
1

MHT: A Light-weight Scalable Zero-hop MPI
Enabled Distributed Key-Value Store

Xiaobing Zhou1, Tonglin Li2, Ke Wang4, Dongfang Zhao2, Iman Sadooghi2, Ioan Raicu2,3
1Hortonworks, 2Illinois Institute of Technology, 3Argonne National Laboratory, 4Intel

Abstract—In this paper, we propose and implement a key-
value store that supports MPI while allowing application access
at any time without having to declaring in the same MPI
communication world. This feature may significantly simplify the
application design and allow programmers leverage the power of
key-value store in an intuitive way. In our preliminary experiment
results captured from a supercomputer at Los Alamos National
Laboratory, our prototype shows linear scalability at up to 256
nodes.

I. INTRODUCTION

Today’s science increasingly relies on data driven paradigm
and large scale simulations. From bioinformatics [1], seabed
modeling [2] to micro electronic systems [3–5]; from cy-
berspace security risk assessment [6] to chemical catalyst
simulation [7], scientific applications are calling for more
computing power in larger scale systems. NoSQL databases,
such as key-value stores, are known for their ease of use
and excellent scalability and versatility [8–11] in clouds [12].
However supercomputers and HPC applications are not able
to enjoy the benefits of distributed key-value stores due to
their customized OS and communication stack. In most of
supercomputers, MPI is the default if not the only commu-
nication protocol supported while most of key-value stores
only use TCP/UDP. Further more, the MPI communication
world is fixed and won’t allow new processes to join during
application run-time. This means that the number of both
clients (applications) and servers of key-value store have to be
clearly defined and fixed at the very beginning and thus not
allow application to access the key-value store in a dynamic
and flexible manner.

In this paper, we propose and implement a key-value store
that supports MPI while allowing application access at any
time without having to declaring in the same MPI communica-
tion world. This feature may significantly simplify the applica-
tion design and allow programmers leverage the power of key-
value store in an intuitive way. In our preliminary experiment
results captured from a supercomputer at Los Alamos National
Laboratory, our prototype shows linear scalability at up to 256
nodes.

The contributions of this paper are:
• Design and implementation of a prototype of MHT,

a distributed key-value storage system that supports
MPI, separates its own failure domain from that of
applications, and allows application clients dynamically
join the communication group and access data servers;

• Evaluation of MHT on a supercomputer at up to 256
nodes shows excellent performance and comparable
scalability against the implementation on TCP.

II. DESIGN AND IMPLEMENTATION
A. Challenges and Design Considerations

In order to implement MPI process dynamic join and
separated failure domain, it necessitates that MHT applications
are built and launched independent of MHT server daemons
running as MPI processes. Essentially, they belong to two
independent MPI communicators, thus survive through failure
of one or the other. However, typically, MPI application binary
is launched and propagated to many MPI processes all at
one time. In MHT case, many MHT server daemons are
bootstrapped as MPI processes firstly and wait for processing
incoming requests. Then it comes to dilemma that MHT
applications fail to interact with the running MHT servers
because they belong to two independent MPI communicators.
There are a couple of options investigated in order to make
MHT applications able to talk to running MHT servers.

1) MPI Comm spawn: MPI Comm spawn is a MPI 2 fa-
cility that is called to spawn new children on a brand new
MPI communicator. New ranks within new communicator
have dedicated MPI COMM WORLD different from that of
parent running ranks. Although It is possible to create a new
communicator that contains all parent running ranks, it is
obligatory to have parent and children MPI processes launched
together. In other words, by the means of MPI Comm spawn,
MHT servers and MHT applications need to be single MPI
launch, as a result, they belong to the same failure domain
that makes whole system less resilient.

2) MPI Comm join: MPI Comm join is another MPI 2
routine called to connect two MPI processes by established
socket. But there are a couple of constraints that make it less
suitable for MHT use case. Firstly, it only works between two
MPI processes that are connected by a socket, however, MHT
and MHT applications are composed of many MPI processes
which are 1 to N or N to N communication. Secondly, it
requires quiescent socket in which case a read will not read any
data that was written to the socket before the remote process
returned from MPI Comm join. Quiescent socket is hard to
be implemented. Finally, MPI Comm join is error prone if
two endpoints of socket are based on different implementation-
defined MPI communication universe.

