
MHT: A Light-weight Scalable Zero-hop MPI Enabled 
Distributed Key-Value Store

Xiaobing Zhou1, Tonglin Li2, Ke Wang4, Dongfang Zhao2, Iman Sadooghi2, Ioan Raicu2,3

1Hortonworks, 2Illinois Institute of Technology, 3Argonne National Laboratory, 4Intel

Motivation
§ Distributed Key-value store for HPC
§ Simplifying large system service design
§ Simplifying HPC application design

Contributions
§ MHT: a MPI enabled key-value store
§ Support dynamic MPI process join
§ Real system evaluation up to 256-nodes

Architecture 
§ Broker based 3-tier architecture

• Clients: MPI or regular processes
• MHT brokers w/ MPI rank
• MHT servers w/ MPI rank

§ MHT brokers and servers in
same MPI_COMM_WORLD

§ Clients in different one
§ Message Queue IPC

Future work
§ Enhanced fault tolerance features
§ Exa-scale system services with MHT
§ Utilizing MHT to boost HPC application

performance and scalability

Acknowledgement
This work was supported in part by the National Science
Foundation grant NSF-1054974. This work used Kodiak
supercomputer, a Parallel Reconfigurable Observational
Environment (PROBE) deployed at Los Alamos National
Laboratory (LANL).

Challenges
§ Predefined MPI communication world
§ Unified API for various protocols
§ Dynamic MPI process join not available 

in many supercomputers.
§ Applications and MPI layer share the 

same failure domain

Abstract
NoSQL databases, such as key-value stores, are known
for their ease of use and excellent scalability. However
supercomputers and HPC applications are not able to
enjoy the benefits of distributed key-value stores due
to their customized OS and communication stack. In
this paper, we propose and implement a key-value
store that supports MPI while allowing application
access at any time without having to declaring in the
same MPI communication world. This feature may
significantly simplify the application design and allow
programmers leverage the power of key-value store in
an intuitive way. In our preliminary experiment results
captured from a supercomputer at Los Alamos
National Laboratory, our prototype shows linear
scalability at up to 256 nodes.

Proposed Solution
§ Use inter process communication (IPC)

between clients and brokers
§ Abstracting network communication protocol
§ Client-side: proto proxy 
§ Server-side: proto stub
§ Sync/async message send and receive
§ Separating failure domain of application and 

MPI layer

Evaluation
§ Test bed: PROBE at LANL, 1024 nodes, two 2.6GHz 

64-bit AMD Opteron, 8GB RAM per node

1"

10"

100"

1,000"

10,000"

100,000"

1,000,000"

2" 4" 8" 16" 32" 64" 128" 256"

Th
ro
ug
hp

ut
)in
)o
ps
/s
)

Number)of)nodes)

TCP"
MPI"

0"

1"

2"

3"

4"

2" 4" 8" 16" 32" 64" 128" 256"

Re
qu

es
t'l
at
en

cy
'in
'm

s'

Number'of'nodes'

TCP""
MPI"

Reference
• Tonglin Li, Xiaobing Zhou, Xiaobing Zhou, Ke Wang, Dongfang Zhao, Iman Sadooghi, Zhao Zhang, Ioan Raicu, etc., A Convergence of Distributed Key-Value Storage in Cloud 
Computing and Supercomputing, Journal of Concurrency and Computation Practice and Experience (CCPE), 2015. 
• Tonglin Li, Xiaobing Zhou, Kevin Brandstatter, Dongfang Zhao, Ke Wang, Anupam Rajendran, Zhao Zhang, and Ioan Raicu. ZHT: A light-weight reliable 
persistent dynamic scalable zero-hop distributed hash table. IPDPS ’13. 
• Tonglin Li, Raman Verma, Xi Duan, Hui Jin, and Ioan Raicu. Exploring distributed hash tables in highend computing. SIGMETRICS Performance Evaluation Review, 2011. 
• J.M. Wozniak, B. Jacobs, R. Latham, S.W. Son S. Lang, and R. Ross. C-mpi: A DHT implementation for grid and HPC environments. 2010. 

Implementation
§ Abstracting protocols
§ Client proto proxy and 

server proto stub
§ Support MPI/TCP/UDP

MQProxy MPIStub

ProtoProxy

+init()
+bool send(sendbuf, sendcount)
+bool recv(recvbuf, recvcount)
+bool sendrecv(sendbuf, 
sendcount, recvbuf, recvcount)
+bool teardown()

ProtoStub

+init()
+bool send(sendbuf, sendcount)
+bool recv(recvbuf, recvcount)
+bool recvsend(addr, recvbuf)
+bool teardown()

MQStubMPIProxy

ProxyStubFactory
create
0..* 1..*

create
0..*1..*

Client

getProxy/getStub

Structure of protocol abstraction 

MHT architecture

IPC

MPI rank


