IEEE TRANSACTIONS ON SERVICE COMPUTING, MANUSCRIPT ID

A Service Framework for Scientific Workflow
Management in the Cloud

Yong Zhao, Member, IEEE, Youfu Li, Student Member, IEEE, loan Raicu, Shiyong Lu, Cui Lin,
Member, IEEE, Yanzhe Zhang, Wenhong Tian and Ruini Xue, Member, IEEE

Abstract—Cloud computing is an emerging computing paradigm that can offer unprecedented scalability and resources on
demand, and is getting more and more adoption in the science community, while scientific workflow management systems
provide essential support such as management of data and task dependencies, job scheduling and execution, provenance
tracking, etc., to scientific computing. As we are entering into a “big data” era, it is imperative to migrate scientific workflow
management systems into the Cloud to manage the ever increasing data scale and analysis complexity. We propose a
reference service framework for integrating scientific workflow management systems into various Cloud platforms, which
consists of eight major components, including Cloud workflow management service, Cloud resource manager, etc., and 6
interfaces between them. We also present a reference framework for the implementation of Cloud Resource Manager, which is
responsible for the provisioning and management of virtual resources in the Cloud. We discuss our implementation of the
framework by integrating the Swift scientific workflow management system with the OpenNebula and Eucalyptus Cloud
platforms, and demonstrate the capability of the solution using a NASA MODIS image processing workflow and a production
deployment on the Science@ Guoshi network with support for the Montage image mosaic workflow.

Index Terms—Cloud Workflow, Cloud Resource Management, Reference Service Framework, Swift, Virtual Cluster

Provisioning, Workflow-as-a-Service

1 INTRODUCTION

CIENTIFIC workflow management systems (SWFMSs)

have been proven essential to scientific computing and
services computing [4], [24], [25], [26] as they provide func-
tionalities such as workflow specification, process coordina-
tion, job scheduling and execution, provenance tracking, and
fault tolerance. Systems such as Taverna [11], Kepler [9],
Vistrails [10], Pegasus [8], Swift [32], and VIEW [25] have
seen wide adoption in various disciplines such as Physics,
Astronomy, Bioinformatics, Neuroscience, Earth Science,
and Social Science. Nevertheless, advances in science in-
strumentation and network technologies are posing great
challenges to our workflow systems in both data scale and
application complexity.

Industrial and Scientific communities are facing a “data
deluge” [7] coming from products, sensors, satellites exper-
iments and simulations. Scientists, manufacturers and de-
velopers are attempting multifarious methods to deal with
the ever-increasing computing and storage problems arising

o Y. Zhao, Y. Li, W. Tian and R. Xue are with the School of Computer Sci-
ence and Engineering, University of Electronic Science and Technology of
China, Chengdu, China. (e-mail: yongzh04@gmail.com, youfu-

li. fly@gmail.com, tian_wenhong@uestc.edu.cn, xueruini@gmail.com).

o [. Raicu is with the Department of Computer Science, Illinois Institute of
Technology, Chicago IL, USA. (e-mail: iraicu@cs.iit.edu).

o S. Lu is with the Department of Computer Science, Wayne State Universi-
ty, Detroit M1, USA. (email: shiyong@wayne.edu,).

o C. Lin is with the Department of Computer Science, California State Uni-
versity, Fresno, USA. (email: clin@csufresno.edu).

o Y. Zhang is with the Institute of Computing Technology, Chinese Academy
of Sciences, Beijing, China. (email: zhangyanzhe@ict.ac.cn).

Please note that all acknowledgments should be placed at the end of the paper,
before the bibliography (note that corresponding authorship is not noted in
affiliation box, but in acknowledgment section).

XXXX-XXXX/Ox/$xx.00 © 200x |IEEE

in the “big data” era. The Large Hadron Collider! at CERN
can generate more than 100 terabytes of collision data per
second; GenBank?, one of the largest DNA databases, hosts
over 120 billion bases and the number is expected to double
every 9-12 months. Data volumes are also increasing dra-
matically in physics, earth science, medicine, and many oth-
er disciplines. As for application complexity, a protein simu-
lation problem [29] involves running many instances of a
structure prediction simulation, each with different random
initial conditions and performs multiple rounds. The num-
ber of jobs can easily reach hundreds of thousands, and can
run up to tens of CPU years.

As an emerging computing paradigm, Cloud computing
[1] is gaining tremendous momentum in both academia and
industry: Amazon, Google, IBM, and Microsoft all released
their Cloud platforms one after another. Meanwhile, several
open source Cloud platforms, such as Hadoop?, OpenNebu-
la%, Eucalyptus [28], Nimbus [22], and OpenStack®, become
available with fast growth of their own communities. Scien-
tific workflow systems have been formerly applied over a
number of execution environments such as workstations,
clusters/Grids, and supercomputers, where the new Cloud
computing paradigm with unprecedented size of datacen-
ter-level resource pool and on-demand resource provision-
ing can offer much more to such systems, enabling scientific
workflow solutions capable of addressing peta-scale scien-
tific problems. The benefit of managing and running scien-
tific workflows on top of the Cloud can be multifold:

L http:/ /lhc.web.cern.ch
2 http:/ /www.ncbi.nlm.nih.gov/ genbank
3 http:/ /hadoop.apache.org/
4 http:/ /www.OpenNebula.org
5 http:/ /www.openstack.org
Published by the IEEE Computer Society

1) The scale of scientific problems that can be addressed
by scientific workflows can be greatly increased compared to
cluster/Grid environments, which was previously up-
bounded by the size of a dedicated resource pool with lim-
ited resource sharing extension in the form of virtual organi-
zations. Cloud platforms can offer vast amount of compu-
ting resources as well as storage space for such applications,
allowing scientific discoveries to be carried out in a much
larger scale.

2) Application deployment can be made flexible and con-
venient. With bare-metal physical servers, it is not easy to
change the application deployment and the underlying sup-
porting platform. However with virtualization technology in
a Cloud platform, different application environments can be
either pre-loaded in virtual machine (VM) images, or de-
ployed dynamically onto VM instances.

3) The on-demand resource allocation mechanism in the
Cloud can improve resource utilization and change the ex-
perience of end users for improved responsiveness. Cloud-
based workflow applications can get resources allocated
according to the number of nodes at each workflow stage,
instead of reserving a fixed number of resources upfront.
Cloud workflows can scale out and in dynamically, resulting
in fast turn-around time for end users.

4) Cloud computing provides much larger room for the
trade-off between performance and cost. The spectrum of
resource investment now ranges from dedicated private
resources, a hybrid resource pool combining local resource
and remote Clouds, and full outsourcing of computing and
storage to public Clouds. Cloud computing not only pro-
vides the potential of solving larger-scale scientific problems,
but also brings the opportunity to improve the perfor-
mance/ cost ratio.

There are various challenges associated with migrating
and adapting an SWFMS in the Cloud, including architec-
tural challenges, integration challenges, computing chal-
lenges, data management challenges, language challenges
and service management challenges. We have discussed the
challenges in depth in an early paper [12]. Meanwhile, Secu-
rity has been identified as one of the main concerns for the
adoption and success of the Cloud [1] and is the first major
service that needs to be provided by a Cloud provider. In
many cases, large simulations are organized as scientific
workflows that run on Distributed Computing Infrastruc-
tures (DCls), and we realize that SWFMSs are diverse in
many aspects, such as workflow models, workflow lan-
guages, workflow engines, and so on. In many cases, one
workflow system engine is dependent on one specific DCI,
porting a SWFMSs to run on another DCI may cost a large
quantity of extra effort. So in practice, researchers may
choose to integrate a specific SWEMS into a particular
Cloud, whichever takes the minimum effort to migrate.

Taking into consideration all the advantages, require-
ments and challenges, we propose a service framework for
migrating and integrating SWFMSs into various Cloud plat-
forms. Through the introduction of the reference service
framework and the implementation of different modules
that can be mapped into the proposed framework, we try to
achieve three goals: 1) proposing a framework to bridge var-
ious SWFMSs with multiple heterogeneous Cloud environ-

IEEE TRANSACTIONS ON SERVICE COMPUTING, MANUSCRIPT ID

ments; 2) breaking the limitations that a specific SWFMS is
bound to a particular Cloud environment; 3) providing both
practical and reference value to researchers who are devoted
to the study of running scientific workflows in Clouds, so
that they can contribute and share components designed
and implemented by the guidance of the service framework,
which is beneficial to both the workflow and the Cloud
computing communities. The service framework covers all
the major aspects involved in workflow management in the
Cloud, from the client-side workflow submission to the un-
derlying Cloud resource management. Our major contribu-
tions are: 1) we propose a reference service framework for
migrating SWFMSs into various Cloud platforms; 2) we also
propose a reference service architecture for Cloud resource
management that is a core component of the framework; 3)
we provide implementations of the service framework by
integrating the Swift workflow system with the OpenNebula
and Eucalyptus Cloud platforms; 4) we analyze the integra-
tion efficiency of our approach in a small cluster based
Cloud setting, a public science Cloud platform, and also pre-
sent a use case of production deployment.

The rest of the paper is organized as follows: in section II,
we discuss related work in running scientific applications
and workflows in the Cloud. In section III, we present our
reference service framework for migrating different
SWEMSs into diverse Cloud platforms. In the Implementa-
tion Experience section, we discuss our experience in inte-
grating the Swift workflow system into the OpenNebula and
Eucalyptus Cloud platforms. In the Experiment section, we
demonstrate and analyze our integration using a NASA
MODIS image processing workflow and the Montage image
mosaic workflow [19], and in the last section, we draw our
conclusions and discuss future work.