3) MPI Comm connect and MPI Comm accept: In the
MPI 2.0 and above versions, MP Comm accept and
MPI Comm connect can be used to build client/server style
MPI system, which yields separated failure domains, however,
dynamic process management features are not universally
available in many supercomputers, for example, Blue Gene/P
and above, Cray, and so on.

Finally, we choose to implement portable mechanism that
gains separated MPI failure domain: MHT and MHT applica-



2

tion. With this work, it has been practical to build robust MHT
applications on top of MHT MPI infrastructure and make them
survive through failure of one or the other, although either
MHT application or MHT MPI is not resilient to failure, which
is due to MPI standard that does not address fault tolerance.

B. Archiecture and Design
This work proposed a broker architecture, see also fig.1.

In essence, MHT is a variant of ZHT that is customized to
work over MPI. It inherits ring topology of ZHT. All MHT
servers are bootstrapped as MPI processes and assigned to
proper ranks. MHT broker is also running as MPI process
being allocated dedicated rank, and launched alone with many
MPI processes of MHT servers by the same mpiexec in order
to share the same communicator. MHT application usually runs
as standalone general process or MPI process, in both cases,
MHT application calls MHT client that provides key/value API
to send requests to MHT broker through IPC (inter-process
communication) facilities as part of Linux/Unix kernel, such
as message queue. MHT broker forwards requests to pluggable
MHT Routing module by library call. MHT Routing then sends
requests over MPI protocol to destination MHT server. Default
MHT Routing algorithm is consistent hash. Weighted hash like
CRUSH is alternate routing algorithm to accommodate node
heterogeneity, minimize unnecessary data movement between
MHT servers, and distributes data to proper MHT servers to
enforce separation of replicas across failure domains.

Fig. 1: MHT architecture.
From process perspective, MHT application and MHT client

are in one regular process or MPI process. MHT broker and
MHT Routing belongs to another MPI process. MHT Server
runs within its own MPI process. Only the process for MHT
application and MHT client could be either regular process
or MPI process, otherwise, the others must be MPI process
since MHT Broker and MHT Server need to be bootstrapped
as MPI processes by a single mpiexec in order to share the
same MPI COMM WORLD.

C. Deployment Contract
In terms of deployment, MHT application and MHT client,

along with MHT broker and MHT Routing are deployed to one
node. MHT Server could be in another node. Specially, every
node needs deploying one MHT Broker which is the only one
MPI entry point in that node to a network of MHT Servers.
To ensure MHT Broker and MHT Servers are allocated to
proper MPI ranks that can be used by MHT Routing module
to determine correct destination MHT Server for any specific
request, the order of MPI Broker and MHT Servers assumed
by mpiexec really matters. Here are good cases in point.

1) Deploy MHT in Pseudo Distributed Mode: The command
below will launch four MTH Servers (zht-mpiserver as their
binary) as four MPI processes, and one MHT Broker (zht-
mpibroker as its binary) as one MPI process in a single
node. The zht-mpiserver must precede zht-mpibroker because
that is the only way that the binary zht-mpiserver will be
propagated to four MPI processes with MPI rank range of
0 to 3. The binary zht-mpibroker will be loaded into a
dedicated MPI process with rank 4. MPI Routing module
reads MHT Server nodes membership from neighbor.mpi.conf
which contains MHT Server addresses. The number of nodes
in neighbor.mpi.conf corresponds to initial MPI rank range
associated with MHT Servers, i.e., there must be 4 MHT
Server nodes with addresses configured in neighbor.mpi.conf,
mapping to MPI rank 0 to 3. While determining destination
MHT Server, MPI Routing module only considers rank 0 to
3 by simply ignoring rank of MHT Broker, i.e,. MPI rank 4,
since MHT Broker is not qualified as part of MHT Server
membership.

