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Motivation
§ Distributed Key-value store for HPC
§ Simplifying large system service design
§ Simplifying HPC application design

Contributions
§ MHT: a MPI enabled key-value store
§ Support dynamic MPI process join
§ Real system evaluation up to 256-nodes

Architecture 
§ Broker based 3-tier architecture

• Clients: MPI or regular processes
• MHT brokers w/ MPI rank
• MHT servers w/ MPI rank

§ MHT brokers and servers in
same MPI_COMM_WORLD

§ Clients in different one
§ Message Queue IPC

Future work
§ Enhanced fault tolerance features
§ Exa-scale system services with MHT
§ Utilizing MHT to boost HPC application

performance and scalability
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Challenges
§ Predefined MPI communication world
§ Unified API for various protocols
§ Dynamic MPI process join not available 

in many supercomputers.
§ Applications and MPI layer share the 

same failure domain

Abstract
NoSQL databases, such as key-value stores, are known
for their ease of use and excellent scalability. However
supercomputers and HPC applications are not able to
enjoy the benefits of distributed key-value stores due
to their customized OS and communication stack. In
this paper, we propose and implement a key-value
store that supports MPI while allowing application
access at any time without having to declaring in the
same MPI communication world. This feature may
significantly simplify the application design and allow
programmers leverage the power of key-value store in
an intuitive way. In our preliminary experiment results
captured from a supercomputer at Los Alamos
National Laboratory, our prototype shows linear
scalability at up to 256 nodes.

Proposed Solution
§ Use inter process communication (IPC)

between clients and brokers
§ Abstracting network communication protocol
§ Client-side: proto proxy 
§ Server-side: proto stub
§ Sync/async message send and receive
§ Separating failure domain of application and 

MPI layer

Evaluation
§ Test bed: PROBE at LANL, 1024 nodes, two 2.6GHz 

64-bit AMD Opteron, 8GB RAM per node
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Implementation
§ Abstracting protocols
§ Client proto proxy and 

server proto stub
§ Support MPI/TCP/UDP

MQProxy MPIStub

ProtoProxy

+init()
+bool send(sendbuf, sendcount)
+bool recv(recvbuf, recvcount)
+bool sendrecv(sendbuf, 
sendcount, recvbuf, recvcount)
+bool teardown()

ProtoStub

+init()
+bool send(sendbuf, sendcount)
+bool recv(recvbuf, recvcount)
+bool recvsend(addr, recvbuf)
+bool teardown()

MQStubMPIProxy

ProxyStubFactory
create
0..* 1..*

create
0..*1..*

Client

getProxy/getStub

Structure of protocol abstraction 

MHT architecture

IPC

MPI rank


