimension parameter space. Ensemble runs [4] 

decompose applications into many small-scale and short-duration 

coordinated jobs with each one doing a parameter sweep in a 

much lower-resolution parameter space using MPI in parallel, 

thus enabling a higher system utilization of exascale machines. 

Another domain of applications involves the many-task 

computing (MTC) [5] paradigm. MTC decomposes applications 

as orders of magnitude larger number (e.g. millions to billions) of 

embarrassingly parallel tasks with data-dependencies [6]. Tasks 

are fine-grained in both size (e.g. per-core) and duration (e.g. sub-

second), and are represented as Direct Acyclic Graph (DAG) 

where vertices are tasks and the edges denote the data flows. 

Running a mixture of applications in all domains on large-scale 

systems poses significant scalability challenges (e.g. grids [7][8], 

storage [9][10]) on workload managers (e.g. Slurm [11], PBS 

[12], and SGE [13]), which, up to date, have a centralized 

architecture where a controller manages all the compute daemons 

and are in charge of the activities, such as node partitioning, 

resource allocation, job scheduling and launching. This 

architecture cannot scale to exascale machines that will have 

system sizes one or two orders of magnitude larger for thousands 

of times more jobs with much wider distributions in both sizes 

and durations. Future exascale machines, along with a 

miscellaneous collection of applications, will demand orders of 

magnitudes higher job-delivering rates to make full utilization of 

the machine. The scalability challenge has driven us to develop 

the next generation distributed workload managers [14][15]. 

We have developed the Slurm++ [16] workload manager targeting 

all the applications at exascale. Slurm++ extends Slurm by 

applying multiple controllers with each one managing a partition 

of compute daemons and balancing resources among all the 

partitions through resource stealing techniques. Slurm++ utilizes 

ZHT [17], a distributed key-value store (KVS) [18][19], to keep 

the resource state information. In this paper, we propose a 

monitoring-based weakly consistent resource stealing technique to 

achieve dynamic resource balancing. We implement the technique 

in Slurm++, which shows 10X faster than Slurm in launching 

jobs. We expect the performance gap to grow as the job sizes and 

system scales increase in future high-end computing systems. 
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2. Slurm++ WORKLOAD MANAGER 
Slurm++ is a distributed workload manager with a partition-based 

architecture, as shown in Figure 1. Slurm++ employs multiple 

controllers with each one managing a partition of compute 

daemons (cd). The partition size (the number of cd a controller 

managers) is configurable according to the application domains. 

We can also configure heterogeneous partition sizes to support 

workloads with a wide distribution of job sizes and with special 

requirements (e.g. only run on the partitions that have GPUs, 

InfiniBand, or SSDs). The users can submit jobs to arbitrary 

controller. Slurm++ deploys ZHT, a distributed key-value store 

(KVS), to manage the entire resource metadata and system state. 

One typical configuration is to co-locate a ZHT server with a 

controller forming 1:1 mapping, such as shown in Figure 1. Each 

controller is a ZHT client and uses the client APIs (e.g. lookup, 

insert) to communicate with ZHT servers to store, query and 

modify the metadata represented as (key, value) pair, for example, 

(controllerId, free_node_list), of resources of all the partitions. 

cd cd cd

…

Controller and 

KVS server

Controller and 

KVS Server

cd cd cd

…

Controller and 

KVS Server

cd cd cd

…

…Fully-Connected

Client Client Client

 
Figure 1: Slurm++ distributed workload manager 

Note that Slurm also divides the system into multiple partitions. 

However, this is different from the partition management of 

Slurm++. Firstly, Slurm layers the partitions hierarchically up to 

the centralized controller, while Slurm++ is distributed by 

employing one dedicated controller to manage a partition 

independently from other partitions. The hierarchical layout leads 

to longer latency as a job may need to go through multiple hops. 

What’s more, the root controller is still a central piece with 

limited capacity. Secondly, in Slurm, when a job is scheduled on 

one partition, it can only get allocation within that partition. This 

results in long job queueing time in over-loaded partitions, and 

poor utilization if loads are not balanced among the partitions. 

3. RESOURCE STEALING TECHNIQUE 
Resource balancing means to find the required number of free 

nodes in all the partitions as fast as possible to satisfy concurrent 

job submissions. It is trivial in the centralized architecture, as the 

controller has a global view of the system state. However, for the 

distributed architecture, resource balancing is a critical goal, and 

should be achieved dynamically in a distributed fashion by all the 

controllers, in order to maintain an overall high system utilization. 