mpiexec -np 4 ./zht-mpiserver -z zht.conf -n

neighbor.mpi.conf : ./zht-mpibroker -z zht.conf -n

neighbor.mpi.conf

2) Deploy MHT in Cluster Mode: For simplicity, the fol-
lowing command will start n proc MHT Servers in the format
of n proc MPI processes on the nodes configured in neigh-
bor.mpi, on each of which one MHT Broker is also launched
as one MPI process. The MPI rank of 0 to n proc-1 are the
membership consulted by MHT Routing module.

mpiexec -f neighbor.mpi.conf -np n_proc ./zht-mpiserver

-z zht.conf -n neighbor.mpi.conf : ./zht-mpibroker -z

zht.conf -n neighbor.mpi.conf

D. Implementation

In order to support multiple communication protocols, it is
necessary to design protocol abstraction. MHT adopts proxy
and stub structure. Basically, proxy is a set of classes called
by and hosted in client process, and stub is one that is
hosted within server process. See fig.2 for the proxy stub class
hierarchy.

ProtoProxy is designed to provide send, receive, and
sendrecv functions. ProtoStub offers receive, send and
recvsend ones, simply put, sendrecv and recvsend are the com-
bined functions of send/receive. New communication protocols
are easily to be implemented into this abstraction by simply
extending the corresponding ProtoProxy and ProtoStub. For
example, TCPProxy and TCPStub are used for support TCP
as communication mechanism.

MQProxy MPIStub

ProtoProxy

+init()
+bool send(sendbuf, sendcount)
+bool recv(recvbuf, recvcount)
+bool sendrecv(sendbuf, 
sendcount, recvbuf, recvcount)
+bool teardown()

ProtoStub

+init()
+bool send(sendbuf, sendcount)
+bool recv(recvbuf, recvcount)
+bool recvsend(addr, recvbuf)
+bool teardown()

MQStubMPIProxy

ProxyStubFactory
create
0..* 1..*

create
0..*1..*

Client

getProxy/getStub

Fig. 2: Structure of protocol abstraction.



3

E. Runtime Sequence
Referring to fig.3, to put/get/delete/append data, MHT ap-

plications do library call to MHT client key/value API, which
in process invokes MQProxy::sendrecv to send requests to
through IPC (inter-process communication) and waits for
responses from MHT Broker. Within MPI process of MHT
Broker, MQStub::recvsend is long running to serve requests
from MQProxy over IPC. After getting address of correct
destination MHT Server by consulting MHT Routing module,
MQStub simply does library call to MPIProxy::sendrecv that
sends requests to through MPI protocol and waits for responses
from MHT Server. Within MPI process of MHT Server,
MPIStub::recvsend is long running to serve incoming requests
from MPIProxy over MPI protocol, and then returns responses
along with backward communication link.

MHT Apps MHT Client MQProxy

ops request

MQStub:MHT 
Broker MPIProxy MPIStub:MHT 

Server

sendrecv 
recvsend 

sendrecv
recvsend 

Fig. 3: MTH request/response sequence.

III. EXPERIMENTAL RESULTS
A. Experiment setup

We conduct the evaluation on Kodiak supercomputer, a Par-
allel Reconfigurable Observational Environment (PROBE)[13]
at Los Alamos National Laboratory, it has 1024 nodes, and
each node has two 64-bit AMD Opteron processors at 2.6GHz
and 8GB memory. In all experiments, requests are sent from
clients in tight loops. Like Facebook [14] and MICA’s [15]
workloads, we focus on small requests with fixed key (10
bytes) and value length (20 bytes), 95% get and 5% put.
B. Results

In fig.4(a) we can see that at up to 256 nodes, MHT has a bit
lower latency than the ZHT with TCP, especially on smaller
scales. Similarly on throughput, MHT also shows slightly
better performance than ZHT with TCP. It’s worth to note that
Kodiak’s MPI is running over TCP and goes through all TCP’s
network protocol stacks. On some larger supercomputers such
as IBM BlueGene series, MPI is implemented on hardware
level. We would expect even better performance from MHT
on those platforms.

