
Implicitly-Parallel Functional Dataflow for Productive
Cloud Programming on Chameleon

Scott Krieder, Ioan Raicu
Illinois Institute of Technology

skrieder@hawk.iit.edu, iraicu@cs.iit.edu

Justin Wozniak, Michael Wilde

Argonne National Laboratory
{wozniak, wilde}@mcs.anl.gov,

1. INTRODUCTION
This project explores a programming-model and runtime-
environment that addresses the urgent yet vexing
problem of simplifying the programming of distributed
parallel systems.

One solution that makes parallel programming implicit
rather than explicit is the dataflow model. Conceived ~35
years ago, it has only recently been made practical
through systems such as Dryad and Swift [1]. We believe
that we have successfully created a base for an implicitly-
parallel functional dataflow programming model, as
exemplified by Swift, a workflow language for executing
scientific applications. This model has been characterized
as a perfect fit for the many-task computing (MTC)
paradigm. Some broad application classes that fit the MTC
paradigm are workflows, MapReduce, high-throughput
computing, and a subset of high-performance computing.
MTC emphasizes using many computing resources over
short periods of time to accomplish many smaller
computational tasks (both dependent and independent),
where the primary metrics are measured in seconds. MTC
has proven successful in grid computing and
supercomputing, but the distributed nature of today’s
cloud resources pose many challenges in the efficient
support of MTC workloads. This work aims to address the
programmability gap between MTC and cloud computing,
through an innovative parallel scripting language, Swift,
which will enable MTC workloads to efficiently leverage
cloud resources. This work will enable a broader class of
MTC applications to leverage cloud systems.

This project addresses the following research problems:

 Supporting diverse cloud instances: (general-
purpose & memory-intensive)

 Scaling downwards (e.g. increasing the spectrum of
applications by decreasing leaf-function granularity)

 Scaling upwards (increasing scalability to extreme-
scale clouds)

 Language interoperability (integrate with many
languages and programming-models for performing
leaf tasks: C/C++, Fortran; MPI, OpenMP)

 Runtime facilities for tracing and debugging large
distributed parallel workflows

 Evaluation of the programming model on
applications in: global crop modeling, cancer
detection, glass-state materials, and biophysical
dynamics.

This work represents a non-traditional community for
cloud-systems in general and Chameleon in particular,
one that focuses on MTC. There are many advantages to
MTC, such as improved programmability, implicit
parallelism, and improved fault tolerance, all reasons
why applications and researchers in the community have
adopted MTC as their programming-model for large-
scale applications. Given the popularity of cloud
infrastructures, being able to leverage the use of MTC on
cloud architectures such as Chameleon, at large scale, is
a critical activity towards the acceptance of MTC as a
viable programming model for future cloud computing.

2. Systems Software
The elasticity of the cloud is well suited to the Swift model:
Swift can release and re-obtain nodes as the workflow’s
demand varies. The ability to provide a “computing
commons” to support cross-institution collaborations
without the complexities of local
authentication/authorization will pave the way for future
collaborations. And the ability to extend campus
resources on-demand for critical deadlines is invaluable.

2.1 Swift implicitly parallel functional dataflow
language

We will integrate the Swift parallel programming system
with the Chameleon platform. Swift has been successfully
used in many large-scale computing applications to
increase productivity in running complex applications. Its
dataflow-driven programming model, allows implicit,
pervasive parallelism to be harnessed through automated
dependency management.

2.2 GeMTC

GeMTC [2] is a CUDA based framework for supporting
many-task computing workloads on NVIDIA based GPGPU
devices. As shown in Figure 1, a NVIDIA GPU is comprised
of many Streaming Multiprocessors (SMXs). A SMX
contains many warps, and each warp provides 32
concurrent threads of execution. All threads within a warp
run in a Single Instruction Multiple Thread (SIMT) fashion.
GeMTC schedules independent computations on the GPU

at the warp level, a level of independent task concurrency
not provided by any mainstream GPU programming
model.

Figure 1:Diagram of GPU Architecture Hierarchy

Recent work extended GeMTC for integration with Swift
to support GPGPUs in high-performance computing
environments [3]. Figure 2 shows a high-level diagram of
GeMTC driven by tasks generated by the Swift. GeMTC
launches a daemon on the GPU that enables independent
tasks to be multiplexed onto warp-level GPU workers. A
work queue in GPU memory is populated from calls to a C-
based API, and GPU workers pick up and execute these
tasks. After a worker has completed a computation, the
results are placed on an outgoing result queue and
returned to the caller.

Figure 2: Flow of a task in GeMTC

In addition, preliminary work has already evaluated the
feasibility of many-task computing on the Intel Xeon-Phi
Co-processor [4]. This work will extend previous work by
evaluating new applications in a cloud environment with
next generation GPUs and Co-processors on Chameleon.

3. Application Codes

3.1 FACE-IT

FACE-IT [5] provides a growing collection of web-based
pipelines that integrate data and software tools, enabling
researchers to easily develop data manipulation and
analysis tools, apply those tools to data sets, link multiple
tools into analysis pipelines, and share these among
communities.

3.2 Identifying Cancer-related genes

ExSearch [6] is a novel algorithm simplifying complex gene
classifiers in cancer. A machine learning application tuned
to analyze class-labeled data using n-tuple feature
vectors, it produces generalized workflow identifying
genes that relate to cancer. It’s an excellent candidate for
cloud computing and public community tool access.

3.3 Glass material modeling application
Hocky et. al., describe algorithms for evaluating new
cavity methods to measuring the “mosaic length” of glass
transition systems. [7] Particles are simulated by
molecular dynamics or Monte Carlo methods within
cavities with amorphous boundary conditions. These
simulations were driven by Swift scripts, which will enable
us to easily leverage Chameleon and explore the cloud-
based use of MPI.

3.4 Protein structure application
OOPSOpen Protein Simulator is a suite of C++ programs
for the prediction of the structure of proteins with
minimal use of information derived from sequence-
similarity or homology to other proteins. It derives speed
and accuracy from the use of simplified models, accurate
statistical potentials, and search strategy involving
“iterative fixing” in multiple “rounds” of folding. Its
community seeks a cloud-hosted simulation portal.

4. REFERENCES
[1] Wilde, Michael, et al. "Swift: A language for distributed

parallel scripting." Parallel Computing 37.9 (2011):
633-652.

[2] S. J. Krieder and I. Raicu, “Towards the support for
many-task computing on many-core computing
platforms,” Doctoral Showcase, IEEE/ACM
Supercomputing/SC, 2012

[3] Scott J. Krieder, Justin M. Wozniak, Timothy
Armstrong, Michael Wilde, Daniel S. Katz, Benjamin
Grimmer, Ian T. Foster, and Ioan Raicu. 2014. Design
and evaluation of the gemtc framework for GPU-
enabled many-task computing. (HPDC '14).

[4] J. Johnson, S. J. Krieder, B. Grimmer, J. M. Wozniak,

M. Wilde, and I. Raicu, “Understanding the costs of many-
task computing workloads on intel xeon
phicoprocessors,” in 2nd Greater Chicago Area System
Research Workshop (GCASR), 2013.

[5] http://www.faceit-portal.org/home

[6] Wilson, Raphael A., et al. "A novel algorithm for
simplification of complex gene classifiers in cancer."
Cancer research 73.18 (2013): 5625-5632.

[7] Hocky, Glen M., et al. "Growing point-to-set length
scale correlates with growing relaxation times in
model supercooled liquids." Physical Review Letters
108.22 (2012): 225506.

