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ABSTRACT 

Small specialized sensor devices capable of both reporting on 

environmental factors and interacting with the environment are 

becoming increasingly ubiquitous, reliable and inexpensive. This 

transformation has enabled domain sciences to create "instruments 

at large" – dynamic and often self-organizing groups of sensors 

whose outputs are capable of being aggregated and correlated 

to support experiments organized around specific questions. This 

calls for an infrastructure that can support remote administration 

of sensors, relies on protocols that can withstand unreliable 

communications, and extend storage capability that can scale to 

support many data producing sensors, many different data types, 

and many end user requests. In this work we present protocols and 

a cloud-based data store called "WaggleDB" that address the 

above challenges. The system efficiently aggregates and stores 

data from sensor networks and enables users to query the data 

sets. The "WaggleDB" data store incorporates a scalable multi-tier 

architecture with individually scalable layers toward overcoming 

the challenges. 
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1. INTRODUCTION 
The last several years have seen a raise in the use of sensors, 

actuators and their networks for sensing, monitoring and 

interacting with the environment [1]. There is a proliferation of 

small, cheap and robust sensors for measuring various physical, 

chemical and biological characteristics of the environment that 

open up novel and reliable methods for monitoring qualities 

ranging from the geophysical variables, soil conditions, air and 

water quality monitoring to growth and decay of vegetation. 

Structured deployments, such as the global network of flux 

towers, are being augmented by innovative use of personal mobile 

devices (e.g., such as use of cell phones to detect earthquakes), 

use of data from social networks, and even citizen science.  

As small, specialized sensor devices, capable of both reporting on 

environmental factors and interacting with the environment, 

become more ubiquitous, reliable, and cheap, increasingly more 

domain sciences are creating “instruments at large” – dynamic, 

often self-organizing, groups of sensors whose outputs are capable 

of being aggregated and correlated to support experiments 

organized around specific questions. In other words, rather than 

construct a single instrument comprised of millions of sensors, a 

“virtual instrument” might comprise dynamic, potentially ad hoc 

groups of sensors capable of operating independently but also 

capable of being combined to answer targeted questions. Projects 

organized around this approach represent important areas ranging 

from ocean sciences, ecology, and urban construction to 

hydrology. 

2. Design and Implementation 

2.1 Challenges and solutions 
The online analysis needs of such “instruments at large” create the 

need for data store management system with the following 

properties: 

Write scalability: The data store will need to be able to sustain 

many concurrent writes generated by thousands of sensor 

controller nodes that continuously send data to the database with 

the same quality of service, i.e., reliability (not losing any writes), 

time to acknowledge, etc. For achieving these goals, we propose 

to use a multi-layer architecture. A high performance load 

balancer is used as the first layer to accept and forward all write 

requests from sensor controller nodes evenly to a distributed 

message queue. In our system the message queue works as a write 

buffer and handles requests asynchronously. A separate 

distributed data agent service keeps pulling messages from the 

queue, preprocess it and then write to the data store. On the client 

side (sensor controller nodes), we adopt a collective sending 

method, which accumulates the sensor data and send a batch of 

message to the cloud periodically. Similar batch sending can be 

found in [6]. The client sending frequency is customizable so to 

meet the different needs of data freshness. 

Support for various data types: Since sensor data can be of 

various types and sizes; there is no fixed scheme for the data 

formats from all the different types of sensor.  Therefore we need 

a flexible data schema so to enable a unified API to collect and 

store the data, and to organize data in a scalable way for further 

use (query/analytics). To address this issue, we design a flexible 

and self-describing message data structure that easily fits into a 

large category of scalable distributed databases, called column-

oriented databases (or BigTable-like data stores [2]), a type of 

NoSQL database [3,4,5]. This design enables us to elevate the rich 

features, performance advantage and scalability from column-

oriented databases, as well as to define a unified data access API. 