0	
  

1	
  

2	
  

3	
  

4	
  

2	
   4	
   8	
   16	
   32	
   64	
   128	
   256	
  

Re
qu

es
t	
  l
at
en

cy
	
  in
	
  m

s	
  

Number	
  of	
  nodes	
  

TCP	
  	
  
MPI	
  

(a) Latency

1	
  

10	
  

100	
  

1,000	
  

10,000	
  

100,000	
  

1,000,000	
  

2	
   4	
   8	
   16	
   32	
   64	
   128	
   256	
  

Th
ro
ug
hp

ut
	
  in
	
  o
ps
/s
	
  

Number	
  of	
  nodes	
  

TCP	
  
MPI	
  

(b) Aggregated throughput
Fig. 4: MHT performance with TCP v.s MPI

IV. RELATED WORK

Content-MPI (C-MPI)[16], is the only key-value store
project that we are aware of supporting MPI. It is built on
MPI functionality, and offers a scalable data store that is fault
tolerant. C-MPI does not support dynamic MPI process join.
ZHT [17–21], the parent project of this work, is a zero-hop

distributed hash table, and has been tuned for the requirements
of high-end computing systems. ZHT has been used in multiple
distributed systems, namely file system [22], job scheduler
[23–25], distributed message queue [26], graph processing
system [27] and many others. But the published version of
ZHT doesn’t support MPI.

V. CONCLUSIONS

In this paper, we present a prototype of a distributed key-
value store that supports MPI while allowing application access
at any time without having to declaring in the same MPI
communication world. This feature may significantly simplify
the application design and allow programmers leverage the
power of distributed key-value store in an intuitive way. The
preliminary results shows close-to-linear scalability at up to
256 nodes.

ACKNOWLEDGMENTS
This work was supported in part by the National Science Foundation grant

NSF-1054974. This work used Kodiak supercomputer, a Parallel Reconfig-
urable Observational Environment (PROBE) [13] deployed at Los Alamos
National Laboratory (LANL).

REFERENCES
[1] Yi Wang, Gagan Agrawal, Gulcin Ozer, and Kun Huang. Removing sequential bottlenecks in

analysis of next-generation sequencing data. In IPDPSW, 2014 IEEE International. IEEE, 2014.
[2] Tianyun Su, Zhihan Lv, Shan Gao, Xiaolong Li, and Haibin Lv. 3d seabed: 3d modeling and

visualization platform for the seabed. In Multimedia and Expo Workshops (ICMEW), 2014 IEEE
International Conference.

[3] Fan Shi, Xiang Zhang, Qian Li, and Changyu Shen. Notice of retraction particle tracking in micro-
injection molding simulated by mis. In Computer Engineering and Technology (ICCET), 2010 2nd
International Conference on. IEEE, 2010.

[4] Fan Shi, Xiang Zhang, Qian Li, and Changyu Shen. Mould wall friction effects on micro injection
moulding based on simulation of mis. IOP Conference Series: Materials Science and Engineering,
2010.

[5] SHI Fan, Zhang Xiang, LI Qian, and Shen Changyu. Numerical simulation of micro injection
moulding based on mesh free method. Sciencepaper Online, 2010.

[6] Su Zhang, Xinwen Zhang, and Xinming Ou. After we knew it: empirical study and modeling of
cost-effectiveness of exploiting prevalent known vulnerabilities across iaas cloud. In Proceedings of
the 9th ACM symposium on Information, computer and communications security, pages 317–328.
ACM, 2014.

[7] Fan Shi, Aaron M Coffey, Kevin W Waddell, Eduard Y Chekmenev, and Boyd M Goodson.
Nanoscale catalysts for nmr signal enhancement by reversible exchange. The Journal of Physical
Chemistry C, 119(13):7525–7533, 2015.

[8] Tonglin Li, Ioan Raicu, and Lavanya Ramakrishnan. Scalable state management for scientific
applications in the cloud. BigData Congress ’14.

[9] Tonglin Li, Kate Keahey, Rajesh Sankaran, Pete Beckman, and Ioan Raicu. A cloud-based
interactive data infrastructure for sensor networks. IEEE/ACM Supercomputing/SC’14.

[10] Tonglin Li, Kate Keahey, Ke Wang, Dongfang Zhao, and Ioan Raicu. A dynamically scalable cloud
data infrastructure for sensor networks. ACM ScienceCloud 15.