Inspired by the work stealing technique [20] that achieves 

distributed dynamic load balancing, we introduce the resource 

stealing concept to achieve distributed dynamic resource 

balancing. Resource stealing refers to a set of techniques of 

stealing free nodes from other partitions if the local one cannot 

satisfy a job in terms of job size. When a controller allocates 

nodes for a job, it first checks the local free nodes. If there are 

enough free nodes, then the controller directly allocates the nodes; 

otherwise, it allocates whatever resources the partition has, and 

queries ZHT for other partitions to steal resources from them. Our 

previous work [16] proposed a straightforward random resource 

stealing technique, which has poor performance for big jobs. This 

section proposes a monitoring-based weakly consistent resource 

stealing technique that has better scalability than the random one. 

The proposed technique relies on a centralized monitoring service 

and each controller conducts a two-phase tuning procedure. 

3.1 Monitoring Service 
One of the reasons that the random technique is not scalable is 

because the controllers have no global view (even weakly 

consistent) of the system resource state. One alternative to enable 

all of the controllers to have global view is to alter the partition-

based architecture to that the controllers know all the compute 

daemons. Then, there will be merely one (key, value) record of the 

global resource stored in a specific ZHT server. This method of 

strongly consistent global view is not scalable because all the 

frequent KVS operations on the resources are processed by a 

single ZHT server that stores the global resource (key, value) pair. 

In order to keep a weakly consistent view of the global resources 

in each controller, we apply a monitoring service (MS) to query 

the free resources of all the partitions periodically. In each round, 

the MS looks up the free resource of each partition in sequence, 

and then gathers them together as global resource information and 

puts the global information as one (key, value) record in a ZHT 

server. This (key, value) record offers a global view of resource 

states for all the controllers. 

This is different from the alternative mentioned above in that the 

frequency of querying this global (key, value) record is much less. 

Although the MS is centralized and queries all the partitions 

sequentially, we believe that it should not be a bottleneck. 

Because the number of partitions for large-scale HPC applications 

is not that many (e.g. 1K), and with the right granularity of 

frequency of updating and gathering the global resource 

information, the MS should be scalable. The MS could be 

implemented either as a standalone process on one compute node 

or as a separate thread in a controller. In Slurm++, the MS is 

implemented as the latter case. 

3.2 Two-Phase Tuning 
Each controller will conduct a two-phase tuning procedure of 

updating resources in the aid of allocating resources to jobs. 

3.2.1 Phase 1: Pulling-based Macro-Tuning 
As the MS offers a global view of the system free nodes (being 

kept in one ZHT server), each controller will periodically pull the 

global resource information by a ZHT lookup operation. In each 

round when the controller gets the global resources, it organizes 

the resources of different partitions as a binary-search tree (BST) 

data structure. Each data item of the BST contains the controller 

id (char*) and the number of free nodes (int) of a partition. The 

data items are organized as a BST based on the number of free 

nodes of all partitions. The BST guides a controller to steal 

resources from the most suitable partitions. 

We call this phase macro-tuning as it evicts the cached free 

resource information in BST, and updates the BST with the new 

information in each periodic query. This update is consistent for 

all the controllers as the resource information is pulled from a 

single place by all the controllers. Each controller pulls the 

information before it is too obsolete to offer valuable guidance. 

3.2.2 Phase 2: Weakly Consistent Micro-Tuning 
The controller uses the BST as a guide to choose the most suitable 

partitions to steal resources. The operations of the BST structure 

we implement to best serve the job resource allocation are: 



BST_insert(BST*, char*, int): insert a data item to the BST data 

structure specifying the number of free nodes of a partition. 

BST_delete(BST*, char*, int): delete a data item from the BST 

data structure for a partition. 

BST_delete_all(BST*): evict all the data items from the BST 

data structure for all the partitions. 

BST_search_best(BST*, int): for a given number of required 

compute nodes of a job, this operation searches for the most 

suitable partition to steal free nodes. There are 3 cases: (1) 

multiple partitions have enough free nodes; (2) only one partition 

has enough free nodes; (3) none of the partitions have enough free 

nodes. For case (1), it will choose the partition that has the 

minimum number of free nodes among all the partitions that have 

enough free nodes. For case (2), it will choose the exact partition 

that has enough free nodes. For case (3), it will choose the 

partition that has the maximum number of free nodes. 

BST_search_exact(BST*, char*): given a specific controller id, 

this operation searches the resource information of that partition. 

The complete resource allocation procedure is described as 

follows. When a job is submitted to a controller, the controller 

first tries to allocate free nodes in local partition. As long as the 

allocation is not satisfied, the controller searches for the most 

suitable partition to steal resources from the BST. The controller 

then queries the actual free resource of that partition via a ZHT 

lookup operation. After that, the controller issues a ZHT compare 

and swap atomic operation to allocate resources. If the allocation 

succeeds, the controller will insert the updated free node list of 

that partition to the local BST. Otherwise, if the controller 

experiences several failures in a row, it releases the allocated free 

nodes for the job, waits some time, and tries this procedure again. 