2 RELATED WORK

There have been a couple of explorers that tried to run work-
flow on Clouds. The series of works [13], [30] focused on
running scientific workflows that are composed of loosely
coupled parallel applications on various Clouds. The study
conducted on an experimental Nimbus Cloud testbed [14]
dedicated to science applications involved a non-trivial
amount of computation performed over many days, which
allowed the evaluation of the scalability as well as the per-
formance and stability of the Cloud over time. Their studies
demonstrated that the multi-site Cloud computing is a via-
ble and effective solution for some scientific workflows, and
the networking and management overhead across different
Cloud infrastructures do not have a major effect on the over-
all user experience, and the convenience of being able to
scale resources at runtime outweighs such overhead.

The deployment and management of workflows over the
current existing heterogeneous and not-yet interoperable
Cloud providers, however, is still a challenging task for
workflow developers. The series of works [3], [15] presented
a broker-based framework to support the execution of work-
flow applications on a multi-Cloud environment. Wang et al.
[16] designed a Workflow as a Service (WFaaS) architecture
focused on responding continuous workflow requests and
scheduling their executions in the Cloud. After proposing

YONG ZHAO ET AL.: A SERVICE FRAMEWORK FOR SCIENTIFIC WORKFLOW MANAGEMENT IN THE CLOUD

four heuristic workflow scheduling algorithms for the
WFaaS architecture, they analyzed the differences and best
usages of the algorithms in terms of performance, cost and
the price/performance ratio via experimental studies. Sun-
flower [5] was an adaptive P2P agent-based framework for
configuring, enacting, managing and adapting autonomic
workflows on hybrid Grid-Cloud infrastructures. To orches-
trate Grid and Cloud services, Sunflower utilized a bio-
inspired autonomic choreography model and integrated the
scheduling algorithm with a provisioning component that
could dynamically launch virtual machines in a Cloud infra-
structure to provide on-demand services in peak-load situa-
tions.

Approaches for automated provisioning include the Con-
text Broker [22] from the Nimbus project, which supported
the concept of “one-click virtual cluster” that allowed clients
to coordinate large virtual cluster launches in simple steps.
The Wrangler system [23] was a similar implementation that
allowed users to describe a desired virtual cluster in XML
format, and send it to a web service, which managed the
provisioning of virtual machines and the deployment of
software and services. It was also capable of interfacing with
many different Cloud resource providers.

Upon dynamic resource allocation for scientific work-
flows, Tram Truong Huu et al. [31] described a framework
that automated Cloud resource allocation, deployment and
application execution control. It was based on a cost estima-
tion model that took into account both virtual network and
nodes managed by the Cloud. Simon Ostermann et al. [21]
investigated the usability of compute Clouds to extend a
Grid workflow middleware and showed in a real implemen-
tation that it could speed up executions of scientific
workflows. Elena Apostol et al. [18] addressed key require-
ments in managing resources at the infrastructure level --
new resources can be dynamically allocated on-demand or
policy-based.

The studies mentioned above were either focused on
running workflow applications on Clouds or on the de-
ployment and management of integrating workflows into
Clouds, dealing with workflow scheduling, resource alloca-
tion, application adaptation, performance evaluation, etc.,
however, a normalized, service-oriented integration frame-
work is still missing. As running scientific workflows as a
service in the Cloud platforms involves a variety of systems
and techniques, researching and designing of a service-
oriented framework can help to standardize the integration
procedure and interaction between essential systems, and
foster community collaboration.

In this paper, we propose a generic service framework to
integrate SWFMSs with various Cloud based DCIs, which
covers a wide spectrum from workflow management and
migration into Clouds, task scheduling, Cloud resource
management, and virtual resource provisioning and recy-
cling. We define a series of interfaces to standardize the in-
teractions between different components. Implementation of
different components can be reused and migrated to the
service framework according to the interface definition. We
also present a reference architecture for the implementation
of Cloud Resource Manager, which is a key component in
the service framework.

3 SERVICE FRAMEWORK

In this section, we discuss a service framework for migrating
and adapting SWFMSs into various Cloud platforms. Before
we go into further details of the service framework, we first
discuss some background information with regard to inte-
gration options and challenges.

3.1 Integration Options

In an early paper [12], we identified four implementation
approaches to the deployment of SWFMSs in a Cloud com-
puting environment according to the reference architecture
for SWEMSs [25]. The reference architecture for SWFMSs
was proposed as an endeavor to standardize the SWFMS
research and development efforts, and an SOA-based instan-
tiation was first implemented in the VIEW system. As
shown in Fig. 1, the reference architecture consists of 4 logi-
cal layers, 7 major functional subsystems, and 6 interfaces.

Presentation & W Workflow L

Visualization Design
Presentation Layer

------------- g
I Othe i B &
LS 0 Ts Workflow I Workflow
i
i I
A

i
]

i

\ Wikl j Engine Monitoring

| Engines

[y | Workflow Management Layer

r— P Lo~y [oR
Data Product Provenance Task W
Management ~ Management Management |

Task Management Layer
Heterogenous
Data Sources

Fig. 1. A Reference Architecture for SWFMSs

The four deployment options, accordingly, correspond to
deploying different layers of the reference architecture into
the Cloud:

1) Operational-Layer-in-the-Cloud. In this solution, only the
Operational Layer lies in the Cloud with an SWFMS running
out of the Cloud. An SWFMS can now leverage Cloud appli-
cations as another type of task components. Cloud-based
applications can take advantage of high scalability provided
by the Cloud and large resource capacity provisioned by
data centers. This solution also relieves a user from the con-
cern of vendor lock-in due to the relative ease of using alter-
native Cloud platforms for running Cloud applications.
However, the SWEMS itself cannot benefit from the scalabil-
ity offered by the Cloud.

2) Task-Management-Layer-in-the-Cloud. Both the Opera-
tional Layer and the Task Management Layer will be de-
ployed in the Cloud. The Data Product Management, Prov-
enance Management, and Task Management components
can now leverage the high scalability provided by the Cloud.
For Task Management, rather than accommodating the us-
er’s request based on a batch-based scheduling system, all or
most tasks with a ready state can now be immediately de-
ployed over Cloud computing nodes and executed instead
of waiting in a job queue for the availability of resources.
One limitation of this solution is that the economic cost asso-
ciated with the storage of provenance and data products in
the Cloud. Moreover, although task scheduling and man-
agement can benefit from the scalability offered by the
Cloud, workflow scheduling and management do not since

Heterogeneous ‘
Services

Heterogenous
Software Tools

Future
Service

Operational Layer

the workflow engine runs outside of the Cloud.

3) Workflow-Management-Layer-in-the-Cloud. In this solu-
tion, the Operational Layer, the Task Management Layer,
and the Workflow Management Layer are deployed in the
Cloud with the Presentation Layer deployed at a client ma-
chine. This solution provides a good balance between sys-
tem performance and usability: the management of compu-
tation, data, and storage and other resources are all encapsu-
lated in the Cloud, while the Presentation Layer remains at
the Client to support the key architectural requirement of
user interface customizability and user interaction support.
In this solution, both workflow and task management can
benefit from the scalability offered by the Cloud, but the
downside is that they become more dependent on the Cloud
platform over which they run.

4) All-in-the-Cloud. In this solution, a whole SWEMS is
deployed inside the Cloud and accessible via a Web brows-
er. A distinct feature of this solution is that no software in-
stallation is needed for a scientist and the SWFMS can fully
take advantage of all the services provided in a Cloud infra-
structure. Moreover, the Cloud-based SWFMS can provide
highly scalable scientific workflows and task management as
services, providing one kind of Software-as-a-Service (SaaS).
One concern the user might have is the economic cost asso-
ciated with the necessity of using Cloud on a daily basis, the
dependency on the availability and reliability of the Cloud,
as well as risks associated with vendor lock-in.

For easy integration with a Cloud platform, a “Task-
Management-layer-in-the-Cloud” approach can be chosen by
implementing, for instance an “Amazon EC2” provider to
Swift, then tasks in a Swift workflow can be submitted into
EC2 and executed on EC2 VM instances. However, this ap-
proach would leave most of the workflow management and
dynamic resource scaling outside the Cloud. For application
developers, we would like to free them from complicated
Cloud resource configuration and provisioning issues, and
provide them with the convenience and transparency to
scalable Cloud resources, therefore we choose to take the
“Workflow-Management-Layer-in-the-Cloud” approach, which
requires minimal configuration at the client side and sup-
ports easy deployment with virtualization techniques.