Transactional interaction between admin users and sensors: 

Administrators need to push commands or queries to sensor 

controllers for development or maintenance purposes. However 

sensor network connection is not reliable and the connection can 

be lost any time, which makes conventional remote login 

mechanism such as SSH fail to work. We use a database table to 

track the sessions between admins and sensor controllers. A 

session contains all communication events and their orders. 

Admin submit a series of commands and the nodes that will run 

these commands to the system database, sensor controllers check 

out the commands from the same database whenever they are 

online. The controllers’ responses are also push to the database for 

admins. 

Dynamic scalable services: The request rate can change in a wide 

range. The system needs to be able adjust its capability to satisfy 

multiple requests for processing with qualities of service. We 

distribute the functionality to independent tiers in the architecture, 

which is designed in such way that each tier can be scaled by 



adding more independent resources provisioned on-demand in the 

cloud.  

2.2 Architecture 
We design a loosely coupled multi-layer architecture to boost the 

scalability while maintaining a good performance. As shown in 

fig 2, the system is composed of a sensor controller node and a 

data server that is both written to by the sensors and read from by 

the clients. On the server side, there are 5 layers of components, 

namely load balancer, message queue, data agent, database, and 

query execution engine. Each layer can be deployed on a 

dedicated or shared virtual cluster. If any layer becomes 

bottleneck, it can be scaled easily by simply adding more 

resource. 

 

Figure 1. System architecture. 

2.3 Implementation 
We have implemented a functioning prototype of WaggleDB and 

deploy it on a public cloud platform, FutureGrid. We use 

RabbitMQ as the message queue, Cassandra as the database, 

HAProxy as the load balancer. All tiers are deployed on multiple 

VMs. 

The prototype now has following features: accepting and storing 

data from different type of sensors, a blob store for potential big 

files from sensors such as full-spectrum cameras, transactional 

interaction between admin and sensor controllers, sensor and 

controller registration, CQL and SQL query on the database, 

dynamic scalability.  

3. Performance Evaluation 
We have conducted a preliminary performance evaluation of 

WaggleDB system on FutureGrid, which is an OpenStack based 

public cloud. Since we don’t have many sensor controller nodes at 

this point, we run the clients on virtual machines and send random 

data in a tight loop to a WaggleDB queue server as a simulation. 

In this experiment, we use the number of clients and message size 

as parameters. We measured request latency from client side, 

message queue processing bandwidth and requests throughput on 

the queue server side. Figure 2 shows that the latency slowly 

increases with the concurrency level but much better than. It is 

worth noting that the message size has little influence on latency. 

This indicates that the major parts of overhead consists connection 

creation and closing, but not network transferring. This is also 

proved by our bandwidth measurement, as shown in figure 3. 

Clients have proportionally high bandwidth when using bigger 

messages. With 32 clients sending messages of 10,000 bytes, the 

system reaches 50MB/s bandwidth, while it only has 59KB/s with 

10 bytes messages. The request throughput benefits from adding 

from concurrent clients as well.  

 
Figure 2. When the client scale increased by 32 times, the average latency only 

increased by 2.2 times. The differences between the latencies of 10 to 10k bytes 

message sizes were small. 

 
Figure 3. The bandwidth gain from bigger message size is close to that from adding 

more clients. 

When adding concurrent clients up to 128, the latency increases 

rapidly for one server, while the systems that have more servers 

perform better. Single server is saturated at 32 clients scale, 2, 4 

and server systems saturated at 64 and 128 clients respectively. 8 

servers system performs still well. This implies excellent server 

scalability.  

 
Figure 3. Server scalability. The more server in the system, the less latency increases.  

4. Conclusion 
The emerging sensor network usage calls for an infrastructure 

able to collect, store, query, and process data set from sensor 

networks. We present the challenges and gives tentative solution 

through WaggleDB, a cloud-based interactive data infrastructure 

for sensor networks. WaggleDB is elastic on both scales and data 

presentation, and shows excellent potential to scale each tier in the 

architecture. 
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