We call this the micro-tuning phase because only the data of the 

resource of one partition is changed during one attempted 

stealing. Every controller updates its BST individually. As time 

increases, the controllers would have inconsistent view of the free 

resources of all the partitions. In the meantime, the controller is 

updating the whole BST with the most current resources of all the 

partitions (macro-tuning phase). With both macro-tuning and 

micro-tuning, the resource stealing technique has the ability to 

balance the resources among all the partitions dynamically, to 

aggressively allocate the most suitable resources for big jobs, and 

to find the free resources quickly under high system utilization. 

4. EVALUATION 
We implement the monitoring-based weakly consistent resource 

stealing technique in the Slurm++ workload manager. The 

implementation source code is made open source on GitHub 

repository: https://github.com/kwangiit/SLURMPP_V2. The 

dependencies are Slurm [11], ZHT [17], and Google Protocol 

Buffer [21]. We evaluate Slurm++ by comparing it with Slurm 

using the micro-benchmark workloads up to 500 nodes. 

4.1 Comparison between Slurm++ and Slurm 
We run all the experiments on the Kodiak cluster from the 

PROBE environment at LANL [22]. Kodiak has 500 nodes, and 

each node has two 64-bit AMD Opteron processors at 2.6GHz and 

8GB memory. For Slurm++, the partition size is set to be 50. At 

the largest scale of 500 nodes, there are 10 controllers. The 

workloads include the simplest possible NOOP “sleep 0” jobs that 

require various numbers of nodes per job with 3 different 

distributions: each controller runs 50 one-node jobs; each 

controller runs 50 jobs with sizes having uniform distribution that 

has an average of half partition – 25 (1 to 50), referred to half-

partition jobs; and each controller runs 20 jobs with sizes having 

uniform distribution that has an average of full partition – 50 (25 

to 75), referred to full-partition jobs. 

Figure 2 shows throughput speedups between Slurm++ and Slurm 

with the three workloads. We see that for all the workloads, 

Slurm++ is able to launch jobs faster than Slurm. The 

performance slowdown (9.3X from one-node to full-partition 

jobs) of Slurm due to increasingly large jobs is much more severe 

than that (2.3X from one-node to full-partition jobs) of Slurm++. 

This highlights the better scalability of Slurm++. In addition, the 

speedup is increasing as the scale increases for all the workloads, 

indicating that at larger scales, Slurm++ would outperform Slurm 

even more. Another important fact is that as the job size increases, 

the speedup also increases (2.61X for one-node, 8.5X for half-

partition, and 10.2X for full-partition). This trend proves that the 

proposed technique has great scalability for big jobs. 

 

Figure 2: Speedup summary between Slurm++ and Slurm 

5. RELATED WORK 
Slurm [11] does scalable job launch via a tree based overlay 

network. But as we have evaluated, as scales grow, the scheduling 

cost per node increases, requiring coarser granularity workloads to 

maintain efficiency. BPROC [23] was a single system image and 

single process space clustering environment where all process ids 

were managed and spawned from the head node. BPROC moved 

virtual process spaces from the head node to the compute nodes 

via a tree spawn mechanism. However, BPROC was a centralized 

server with no failover mechanism. ALPS [24] is Cray’s resource 

manager that constructs a management tree for job launch, and 

controls separate daemon with each one having a specific 

purpose. It is multiple single-server architecture, with many 

single-point of failures. ORCM [25] is an Open Resilient Cluster 

Manger originated from the Cisco runtime system for monitoring 

enterprise-class routers, and is under development in Intel to do 

resource monitoring and scalable job launching. Currently, the 

state management of ORCM is centralized in the top layer 

aggregator, which is not scalable. The use of KVS to manage the 

state similar to Slurm++ is an alternative for ORCM. 

6. CONCLUSIONS AND FUTURE WORK 
Exascale machine require next generation workload managers to 

deliver jobs with much higher throughput and lower latency for a 

mixture of applications. With the proposed resource stealing 

technique, Slurm++ showed performance 10X better than the 

Slurm production system, and the performance gap is expected to 

grow as the jobs and system scales increase. In the future, we will 



explore elastic resource allocation that could dynamically expand 

and shrink the allocated resources for the composed applications 

in Slurm++. This will help Slurm++ maintain high system 

utilization for a broader category of ensemble applications. 

Additions to this work would also include the investigations of 

distributed power-aware scheduling at the core level. Currently, 

Slurm++ allocates the whole node to a job, and doesn’t consider 

the power effect. We will over-decompose a node, and launch 

jobs at the core level in order to save power. Another extension is 

to integrate Slurm++ with the MTC task execution fabric, 

MATRIX [26][27][28] (and the SimMatrix simulator 

[29][30][31]) and CloudKon [32], and study the scheduling of 

data-intensive HPC applications [33][10][34]. 
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