3.2 Integration Challenges
Many of the immediate challenges to running scientific
workflows on the Cloud are to integrate scientific workflow
systems with Cloud infrastructure and resources. As we
have discussed in the previous section, the degree of integra-
tion also depends on how we choose to deploy an SWFMS
into Clouds. While we certainly cannot cover all the aspects
of the integration problems that we could encounter in the
“ All-in-the-Cloud” approach, we strive to identify some
practical ones, and also discuss possible solutions to them.
Applications, services, tools integration: In the Opera-
tional-Layer-in-the-Cloud approach, we treat applications,
services, and tools hosted in the Cloud as task components
in a workflow, the scheduling and management of a work-
flow are mostly outside the Cloud, where these task compo-
nents are invoked as they are scheduled to execute. The in-
vocation would need the right interface to interact with such
applications, services, tools, for instance, via HTTP or REST

IEEE TRANSACTIONS ON SERVICE COMPUTING, MANUSCRIPT ID

protocols, or Web services calls, and then in the workflow, it
needs to transform the output of one invocation, and then
feed it as an input to another invocation. A majority of the
mashup sites (such as those that leverage Google’s map ser-
vice) take this approach, and they use some ad hoc scripts
and programs or shimming techniques [17] to glue the ser-
vices together. An early exploration of the Taverna work-
flow engine and gRAVI services in the caBIG project [42] can
also be thought as an example of integrating an off-the-shelf
workflow engine with Cloud/Grid services. gRAVI can rap-
idly wrap and expose applications, scripts and workflows as
Web services, and deploy them into Grid, or the Nimbus
Cloud environment.

We notice that while the approach works for applications
with small data exchanges, moving large dataset in and out
the Cloud would incur serious overhead. For data intensive
applications, it is necessary to migrate data into the Cloud.
While Amazon’s Cloud services allow loading data into the
S3 storage, and then having the EC2 computing service ac-
cess the data stored in S3, the MapReduce style of Cloud
services such as Hadoop, would actually require computa-
tion to be collocated with storage (the same node that is used
for storage is also used for computation) to explore data lo-
cality and avoid expensive data movement within and
across data centers. Loading data in and out the Cloud is not
a trivial process, for instance, within Microsoft, to load each
day’s Bing search log into the Cloud, this task itself takes
hundreds of dedicated servers working around the clock. So
in an ideal Cloud workflow solution, we should avoid such
operations as much as possible.

Once we decide to get task dispatching and scheduling
into the Cloud, resource provisioning becomes the next issue
to resolve. Although conceptually Cloud offers uncapped
resources, and a workflow can request as many resources as
it requires, this comes with a cost and the presumption that
the workflow engine can talk directly with the resource allo-
cated in the Cloud (Which is usually not true without tweak-
ing the configuration of the workflow engine). Taking these
two factors into consideration, some existing solutions such
as Nimbus would acquire a certain number of virtual ma-
chines (e.g. EC2 compute nodes), and assemble them as a
virtual cluster, onto which existing cluster management sys-
tems such as PBS can be deployed and used as a job submis-
sion/ execution service that a workflow engine can directly
interact with. An existing study [20] simply choose manual
deployment over automated provisioning, in which the pro-
visioning step involves construction of a virtual Condor
pool, where the VMs act as Condor worker nodes and report
to a Condor Master node that runs on a submit host outside
the Cloud. This belongs to the Task-Management-Layer-in-
the-Cloud approach, and it requires the Condor connection
broker to enable VMs with private network addresses to talk
to the outside submit host.

Debugging, monitoring, and provenance tracking for
workflows become increasingly difficult in the Cloud envi-
ronment, since compute resources are usually dynamically
assigned and based on virtual machine images, the envi-
ronment that a task is executed on could be destroyed right
after the task is finished, and assigned to a complete differ-
ent user and task. Some Clouds also support task migration

YONG ZHAO ET AL.: A SERVICE FRAMEWORK FOR SCIENTIFIC WORKFLOW MANAGEMENT IN THE CLOUD

where tasks can be migrated to another virtual machine if
there is a problem with the node that the task was running
on.

3.3 Service Framework

We propose a structured service framework that addresses
the above mentioned challenges and covers all the major
aspects involved in the migration and integration of
SWEMSs into the Cloud, from client-side workflow specifi-
cation, service-based workflow submission and manage-
ment, task scheduling and execution, to Cloud resource
management and provisioning. As illustrated in Fig. 2, the
service framework includes 4 layers, 8 components and 6
interfaces.

Workflow Specification Workflow Presentation
& Submission & Visualization .
Client Layer)

i
i |
Cloud Workflow ﬂ | Workflow \
Management Service D f Engines i

- L -
‘ - | 1

T
| E3

[2 . ,"/"""""""‘:&
Cloud Resource || I3 Sty Is i Task Scheduling | |
Management 3
Manager “ . 1 Frameworks F
Service ! £
4 Middleware Layer/
. iddl.)
¥
Cloud Platforms ﬂ L
RUTTR TN =
Storage Network Servers Infrastructure Layer

Fig. 2. The Service Framework

3.3.1 Layers

The first layer is the Infrastructure Layer, which consists of
multiple Cloud platforms with the underlying server, stor-
age and network resources. This layer provides IaaS level
support such as the management of the fundamental physi-
cal equipment, virtual machines and storage systems to up-
per layers. The separation of the Infrastructure Layer from
other layers isolates the science-focused and technology-
independent problem solving environment from the under-
lying fast advancing high-end computing infrastructure.

The second layer is called the Middleware Layer. This lay-
er is responsible for resource management and provisioning,
and responding to requests from upper-layer and support-
ing various scheduling frameworks. All the operations that
need to access the underlying resources are encapsulated in
this layer. According to the description in the Integration
Options section, this layer is responsible for the require-
ments requested by the Task-Management-Layer-in-the-Cloud
option. Moreover, the separation of the Middleware Layer
from the Infrastructure Layer promotes the extensibility of
the Infrastructure Layer with new Cloud platforms and new
high-end computing facilities, and localizes system evolu-
tion due to hardware or software advances to the interface
between the Infrastructure Layer and the Middleware Layer.

The third layer is the Service Layer, which is responsible
for providing scientific workflow management as a service
to the upper clients and realizing the execution and monitor-
ing of scientific workflows. This layer also provides interfac-
es to support various workflow engines. According to the
integration options, the Service Layer fulfills the require-
ments addressed in the Workflow-Management-Layer-in-the-

Cloud option. The separation of the Service Layer from the
Middleware Layer concerns two aspects: 1) it isolates the
choice of a workflow model from the choice of a task model,
so changes to the workflow structure do not need to affect
the structures of tasks and 2) it separates workflow schedul-
ing from task execution, thus provides space for perfor-
mance and scalability of the whole management system.

The fourth layer is the Client Layer, which provides the
functionality of workflow design, specification, visualization
and various user interfaces and tools for workflow submis-
sion, resource configuration etc. The Client layer may be out
of the Cloud to circumvent the disadvantages discussed in
the All-in-the-Cloud option. The separation of the Client Lay-
er from other layers provides the flexibility of customizing
the user interfaces of the system and promotes the reusabil-
ity of the rest of system components for different scientific
domains.

3.3.2 Subsystems

The eight major functional subsystems correspond to the key
functionalities required for workflow management as a ser-
vice in the Cloud. Although the reference framework may
allow the introduction of additional subsystems and their
features in each layer, this paper only focuses on the major
subsystems and their essential functionalities.

The Workflow Specification & Submission subsystem is re-
sponsible for producing workflow specifications represented
in a workflow specification language that supports a particu-
lar workflow model, and the submission of workflows to the
Cloud Workflow Management Service subsystem. The
Workflow Specification & Submission subsystem may pro-
vide users with a standalone or Web-based workflow de-
signer, which may support both graphical- and scripting-
based design interfaces, and a workflow submission compo-
nent to submit workflows. The interoperability of workflows
should be addressed in this subsystem by the standardiza-
tion and conversion of workflow languages.

The Workflow Presentation & Visualization subsystem is
important especially for data-intensive and visualization-
intensive scientific workflows, in which the presentation of
workflows and visualization of various data products and
provenance metadata in multi-dimensions are key to gain-
ing insights and knowledge from large scale of data and
metadata.

The Cloud Workflow Management Service subsystem acts as
an intermediary between the workflow client and the
backend Cloud Resource Manager, and is the key service in
the service framework provided to researchers interested in
using Cloud-based scientific workflow. It supports the fol-
lowing functionalities: workflow language compilation,
workflow scheduling, resource acquisition, and status moni-
toring. In addition, the implementation of fault-tolerance
mechanism can also be defined in the service.

The Workflow Engines subsystem supports various work-
flow engines and can be specified by end-users from the
Workflow Specification & Submission subsystem. A work-
flow engine is the heart of a workflow system and responsi-
ble for creating and executing workflow runs according to a
workflow run model, which defines the state transitions of
each scientific workflow and its constituent task runs. A

workflow run consists of a coordinated execution of tasks,
each of which is called a task run. The interoperability of
workflows should be addressed by the standardization of
interfaces, workflow models, and workflow run models, so
that a scientific workflow or its constituent sub-workflows
can be scheduled and executed in multiple Workflow En-
gines that are provided by various vendors.

The Cloud Resource Manager (CRM) subsystem is a re-
source management framework that bridges task scheduling
frameworks with various Cloud platforms, such as Amazon
EC2, OpenNebula, Eucalyptus, CloudStack, etc. A reference
architecture of Cloud Resource Manager and description in
detail will be given in the following section.

The Scheduling Management Service subsystem is a frame-
work that bridges Cloud Resource Manager with various
Task Scheduling Frameworks. It provides a set of operations
for the deployment and management of various scheduling
frameworks according to configurations specified by users.

The Task Scheduling Frameworks subsystem consists of
multiple scheduling frameworks, such as Falkon[27], Spar-
row, Gearman, and so on, and the framework can be speci-
fied by end-users through configuration. It is devised to
schedule tasks delivered from the Workflow Engines sub-
system.

The Cloud Platforms Subsystem refers to various supported
Cloud platforms in general and the functionalities can be
summarized from the Infrastructure Layer.