[11] Tonglin Li, Ke Wang, Dongfang Zhao, Kan Qiao, Iman Sadooghi, Xiaobing Zhou, and Ioan Raicu.
A flexible qos fortified distributed key-value storage system for the cloud. In IEEE BigData
Conference2015. IEEE, 2015.

[12] I. Sadooghi, J. Hernandez Martin, T. Li, K. Brandstatter, Y. Zhao, K. Maheshwari, T. Pais Pitta de
Lacerda Ruivo, S. Timm, G. Garzoglio, and I. Raicu. Understanding the performance and potential
of cloud computing for scientific applications. 2015.

[13] Parallel reconfigurable observational environment. http://www.nmc-probe.org/. Accessed: 2014-
11-30.

[14] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny. Workload analysis
of a large-scale key-value store. SIGMETRICS ’12, 2012.

[15] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kaminsky. Mica: a holistic approach
to fast in-memory key-value storage. NSDI’14.

[16] J.M. Wozniak, B. Jacobs, R. Latham, S.W. Son S. Lang, and R. Ross. C-mpi: A DHT implementa-
tion for grid and HPC environments. 2010.

[17] Tonglin Li, Xiaobing Zhou, Kevin Brandstatter, Dongfang Zhao, Ke Wang, Anupam Rajendran,
Zhao Zhang, and Ioan Raicu. ZHT: A light-weight reliable persistent dynamic scalable zero-hop
distributed hash table. IPDPS ’13.

[18] Tonglin Li, Raman Verma, Xi Duan, Hui Jin, and Ioan Raicu. Exploring distributed hash tables in
highend computing. SIGMETRICS Performance Evaluation Review, 2011.

[19] Tonglin Li, Xiaobing Zhou, Ke Wang, Dongfang Zhao, Iman Sadooghi, Zhao Zhang, and Ioan
Raicu. A convergence of key-value storage systems from clouds to supercomputers. Concurr.
Comput. : Pract. Exper.(CCPE), 2015.

[20] Tonglin Li and Ioan Raicu. Distributed nosql storage for extreme-scale system services. In
IEEE/ACM Supercomputing PhD Showcase. IEEE/ACM, 2015.

[21] Tonglin Li. A convergence of NoSQL storage systems from clouds to supercomputers. Illinois
Institute of Technology, PhD Proposal, 2014.

[22] Dongfang Zhao, Zhao Zhang, Xiaobing Zhou, Tonglin Li, Ke Wang, Dries Kimpe, Philip Carns,
Robert Ross, and Ioan Raicu. Fusionfs: Towards supporting data-intensive scientific applications
on extreme-scale high-performance computing systems. In Big Data, 2014 IEEE International
Conference on.

[23] Ke Wang, Xiaobing Zhou, Tonglin Li, Michael Lang, and Ioan Raicu. Optimizing load balancing
and data-locality with data-aware scheduling. IEEE BigData’14.

[24] Ke Wang, Ning Liu, Iman Sadooghi, Xi Yang, Xiaobing Zhou, Tonglin Li, Michael Lang, Xian-He
Sun, and Ioan Raicu. Overcoming Hadoop scaling limitations through distributed task execution.
IEEE Cluster’15, 2015.

[25] Ke Wang, Kan Qiao, Iman Sadooghi, Xiaobing Zhou, Tonglin Li, Michael Lang, and Ioan
Raicu. Load-balanced and locality-aware scheduling for data-intensive workloads at extreme scales.
Concurrency and Computation: Practice and Experience, 2015.

[26] Iman Sadooghi, Ke Wang, Shiva Srivastava, Dharmit Patel, Dongfang Zhao, Tonglin Li, and Ioan
Raicu. Fabriq: Leveraging distributed hash tables towards distributed publish-subscribe message
queues. IEEE/ACM International Symposium on Big Data Computing (BDC), 2015.

[27] Tonglin Li, Chaoqi Ma, Jiabao Li, Xiaobing Zhou, Ke Wang, Dongfang Zhao, Iman Sadooghi, and
Ioan Raicu. GRAPH/Z: A key-value store based scalable graph processing system. Cluster’15.