3.3.3 Interfaces

In the reference architecture, six interfaces are explicitly de-
fined, which show how each subsystem interacts with other
subsystems. The interoperability between the subsystems
should be addressed by standardizing the interfaces provid-
ed by each subsystem.

Interface I; provides a set of interfaces for the communica-
tion between Workflow Specification & Submission subsys-
tem and the Cloud Workflow Management Service, so
workflow specifications created by workflow design tools
can be submitted to a workflow execution environment for
compiling, scheduling, and management. Interface I, pro-
vides a series of interfaces for Cloud Workflow Management
Service to interact with Cloud Resource Manager: the Cloud
Workflow Management Service sends resource request to
allocate specified cluster resources, and the Cloud Resource
Manager replies with the cluster information for task execu-
tion. Interface I3 provides a series of interfaces for the Cloud
Resource Manager to communicate with the Scheduling
Management Service: upon the specified resource requests
from Cloud Workflow Management Service are received,
the Cloud Resource Manager provisions resources and de-
ploys the user-specified Task Scheduling Framework into
the cluster based on the services provided by the Scheduling
Management Service, then sends cluster information back to
the Cloud Workflow Management Service. Interface I; pro-
vides a set of interfaces for the Cloud Resource Manager to
interact with underlying Cloud Platforms, mostly for re-
source provisioning, monitoring and recycling. Interface I
provides a series of interfaces for the Scheduling Manage-
ment Service to interact with Task Scheduling Frameworks
subsystem: the supported operations upon scheduling

IEEE TRANSACTIONS ON SERVICE COMPUTING, MANUSCRIPT ID

frameworks are defined here. Interface Is provides a set of
interfaces to interoperate with deployed Workflow Engines.
Workflow Specifications can be passed through to default or
user-specified workflow engine for execution.

3.3.4 Discussion

The motivation of our work is to break through workflows’
dependence on the underlying environment, and take ad-
vantage of the scalability and on-demand resource allocation
of the Cloud. We present a layered service framework for
the implementation of integrating SWFMSs into manifold
Cloud platforms, which can also be applicable when deploy-
ing a workflow system in Grid environments. The separa-
tion of each layer enables abstractions and different inde-
pendent implementations for each layer, and provides the
opportunity for scientists to develop a stable and familiar
problem solving environment where rapid technologies can
be leveraged but the details of which are shielded transpar-
ently from the scientists who need to focus on science itself.
The Interfaces defined in the framework is flexible and cus-
tomizable for scientists to expand or modify according to
their own specified requirements and environments.

3.4 A Reference Service Architecture for CRM

The Cloud Resource Manager (CRM) is a key module in the
Service framework, which is responsible for supporting var-
ious underlying Cloud Computing Infrastructures. Introduc-
ing the reference architecture for CRM can contribute to the
standardization of CRM implementation in the proposed
service framework and achieve the reusability of resource
management modules. Application developers do not need
to implement different resource management modules on
different laaS Cloud platforms.

I [|
1 VirtualCluster! Li Virtual Cluster'
lt Management " Provisioning S Loz
=
Is " virtual Machine | L4, Resource
"~ Management ! ” Monitoring'

Is Virtual Resource Layer’

N D |
| Is Cloud Platforms
I;; Enf:s{}{)%ulatnon Platform Layer /
. Y 5. 7 -
—; &
Cloud Platforms

; - < {
Servet Infrastructure Layer

RUUTTRTTITR
Storage

Fig. 3. A Reference Architecture for CRM

The CRM provides scientific workflows with Cloud re-
source provisioning as a service and the workflows can ben-
efit from the scalability offered by the Cloud. Meanwhile, the
dependency on Cloud platforms can be reduced as imple-
mentations for various Cloud platforms can be provided,
ranging from commercial to open source ones, including
Amazon EC2, OpenNebula, Eucalyptus, CloudStack, etc.
The architecture, illustrated in Fig. 3, consists of four layers
which are loosely coupled between each other.

Resource Pool
Management

Network

3.4.1 Layers
The first layer is the Infrastructure Layer, which is consistent
with the Infrastructure Layer in Fig. 2.

The Platform Layer is responsible for the encapsulation

YONG ZHAO ET AL.: A SERVICE FRAMEWORK FOR SCIENTIFIC WORKFLOW MANAGEMENT IN THE CLOUD

and configuration of underlying Cloud platforms. The sepa-
ration of Platform Layer from the Infrastructure Layer pre-
vents the changes of underlying Cloud platforms from influ-
encing the implementation of upper functionalities and
promotes the extensibility of the Infrastructure Layer.

The Virtual Resource Layer is designed to provide efficient
and systematic management of virtual resources, including
computing resource and storage resource in multiple Cloud
platforms. Focusing on virtual resource management, the
implementation of this layer can be regarded as further ab-
straction of the Platform Layer. The separation of the Virtual
Resource Layer from the Platform Layer concerns two as-
pects: 1) it prevents the operations in this layer from access-
ing the Cloud platforms directly; 2) it isolates resource man-
agement from resource instantiation and reduces the degree
of coupling between the two layers.

The Service Layer, based on all the underlying layers, is
responsible for providing cluster resource services according
to the task execution service specified by the user. The sepa-
ration of the Service Layer from other layers provides the
flexibility of service customization and extendibility of ser-
vice update and release.

3.4.2 Components

The eight major functional components implement the re-
quirements of virtual cluster resource provisioning as a ser-
vice to scientific workflows. In the reference architecture, we
focus on major functionalities and extensibility. It may allow
introduction of new components to meet extra requirements.

The Virtual Cluster Provisioning component accepts re-
source requests from the Cloud Workflow Management
Service and is in charge of provisioning virtual clusters dy-
namically to the workflow service. All the clusters can be
maintained through the Virtual Cluster Management compo-
nent, which may support the alteration of cluster size, cluster
status monitoring, and cluster resource recycling and reuse.
Both the Virtual Cluster Provisioning and Virtual Cluster
Management components support manifold cluster types,
including single-server cluster, multi-server cluster and
peer-to-peer distributed cluster.

The Virtual Machine Management component defines a se-
ries of interfaces upon the operations of virtual machines,
such as launch, reboot, termination, etc. Based on the Virtual
Machine Management component, the Resource Pool Man-
agement component manages all the launched VM instances
as a pool, and will apply for more resources if there is a
shortage of virtual machines in the pool. The Resource Moni-
foring component may consist of monitoring and heartbeat
modules which are respectively in charge of monitoring
CPU, memory and IO, and checking the heartbeat of each
instance.

To provide the basic management for multiple Cloud
platforms, we implement the Cloud Platforms API Encapsula-
tion component, which is responsible for the API encapsula-
tion of all the supported platforms by interacting with the
underlying Infrastructure Layer. The configuration infor-
mation of the platforms, which is required to initialize the
virtual resource management, can be edited and read in
XML format files through the functions offered by the Cloud
Platforms Configuration component.

3.4.3 Interfaces

In the reference architecture for CRM, eight interfaces are
explicitly defined, which show how each component com-
municates with other components. The interoperability be-
tween components should be addressed by standardizing
the interfaces provided by each component. The details of
the interfaces between components at the same layer are not
shown in the figure for simplicity.

Interface I; provides a series of interfaces for the interac-
tion between the Virtual Cluster Management and Virtual
Cluster Provisioning components, so the required cluster
reference information can be sent between the two compo-
nents and the provisioned clusters can be recycled and re-
used. Interface I, provides a set of interfaces for the Virtual
Cluster Management component to communicate with the
Resource Pool Management component, and the resource
reference information can be transmitted through these in-
terfaces. Interface I3 defines a set of interfaces for the com-
munication between Resource Pool Management and Virtu-
al Machine Management, so we can invoke the functions
encapsulated in Virtual Machine Management to manage
the virtual machines in the resource pool. Interface I pro-
vides a set of interfaces for Virtual Machine Management to
interact with the Resource Monitoring component. Through
these interfaces, the monitoring information can be used to
better manage the virtual machines and respond to excep-
tion status. Interface Is provides a series of interfaces for the
Virtual Machine Management component to invoke the
Cloud platform APIs encapsulated in Cloud Platforms En-
capsulation and apply for more virtual resources from un-
derlying Cloud platforms. Interface Is provides a set of inter-
faces for the Cloud Platforms Encapsulation component to
acquire the specified or user defined Cloud platform config-
uration from Cloud Platforms Configuration component.
Interface I offers a series of interfaces for the Cloud Plat-
forms Configuration component to fetch and modify the
configuration of Cloud platforms in the Infrastructure Layer.
Interface Iy defines a set of interfaces for the Cloud Platforms
Encapsulation component to access Cloud Platforms to ac-
quire resources, including virtual machines, network and
storage resources etc.

4 IMPLEMENTATION EXPERIENCE

Client Submission Tool ‘
L Client Layer

............... &

Ly]
Swift Cloud Workflow Is | Swift Workflow)
Management Service ' Engine i

Ilz ,,,,,,,,,,,,,,,,, L

r 1
Cloud Resource _ I3 Scheduling I Falkon Scheduling |
anagel == Management Service ' !. Framework

Middleware Layer

A

Storage Network Servers Infrastructure Layer

Fig. 4. The Integration Architecture

In this section we describe our experience in integrating the
Swift scientific workflow management system [32] with dif-
ferent Cloud platforms based on the service framework we
introduced above. The integration supports workflow speci-

fication and submission, on-demand virtual cluster provi-
sioning, high-throughput task scheduling and execution,
and scalable resource management in the Cloud. We imple-
ment for both the OpenNebula and the Eucalyptus plat-
forms and we show the integration architecture for
OpenNebula in Fig. 4.

4.1 Components and Interfaces

As the implementation of service framework involves a va-
riety of systems and techniques, for the purpose of clarity,
we list the subsystems, corresponding to Figure 2, in Table 1.
And we point out which subsystems are directly from the
original systems and which are implemented for the integra-
tion. We also define a series of interfaces to standardize the
complicated interactions between different essential subsys-
tems. We list the key interfaces, corresponding to Figure 2, in
Table 2, and point out the implementation status and inter-
action relationships. Further details about these interfaces
are available at our website®.

TABLE 1
SUBSYSTEMS IMPLEMENTATION DESCRIPTION

IEEE TRANSACTIONS ON SERVICE COMPUTING, MANUSCRIPT ID

in Fig 2, for the interaction between Cloud Workflow Man-
agement Service and Cloud Resource Manager, such as
sending a cluster request, querying cluster information and
releasing a cluster after execution. We have published the
definitions of the interfaces between different subsystems at
our website and made the code public’.

TABLE 3
INTERFACES DESIGNED IN IMPLEMENTATION

public interface IWorkflowSubmission {

public boolean submitWorkflow(WorkflowSpecification work-
flow, ExecutionConfiguration config) throws Exception;

public WorkflowStatus queryWorkflowStatus(String work-
flowID) throws Exception;

public WorkflowResult queryWorkflowResult(String work-
flowID) throws Exception;

public boolean retractSubmission(String workflowID) throws Ex-
ception;

)

public interface IVirtualClusterRequest {

public VirtualCluster requestCluster(int clusterSize, ClusterDe-
tails details) throws Exception;

public VirtualCluster queryClusterInformation(String clusterID)
throws Exception;

public boolean releaseCluster(String clusterID) throws Exception;

!

Components Description Subsystems
OpenNebula rouse Cloud Platforms
/Eucalyptus (Abbr. CP)

Falkon Schedul- minor revision Task Scheduling Frameworks

ing Framework (Abbr. TSF)

. Scheduling Management
SMS implemented Service (Abbr. SMS)
. Cloud Resource Manager
CRM implemented (Abbr. CRM)
. . . Workflow Engines
Swift System minor revision (Abbr. WE)
. Cloud Workflow Manage-
CWMS implemented ment Service (Abbr. CWMS)
Client Submis- implemented Workflow Specification &
sion Tool plemente Submission (Abbr. WSS)
TABLE 2

INTERFACES IMPLEMENTATION DESCRIPTION

Interfaces Description Interaction
I; in Fig 2 implemented WSS & CWMS
I, in Fig 2 implemented CWMS & CRM
I3in Fig 2 implemented CRM & SMS
I,in Fig 2 implemented CRM & CP
I5 in Fig 2 under evaluation SMS & TSF
I, in Fig 2 implemented CWMS & WE

In Table 1 and Table 2, the “reuse” description represents
we directly reuse the available components for integration,
and “minor revision” means we reuse the available compo-
nents after modification. The “implemented” description
indicates we implement the components and interfaces, in-
cluding specification, design, development and test. At last,
the “under evaluation” description represents those interfac-
es have been defined and need further adjustment and eval-
uation for detailed implementation.

In Table 3, we present some interfaces defined in the im-
plementation. To submit a workflow from the client side
tool, we define an interface to standardize the submission of
workflows, which can be mapped into Interface I; in Fig 2.
We also list a set of operations corresponding to Interface I,

6 http:/ /www.cloud-uestc.cn/ projects/serviceframework/index.html.

4.2 Infrastructure Layer Implementation

At the infrastructure layer, OpenNebula manages Cloud
datacenter resources such as servers, network and storage.
The reason we first choose OpenNebula for our implementa-
tion is because it has a flexible architecture and is easy to
customize.

The OpenNebula Cloud Platform

OpenNebula is a fully open-source toolkit to build pri-
vate, public and hybrid IaaS Clouds, and a modular system
that can implement a variety of Cloud architectures and in-
terface with multiple datacenter services. It orchestrates
storage, network, virtualization, monitoring, and security
technologies to deploy multi-tier services [6] as virtual ma-
chines on distributed infrastructures. The OpenNebula in-
ternal architecture can be divided into three layers: Drivers,
Core and Tools.

4.3 Middleware Layer Implementation
At the middleware layer, a few components are integrated
seamlessly to bridge the gap between the service layer and
the underlying infrastructure layer. The components include
the Cloud Resource Manager, the Scheduling Management
Service, and the Falkon scheduling framework [27]. The
Cloud Resource Manager receives resource requests from
the Cloud Workflow Management Service and in turn pro-
visions a virtual cluster on-demand with the Falkon schedul-
ing framework deployed into the cluster for high-
throughput task scheduling and execution.

The Cloud Resource Manager

Referring to the service architecture of the Cloud Re-
source Manager we introduced above, our implementation
provides support for both the OpenNebula and Eucalyptus
platforms. Other Cloud platforms can also be easily mapped
into the architecture with the interfaces we define.

7 https:/ / github.com/YoufuLi/ Cattles

YONG ZHAO ET AL.: A SERVICE FRAMEWORK FOR SCIENTIFIC WORKFLOW MANAGEMENT IN THE CLOUD

The following process describes the interaction between
each component and the steps to start a Falkon virtual clus-
ter:

1) The Virtual Cluster Provisioner (VCP) provides a service
interface for the Cloud Workflow Management Service,
the latter makes a resource request to VCP.

2) The Resource Pool Management (RPM) component initial-
izes and maintains a pool of virtual machines, and a
monitoring service based on Ganglia is started on each
virtual machine to monitor CPU, memory and IO.

3) Upon a resource request from the workflow service:

a) The Virtual Cluster Management (VCM) component
fetches required number of VMs from the VM pool
and interacts with the Scheduling Management Ser-
vice to deploy the Falkon Scheduling Framework in
the cluster:

i) start the Falkon service in one VM and the Falkon
workers in the other VMs.
ii) make those workers register to the Falkon service.

b) If the VMs in the pool are not enough, then RPM will
make resource request to the underlying OpenNebu-
la platform to create more VM instances.

4) VCP returns the end point reference of the Falkon serv-
er to the workflow service, and the workflow service
can now dispatch tasks to the Falkon scheduling
framework.

5) VCM starts the Cluster Monitoring Service to monitor the
health of the Falkon virtual cluster.

6) Note that we also implement an optimization technique
to speed up the Falkon virtual cluster creation. When a
Falkon virtual cluster is decommissioned, we change its
status to “standby”, and it can be re-activated.

When VCP receives resource request from the workflow

service, it checks if there is a “standby” Falkon cluster, if

so, it will return the information of the Falkon service
directly to the workflow service, and also checks the
number of the Falkon workers already in the cluster.

a) If the number is more than requested, then the sur-
plus workers are de-registered and put into the pool.

b) If the number is less than required, then VMs will be
pulled from the VM pool to create more workers.

As for the management of VM images, VM instances, and
VM network, the Virtual Machine Management component
interacts with and relies on the underlying Platform Layer,
which is responsible for interacting with the OpenNebula
Cloud platform. Our resource provisioning approach takes
into consideration not only the dynamic creation and de-
ployment of a virtual cluster with a ready-to-use execution
service, but also efficient instantiation and re-use of the vir-
tual cluster, as well as the monitoring and recovery of the
virtual cluster.

The Scheduling Management Service

Before sending cluster reference information to the Cloud
Workflow Management Service, the Cloud Resource Man-
ager will first interact with the Scheduling Management Ser-
vice to check the deployment of task scheduling framework,
and start scheduling service. We have already implemented
the deployment, management and maintenance of Falkon
scheduling framework and the other scheduling frameworks
can also be easily mapped into the architecture.

The Falkon Execution Service

Falkon is a light-weight task execution framework for op-
timized task throughput and resource efficiency delivered
by a streamlined dispatcher, a dynamic resource provision-
er, and the data diffusion mechanism [27] to cache datasets
in local disk or memory and dispatch tasks according to data
locality. The key design of Falkon is to enable efficient dis-
patch and execution of large number of small tasks.

4.4 Service Layer Implementation
At the service layer, a Cloud Workflow Management Service
based on the Swift workflow management system is pre-
sented as a gateway to the Cloud platform underneath. The
Cloud workflow management service accepts workflow
submissions from the client tool, and makes resource re-
quests to the Cloud Resource Manager.

The Swift Workflow Management System

Swift is a system that bridges scientific workflows with
parallel computing. Swift takes a structured approach to
workflow specification, scheduling, and execution. It con-
sists of a simple scripting language called SwiftScript for
concise specification of complex parallel computations based
on dataset typing and iterations [32], and dynamic dataset
mappings for accessing large-scale datasets represented in
diverse data formats. The Swift system architecture consists
of four major components: Program Specification, Schedul-
ing, Execution, and Provisioning, as illustrated in Fig. 5. The
reason that we choose Swift as the SWFMS for implementa-
tion is because the four major components of the Swift sys-
tem can be easily mapped into the four layers in the
SWEMSs reference architecture and it can provide flexible
interfaces for implementation.

fon Execution

Pravisioning

Abstract

! Virtual Node(s)
computation

Execution Engine
(Karajan w/
Swift Runtime)

e ®

Swift runtime
callouts

) L3
‘\ " 0
.| Status reporting S
I e
H g

Resource
Provisioner

SwiftScript

Compiler
ERC

Fig. 5. The Swift System Architecture

Resource provisioning in Swift is very flexible, tasks can
be scheduled to execute on various resource providers,
where the provider interface can be implemented as a local
host, a cluster, a multi-site Grid, or the Amazon EC2 service.
In contrast to Cloud environment, running workflows in
traditional infrastructures are facing a series of obstacles
when dealing with big data problems, including resource
provisioning, collaboration in heterogeneous environments,
etc. To leverage the unprecedented scalability and resources
on demand offered by the Cloud, we encapsulate a wrapper
service over the original Swift system, namely the Swift
Cloud Workflow Management Service, to interact with client
submission and CRM.

The Swift Cloud Workflow Management Service

The Swift Cloud workflow management service acts as
an intermediary between the workflow client and the
backend Cloud Resource Manager. The service has a Web

10

interface for configuration of the service, the resource man-
ager and application environments. It supports the following
functionalities: SwiftScript programming, SwiftScript compi-
lation, workflow scheduling, resource acquisition, and status
monitoring. In addition, the service also implements fault-
tolerance mechanism.

4.5 Client Layer Implementation

At the client layer, we provide a client-side development
and submission tool for application specification and sub-
mission. The client submission tool is a standalone java
application that provides an IDE for workflow development,
and allows users to edit, compile, run and submit
SwiftScripts. Scientists and developers can write their scripts
in this environment and also test run their workflows on
local host, before they make final submissions to the Swift
Cloud service to run and monitor workflow execution sta-
tus.

5 EXPERIMENT

In this section, we show our experiment results for our im-
plementation for both the OpenNebula and Eucalyptus plat-
forms to demonstrate the practicability and capability of the
service framework. As the Cloud Resource Manager is the
key module in the implementation of service framework, we
conduct a series of experiments focused on the capability
and efficiency of Cloud Resource Manager and use an image
processing workflow to verify the integration.

5.1 OpenNebula Experiments

We demonstrate and analyze the integration implementa-
tion in Fig. 4, Section IV using a NASA MODIS image pro-
cessing workflow. The NASA MODIS dataset® we use is a
set of satellite aerial data blocks, each block is of size around
5.5MB, with digits indicating the geological feature of each
point in that block, such as water, green land, urban area,
etc. Details of the experiment can be found in an early paper
[2], and we present some of the results to show the applica-
bility of the implementation to a real workflow use case, the
efficiency of the cluster recycling mechanism, and the
tradeoff between scalability vs. resource provisioning over-
head.

5.1.1 MODIS Image Processing Workflow

The workflow (illustrated in Fig. 6) takes a set of such blocks,
gets the size of the urban area in each of the blocks, analyzes
and picks the top 12 of the blocks that have the largest urban

analyzeLandUse

getLandUse > 50

Fig. 6. The MODIS Image Processing Workflow
area, converts them into displayable format, and assembles
them into a single PNG file.

8 http:/ /modis.gsfc.nasa.gov/

IEEE TRANSACTIONS ON SERVICE COMPUTING, MANUSCRIPT ID

5.1.2 Experiment Configuration

We use 6 machines in the experiment, each configured with
Intel Core i5 760 with 4 cores at 2.8GHZ, 4GB memory,
500GB HDD, and connected with Gigabit Ethernet LAN.
The configuration for each VM is 1 core, 1.5GB memory,
20GB HDD, and we use KVM as the hypervisor. One of the
machines is used as the frontend which hosts the workflow
service, the CRM, and the monitoring service. The other 5
machines are used to instantiate VMs, and each physical
machine can host up to 2 VMs, so at most 10 VMs can be
instantiated in the environment. We use the controlled small
set of resources in order to reach resource limit easily, they
are enough for the other performance tests nonetheless.

5.1.3 Experiment Results

In our implementation, we support dynamic resource provi-
sioning by interacting with the underlying Cloud platforms.
In the experiments we would like to measure the benefit of
cluster recycling, therefore we pre-instantiate the VMs and
put them in the VM pool so that the instantiation overhead
will not be counted towards the evaluation results and make
them comparable across different underlying Cloud plat-
forms. The time to instantiate a VM is around 42s and this
does not change much for all the VMs created.

The serial submission experiment

In this experiment, we first measure the base line for
server initialization time and worker registration time. We
create a Falkon virtual cluster with 1 server, and varying
number of workers, and we don’t reuse the virtual cluster.

In Fig. 7, we can observe that the server initialization time

B worker registration

mserver initialization

worker number

Fig. 7. The Base Line for Virtual Cluster Creation

20

KRR

=
e
SR

SRS

5
X2

SR

[SSTEN
RIS
S
odele

25
o
o5
35
o

e
22

R
i

i

i

i
e

SIS
S
SR
5985
S
0

..
s
nnss

5

i
i

g0
e
Soress

bl

@ worker registration/
deregistration

time(s)

bosle

o
AR

SR
<

o server initialization

R
S

worker number

Fig. 8. Serial Submission, Decreasing Resource Required
is quite stable, around 4.7s every time, and for worker paral-
lel registration, the time increases slightly with the worker
number.

Then, we submit a workflow after the previous one has
finished to test virtual cluster recycling. In Fig. 8, the re-

YONG ZHAO ET AL.: A SERVICE FRAMEWORK FOR SCIENTIFIC WORKFLOW MANAGEMENT IN THE CLOUD

sources required for the workflows are one Falkon server
with 5 workers, one server with 3 workers and one server
with 1 worker. As the workers and server of a “standby”
cluster can be reused in the following ones, we can see that
for the second and third submissions, the server initializa-
tion time is zero, only the surplus workers need to de-
register themselves.

Different number of data blocks experiment

In this experiment, we change the number of input data
blocks from 50 blocks to 25 blocks, and measure the execu-
tion time with varying number of workers in the virtual
cluster.

In Fig. 9, we can observe that with the increase of the
number of workers, the execution time decreases according-
ly (i.e. execution efficiency improves), however at 5 workers
to process the workflow, the system reaches efficiency peak.
After that, the execution time goes up with more workers.
This means that the improvement cannot subsidize the
management and registration overhead of the added work-
er. The time for server initialization and worker registration
remain unchanged when we change the input size (as have
been shown in Fig. 7). The experiment indicates that while
our virtual resource provisioning overhead is well con-
300

—+— 50 blocks
100 25 blocks

time(s)
g

1 3 5 7 9
worker number

Fig. 9. Different Input Sizes

trolled, we do need to carefully determine the number of
workers used in the virtual cluster to achieve resource utili-
zation efficiency.

5.2 Eucalyptus Experiments

In this section, we show the results of using Eucalyptus in-
stead of OpenNebula for resource provisioning. Considering
the efficient and convenient service provided by the Fu-
tureGrid®, we choose Eucalyptus for the implementation and
deployment. FutureGrid is a project led by Indiana Universi-
ty and funded by the National Science Foundation (NSF) to
develop a high-performance Grid test bed that lets scientists
collaboratively develop and test innovative approaches to
parallel, Grid, and Cloud computing. In addition, the Euca-
lyptus API is compatible with Amazon EC2 so the imple-
mentation can easily support Amazon EC2 Cloud. We
measure the performance to establish a baseline for resource
provisioning and Cloud resource management overhead in
the science Cloud environment.

5.2.1 Experiment Configuration

The instance type used in our experiment is m1.small: 1 CPU
Unit, 1 CPU Core and 500MB Memory. All the instances use
Ubuntu Server 12.04 as the operating system. In Eucalyptus

9 FutureGrid: https://portal.futuregrid.org/

environment, we also pre-instantiate 32+1 instances and put
them in the VM pool to make the evaluation results more
intuitive and comparable.

5.2.2 Framework Overhead Evaluation

In the overhead evaluation experiment, we measure the
server initialization time and worker registration time to
compare with those in the OpenNebula setting.

In Fig. 10, we observe the time to create a Falkon server
and start the service is around 11s, much longer than that in

45

o

%%

R
EREERRRREER

3
3

%]
T
s

53
25

B
2SS

=
s

3
S
5

e

T
o2
S

o5

o
X

5%
o
o
S

B worker registration

o

T
35

dosiet

s
5

%
%

S
B

5
X

5
55
2ok
e

&

X
K

O server initialization

o
5
i

w2

s
5

5
Z
i

i

i

worker number

Fig. 10. The Base Line for Virtual Cluster Creation

Fig. 7. We attribute this to the m1l.small configuration. The
overall time increases slightly with the worker number as all
the worker registration is executed concurrently, which
shows a similar pattern to that in Fig. 7.

Then we measure the recycling mechanism by submit re-
quests with exponentially decreasing worker number. The
“standby” virtual cluster can be reused in the following re-
quest. Except the first request, the server initialization time

45

ey
5

s

m
v

S

S

w

=]
S
S

=

.
G

TR
2

B worker registration/
deregistration

time(s)
"
(=]
T

s
i

Oserver initialization

b

5 o 'g“*" s
0 e v v - I
16 8 4 2 1

worker number

Fig. 11. Serial Submission, Decreasing Resource Required
of the other requests is zero, and the time taken is to deregis-
ter 16 workers>8 workers>4 workers>2 workers>1
worker. The results are shown in Fig. 11. We can see the
cluster creation time also decreases accordingly.

In Fig. 12, we measure the server initialization and work-

NP |
55
55

s
6

5%
]

e
REBEE]

.
(=]

T
&

ITs
felotetatet
SRR,
2
o

%

P
RRASSes
Setteteteteatete
e
%
S
etstetateieteteti

B worker registration

time(s)
S

Olserver initialization

e

e e e ot

S

]
SRR
s sanas

2o

&

<

£
5
5
%
5
£
5
5
%
5
£
5
5
%
5
£
5
5

RIS TTILLTLL

%
3
o

f:
I
&
£
&
&
5
I
ke
5
&
5
&
£
&
&
&
f
I

[
TR
S

SRR

T

%
Josesees
Zetetetets

B8%
B
53¢

2%

worker number

Fig. 12. Serial Submission, Increasing Resource Required
er registration time of a Falkon cluster starting from one

12

server and one worker. Then we expand the cluster size ex-
ponentially by adding 1 worker->2 workers->4 workers—>8
workers—>16 workers into the cluster.

As shown in Fig. 12, we can see that although the worker
number increases exponentially, the time rises almost linear-
ly. The reason is the workers can simultaneously register to
the already existing server. The time cost to register each
individual worker is similar to that in Fig. 10.

In Fig. 13, we first request a virtual cluster with 1 server
and 32 workers, we then make 5 parallel requests for virtual
clusters with 1 server and 5 workers. According to the clus-

B worker registration/
deregistration

O server initialization

worker number

Fig. 13. Parallel Submission, Mixed Resource Required

ter reuse mechanism, one of the clusters can be created
based on the available cluster, while the other 4 are created
on-demand. In this case, it is much faster to de-register the
surplus workers than to create the server from scratch.

6 PRODUCTION DEPLOYMENT

Besides evaluating the service framework and integration
performance in experimental environment, we also deploy
the implementation described in Section IV to the Sci-
ence@Guoshi (Fruit) Network. The deployment in produc-
tion environment shows our proposed framework is capable
of providing a “big data” solution upon data-intensive ap-
plication for both researchers and engineers.

The Science@Guoshi project!? is based on Guoshi Net-
work, which is a new media service platform created to
promote public learning and learning oriented communities
by Chinese Ministry of Education and China Education TV
Station. Through the early stage construction and operation,
Guoshi Network already has rich functionality and powerful
infrastructure service capability, and has gained experience
in platform construction, operation and maintenance, appli-
cation development and customer service. As of now, the
infrastructural Cloud computing platform, such as physical
servers, storage and network devices, for Guoshi Network is
ready and working, deployed over 12 datacenters at Beijing,
Wuxi, Dongguan, Tibet, and other cities. Beijing is the first
major center, and Wuxi the second, with Tibet acting as a
mirroring site, the rest are sub-centers. There are over 1000
servers at these 12 datacenters, and an aggregated compu-
ting power of 50Teraflops, and 580TB of storage. Out of the
resources, 140 servers and 70TB of storage are assigned to
Science@Guoshi for scientific computation and experiments.

The second major center - Wuxi, has 140 servers, each
with 8-core processors, and a total storage of 60TB, and 20
servers and 10TB of storage are allocated to Science@Guoshi.

10 http:/ /science.guoshi.com

IEEE TRANSACTIONS ON SERVICE COMPUTING, MANUSCRIPT ID

We deployed our solution over 3 of the 12 datacenters in-
cluding Wuxi, Dongguan, and Kaifeng. The deployment
diagram is shown in Fig. 14. We chose Wuxi as a demo cen-
Falkon worker (VM) Falkon server (VM) @ =
Cloud workflow service
Cloud resource manager
Cloud resource manager Cloud workflow service
‘WuXi

DongGuan

oé:
¥
<

% &

Cloud n:s:f?lrcc manager Workflow Client(VM)
KaiFeng

Fig. 14. Deployment on Science@Guoshi
ter on which we ported the Montage application [19], and
developed a Nebula Image Mosaic demo service. For the
Cloud platform underneath we chose OpenNebula and we
used up to 96 VMs.

We present the application deployment based on the
Montage Image Mosaic Workflow. The Montage Workflow

mProjectPP mProjectPP

v

mImgtbl

mProjectPP

i

mOverlaps

TS

ffFit mbDiffFit

«

<

mDiffFit mDi

\
P
\ mConcatFit

=]

mBgModel

mBackground

e Y

mBackground mimgtbl mBackground

mAdd
mShrink

mJPEG

Fig. 15. The Montage Workflow

has much larger input size and number of input files (up to
tens of thousands), and the workflow can process different
nebula image data, which serves better for educational pur-
pose and also demonstrate the scalability of Cloud.

Montage is a suite of software tools developed to gener-
ate large astronomical image mosaics by composing multi-
ple small images, as shown in Fig. 15. The typical workflow
process involves the following key steps:

® Image projection:
o re-project each image into a common coordinate
space (mProjectPP)
® Background rectification:
o Calculate a list of overlapping images (mOverlaps)
o Perform image difference between each pair of over-
lapping images (mDiffFit)
o Fit difference images into a plane (mConcatFit)
o Background correction (mBackground)

® Image co-addition (mAdd):

o Optionally divide a region into a grid of sub-regions,
and co-add the images in each region into a mosaic

o Co-add the processed images (or mosaics in sub-
regions) into a final mosaic

And finally the mosaic is shrunk (mShrink) and convert-
ed into a JPEG image (mJPEG,) for display.

YONG ZHAO ET AL.: A SERVICE FRAMEWORK FOR SCIENTIFIC WORKFLOW MANAGEMENT IN THE CLOUD

In the demo a Science@Guoshi user can pick one of the
nebula (as illustrated in Table 4) to create the mosaic for it,
and the demo service submits a workflow request to the
Cloud workflow service, which in turn instantiates the
Cloud resources on-the-fly to execute the workflow. The
demo also visualizes workflow progress in a DAG (directed
acyclic graph), and displays the execution log and interme-
diate results. The deployment provides scientists with an
easy-to-use platform to manage and execute scientific work-
flows on a Cloud platform without knowing the details of
workflow scheduling and Cloud resource provisioning.

As the Science@Guoshi platform is not yet completely
open to the public, so far, there are totally 125 registered us-
ers, mainly from 9 research institutes. Besides the Nebula
Image Workflow, the scientific computing platform has been
utilized by scientists from different institutes to conduct ex-

TABLE 4
NEBULA DATASETS USED IN THE MONTAGE WORKFLOW
Nebula # of Work- # of Image Region
Dataset flow Images Size Size(deg)
Nodes 5 5
Orion 766 168 333MB 1.0
Swan 199 45 90.5MB 0.5
Trifid 235 48 108MB 0.5
Andromeda 244 48 108MB 0.5
Triangulum 235 48 108MB 0.5
Sunflower 322 69 133MB 0.5
Atlas Images 3350 732 1.42GB N/A
TABLE 5
RESEARCH BASED ON THE SCIENTIFIC COMPUTING PLATFORM
Research Research Field Institute
Molecular Simula- Computational Beijing University of
tion Chemistry Chemical Technology
Medical Image Medical Science Univ. of Electronic Sci.
Analysis and Tech. of China

Gene Sequencing Bioinformatics

ences
Materials of
Metallorganic
Frameworks
periments and share their experience. Some application
types are shown in Table 5. The platform serves as a gate-
way to learning and exploring workflow and Cloud tech-
nologies for the community.

Dalian University of

Material Science Technology

7 CONCLUSIONS AND FUTURE WORK

As more and more scientific applications are migrating into
Cloud, it is imperative to also migrate SWFMSs into Cloud
to take advantage of Cloud scalability, and also to handle the
ever increasing data scale and analysis complexity of such
applications. Cloud offers unprecedented scalability to
workflow systems, and could potentially change the way we
perceive and conduct scientific experiments. The scale and
complexity of the science problems that can be handled can
be greatly increased on the Cloud, and the on-demand na-
ture of resource allocation on the Cloud will also help im-
prove resource utilization and user experience.

We propose a reference service framework for integrating
scientific workflow management systems into various Cloud
platforms, and also present our implementation effort in

Chinese Academy of Sci-

integrating the Swift workflow management system with
the OpenNebula and the Eucalyptus Cloud platforms ac-
cording to the service framework, in which a client-side tool,
a Cloud workflow management service, a Cloud resource
manager, and a cluster monitoring service are developed.
We also demonstrate the functionality and efficiency of our
approach using two real-world scientific workflows.

The implementation can readily be used for OpenStack as
it is getting more popularity in scientific research area and
commercial applications. We are also investigating the inte-
gration of other SWFMSs into these various Clouds.

ACKNOWLEDGMENT

The corresponding authors of this paper are Yong Zhao
and Wenhong Tian. This work was supported by the Na-
tional Science Foundation of China No. 61272528 and No.
61034005, and the Central University Fund (ID-
ZYGX2013J073).

REFERENCES

[1] L Foster, Y. Zhao, I Raicu, S. Lu. “Cloud Computing and Grid Compu-
ting 360-Degree Compared,” IEEE Grid Computing Environments
(GCE08) 2008, co-located with IEEE/ ACM Supercomputing 2008. Aus-
tin, TX. pp. 1-10

[2] Y.Zhao,Y.Zhang, W. Tian, R. Xue, C. Lin, Designing and Deploying a
Scientific Computing Cloud Platform. 2012 ACM/IEEE 13th Interna-
tional Conference on Grid Computing, 2012, pp 104-113.

[3] M. Kozlovszky, K. Karéczkai, I. Marton, A. Balasko, A. C. Marosi, and
P. Kacsuk, “Enabling Generic Distributed Computing Infrastructure
Compatibility for Workflow Management Systems”, Computer Sci-
ence, vol. 13, no. 3, p. 61, 2012.

[4] W. Tan, K. Chard, D. Sulakhe, R. Madduri, L. Foster, S. S.-Reyes, C.
Goble, “Scientific Workflows as Services in caGrid: A Taverna and
gRAVI Approach,” ICWS 2009: 413-420.

[5] G. Papuzzo, G. Spezzano. Autonomic management of workflows on
hybrid grid-cloud infrastructure. Proceedings of the 7th International
Conference on Network and Services Management. International Fed-
eration for Information Processing, 2011: 230-233.

[6] R. Moreno-Vozmediano, RS. Montero, LM. Llorente. "Multi-Cloud
Deployment of Computing Clusters for Loosely-Coupled MTC Appli-
cations", IEEE Transactions on Parallel and Distributed Systems. 22(6),
Ppp-924-930, 2011.

[71 G.Bell, T. Hey, A. Szalay, Beyond the Data Deluge, Science, Vol. 323,
no. 5919, pp. 1297-1298, 2009.

[8] E.Deelman etal. Pegasus: A framework for mapping complex scientific
workflows onto distributed systems, Scientific Programming, vol. 13,
iss. 3, pp. 219-237. July 2005.

[9] B.Ludéscher, I Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E.

A. Lee,]. Tao, Y. Zhao, Scientific workflow management and the Kepler

system, Concurrency and Computation: Practice and Experi-

ence,Special Issue: Workflow in Grid Systems, vol. 18, iss. 10, pp. 1039-

1065, 25 August 2006.

J. Freire, C. T. Silva, S. P. Callahan, E. Santos, C. E. Scheidegger and H. T.

Vo, Managing Rapidly-Evolving Scientific Workflows, Provenance and

Annotation of Data, Lecture Notes in Computer Science, 2006, vol.

4145/2006, 10-18, DOI: 10.1007/11890850_2

D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. Pocock, P. Li, and T.

Oinn, “Taverna: a tool for building and running workflows of services,”

Nucleic Acids Research, vol. 34, pp. 729-732, 2006.

(10]

(11]

13

14

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]
(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

Y. Zhao, X. Fei, L. Raicy, S. Lu, Opportunities and Challenges in Run-
ning Scientific Workflows on the Cloud, IEEE International Conference
on Cyber-enabled distributed computing and knowledge discovery
(CyberC), pp. 455462, 2011.

C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey, B. Berriman, J.
Good, “On the Use of Cloud Computing for Scientific Workflows,” 3rd
International Workshop on Scientific Workflows and Business Work-
flow Standards in e-Science (SWBES), pp. 640-645, 2008.

K. Keahey, T. Freeman, “Science Clouds: Early Experiences in Cloud
Computing for Scientific Applications,” Cloud Computing and Its Ap-
plications 2008 (CCA-08), Chicago, IL. October 2008.

F. Jrad, J. Tao, A. Streit. A broker-based framework for multi-cloud
workflows. Proceedings of the 2013 international workshop on Multi-
cloud applications and federated clouds. ACM, 2013: 61-68.

J. Wang, P. Korambath, L. Altintas,]. Davis, D. Crawl. Workflow as a
Service in the Cloud: Architecture and Scheduling Algorithms. Proce-
dia Computer Science, 2014, 29: 546-556.

A. Kashlev, S. Lu, A. Chebotko, “Coercion Approach to the Shimming
Problem in Scientific Workflows”, in Proc. Of the IEEE International
Conference on Services Computing (SCC), Santa Clara , CA, USA, 2013.
E. Apostol, I. Baluta, A. Gorgoi, V. Cristea. Efficient manager for virtual-
ized resource provisioning in cloud systems. Intelligent Computer
Communication and Processing (ICCP), 2011 IEEE International Con-
ference on. IEEE, 2011: 511-517.

E. Deelman, G. Singh, M. Livny, B. Berriman, and]. Good. The cost of
doing science on the Cloud: the Montage example. In Proceedings of
the 2008 ACM/IEEE conference on Supercomputing, SC 08, pp. 50:1-
50:12, Piscataway, NJ, USA, 2008.

C. Vecchiola, S. Pandey, and R. Buyya. High-Performance Cloud Com-
puting: A View of Scientific Applications. In International Symposium
on Parallel Architectures, Algorithms, and Networks, pp. 4-16, 2009.

S. Ostermann, R. Prodan, T. Fahringer. Extending grids with cloud
resource management for scientific computing. Grid Computing, 2009
10th IEEE/ ACM International Conference on. IEEE, 2009: 42-49.

K. Keahey, T. Freeman. Contextualization: Providing One-click Virtual
Clusters. in eScience. 2008, pp. 301-308. Indianapolis, IN, 2008.

G. Juve and E. Deelman. Wrangler: Virtual Cluster Provisioning for the
Cloud. InHPDC, pp. 277-278, 2011.

X. Fei, S. Lu: A Dataflow-Based Scientific Workflow Composition
Framework. IEEE Transactions on Services Computing (TSC) 5(1):45-58
(2012).

C. Lin, S. Lu, X. Fei, A. Chebotko, D. Pai, Z. Lai, F. Fotouhi, and J. Hua,
“A Reference Architecture for Scientific Workflow Management Sys-
tems and the VIEW SOA Solution,” IEEE Transactions on Services
Computing (TSC), 2(1), pp.79-92, 2009.

A. Chebotko, S. Ly, S. Chang, F. Fotouhi, P. Yang: Secure Abstraction
Views for Scientific Workflow Provenance Querying. IEEE Transac-
tions on Services Computing (TSC) 3(4):322-337 (2010).

1. Raicu, Y. Zhao, C. Dumitrescu, 1. Foster, M. Wilde. “Falkon: a Fast
and Light-weight tasK executiON framework,” IEEE/ACM Super-
Computing 2007, pp. 1-12.

D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L.
Youseff, D. Zagorodnov. The Eucalyptus Open-Source Cloud-
Computing System, 9th IEEE/ ACM International Symposium on Clus-
ter Computing and the Grid, CCGRID '09, pp. 124-131, 2009.

M. Wilde, 1. Foster, K. Iskra, P. Beckman, Z. Zhang, A. Espinosa, M.
Hategan, B. Clifford, I. Raicu, “Parallel Scripting for Applications at the
Petascale and Beyond,” IEEE Computer Nov. 2009 Special Issue on Ex-
treme Scale Computing, vol. 42, iss. 11, pp. 50-60, 2009.

G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman. Data Sharing

(31]

(32]

IEEE TRANSACTIONS ON SERVICE COMPUTING, MANUSCRIPT ID

Options for Scientific Workflows on Amazon EC2, Proc. ACM/IEEE
Int Contf. for High Performance Computing, Networking, Storage and
Analysis (5C10), 2010.

T. T. Huy, G. Koslovski, F. Anhalt,]. Montagnat, P. V-B Primet. Joint
Elastic Cloud and Virtual Network Framework for Application Per-
formance-cost Optimization. Journal of Grid Computing, 2011, Volume
9,Issuel, pp27-47.

Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. Laszewsk, I. Raicu, T. S--
Praun, M. Wilde. “Swift: Fast, Reliable, Loosely Coupled Parallel
Computation,” IEEE Workshop on Scientific Workflows 2007, pp. 199-

206.

Yong Zhao is a professor at the School of Computer
Science and Engineering, University of Electronic
Science and Technology of China. He obtained his
Ph.D. in Computer Science from the University of
Chicago under Dr. lan Foster's supervision. His
research areas are in Cloud computing, many-task
computing, and data intensive computing. He is a
member of ACM, IEEE and CCF.

Youfu Li is a graduate student with the School of
Computer Science and Engineering, University of
Electronic Science and Technology of China. His
research interest is in Cloud computing, scientific
workflows and real-time computing. He is a student
member of the IEEE

loan Raicu is an assistant professor in the Depart-
ment of Computer Science at lllinois Institute of
Technology. He obtained his Ph.D. in Computer
Science from University of Chicago under the guid-
ance of Dr. lan Foster. He is particularly interested in
many-task computing, data intensive computing,
Cloud computing, and many-core computing. He is a
member of the IEEE and ACM.

Shiyong Lu is an Associate Professor in the De-
partment of Computer Science at Wayne State Uni-
versity and the Director of the Big Data Research
Laboratory. He received his PhD in Computer Sci-
ence from Stony Brook University. His research
focuses on big data and scientific workflows. He is a
senior member of the IEEE.

Cui Lin is an assistant professor at the Department
of Computer Science, California State University.
Her research interest is in scientific workflows, ser-
vices computing and bioinformatics. She is a mem-
ber of IEEE.

Yanzhe Zhang is a researcher at the Institute of

Computing Technology, Chinese Academy of Sci-
= ences. His research interest is in high performance
== computing.

Wenhong Tian is an associate professor at the
School of Computer Science and Engineering, Uni-
versity of Electronic Science and Technology of
China. His research interest is in resource manage-
ment and scheduling in Cloud datacenters. He is a
member of IEEE.

Ruini Xue is an associate professor at the School of
Computer Science and Engineering, University of
Electronic Science and Technology of China. His
research interest is in distributed computing and
Cloud computing. He is a member of IEEE.

