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ABSTRACT 

With the exponential growth of supercomputers in parallelism, 

applications are growing more diverse, including traditional large-

scale HPC MPI jobs, and ensemble workloads such as finer-

grained many-task computing (MTC) applications. Delivering 

high throughput and low latency for both workloads requires 

developing a distributed job management system that is 

magnitudes more scalable than today’s centralized ones. In this 

paper, we present a distributed job launch prototype, SLURM++, 

which is comprised of multiple controllers with each one 

managing a partition of SLURM daemons, while ZHT (a 

distributed key-value store) is used to store the job and resource 

metadata. We compared SLURM++ with SLURM using micro-

benchmarks of different job sizes up to 500 nodes, with excellent 

results showing 10X higher throughput. We also studied the 

potential of distributed scheduling through simulations up to 

millions of nodes. 

Categories and Subject Descriptors 

D.4.7 [System Design]: Organization and Design – distributed 

systems. 

General Terms 

Performance, Design, Algorithm. 
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1. INTRODUCTION 
Exascale machines will have billions of concurrent threads of 

execution [1]. With this extreme magnitude of parallelism, 

ensemble computing is one way to efficiently use the machines 

without requiring full-scale jobs. Ensemble computing would 

combine the traditional HPC workloads that are large-scale 

applications using MPI [2] as the communication method, with 

the ensemble workloads that support the investigation of 

parameter sweeps using many more but smaller-scale coordinated 

jobs [3]. Given the significant decrease of Mean-Time-To-Failure 

[4][5] at exascale, ensemble workloads should be resilient because 

failures affect a smaller part of the machines.  

One example of ensemble workloads comes from the MTC [6][7] 

paradigm. MTC applications have orders of magnitude larger 

number of jobs/tasks (e.g. billions) with finer granularity in both 

size (e.g. per-core) and duration (e.g. sub-second to hours) [8] . 

The tasks do not require strict coordination of processes at job 

launch as the HPC workloads do. Furthermore, these applications 

could be data-intensive in nature [9]. Applications that 

demonstrate characteristics of MTC cover various domains, such 

as astronomy, bioinformatics, medical imaging and climate 

modeling [10], and have been run in clusters, grids, 

supercomputers, and clouds [11]. 

The job management systems (JMS) for extreme-scale ensemble 

computing will need to be available and scalable in order to 

deliver the extremely high throughput and low latency. However, 

today’s batch schedulers (e.g. SLURM [12], Condor [13], PBS 

[14], SGE [15]) have centralized architecture that is not well 

suited for the demands, due to both bounded scalability and 

single-point-of-failure. A popular JMS, SLURM, reported 

maximum throughput of 500 jobs/sec [16]; however, we will need 

much higher job scheduling rates (e.g. millions jobs/sec) for next-

generation JMS, considering the significant increase of scheduling 

size and the much finer job granularity. This paper proposes a 

distributed architecture that supports JMS at extreme-scales.  

We implemented a distributed job launch prototype (SLURM++) 

with multiple controllers participating in allocating resources and 

launching jobs – an extension to the open source batch scheduler 

SLURM [12]. We utilized distributed key-value stores (DKVS), 

specifically ZHT [17], to keep the job and resource metadata. The 

general use of DKVS in building distributed system services was 

proposed, and evaluated through simulation in our previous work 

[18]. We compared SLURM++ with SLURM using micro-

benchmarks of different job sizes up to 500 nodes, with excellent 

results showing 10X higher throughput. In addition, we developed 

a simulator of SLURM, SimSLURM++, which enables us to 

study the performance towards exascale with millions of nodes.  

2. DISTRIBUTED ARCHITECTURE 
The architecture of the next-generation JMS is shown in Figure 1. 

There will be multiple controllers with each one managing a 

partition of compute daemons (cd). The controllers are fully-

connected. In addition, a distributed data storage system is 

deployed to manage the entire job and resource metadata in a 

scalable and reliable way.  
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Figure 1: Architecture for distributed JMS; "cd" refers to 

compute daemon 

The partition size (number of cd a controller manages) is 

configurable. For a large-scale HPC workload, the partition size 

could be thousands; for MTC tasks, the partition size could be one 

which has the 1:1 mapping (millions of controllers and cds at 

exascale). We can also have heterogeneous partition sizes.      

The distributed storage system could be a DKVS. Each controller 

would be initialized as a DKVS client, which then uses the simple 

client APIs (e.g. “lookup”, “insert”, “remove”) to communicate 

with the servers to query and modify the job and resource 

information, and the system state information transparently. 

We propose the Resource Stealing technique to balance free “cd” 

in all the partitions. We implemented a simple random resource 

stealing algorithm. A controller first checks the local free nodes 

when launching a job. If there are enough available nodes, the 

controller directly allocates the nodes; otherwise, it allocates 

whatever resources the partition has, and randomly queries for 

other partitions (through a “lookup” operation) to steal resources. 

If the launching controller experiences several failures in a row 

due to the selected victims have no free nodes, it will release the 

resources it has already allocated.  

One problem of resource stealing technique is the Resource 

Conflict that happens when different controllers try to modify the 

same resource. We implement the traditional compare and swap 

atomic instruction [19] as a normal operation in the ZHT. As ZHT 

serializes requests at one server, this operation guarantees that 

only one controller could modify a specific resource at one time.  

2.1 SLURM++ PROTOTYPE 
We developed a distributed job launch prototype, SLURM++, 

which serves as a core part for JMS. We adopted the open source 

SLURM [12], and extended it with multiple controllers 

participating in allocating resources and launching jobs. We used 

the ZHT DKVS to keep the job and resource metadata. 

SLURM++ is directly extended from SLURM. SLURM has a 

centralized controller (slurmctld) manage all the cds (slurmd). 

SLURM keeps all the metadata in a centralized local file system. 

Upon receiving a job, the slurmctld first looks up the global file 

system to allocate resource. Once a job gets its allocation, it can 

be launched via a tree-based network rooted at rank-0 slurmd.  

In SLURM++, we developed a light-weight distributed controller 

that can directly talk with slurmds. We utilize the whole slurmd, 

preserve the hierarchical job launching part unchanged. In 

addition, each controller is initialized as a ZHT client, and can call 

the ZHT client APIs to query and modify the job and resource 

information. Upon receiving all the slurmds’ registration 

messages within a partition, the controller inserts the available 

nodes to ZHT server. Then, the controllers randomly steal 

resources from each other when needed.  

We developed SLURM++ in C. We implemented the controller 

code, which summed to around 5K lines of code; we put the 

controller and ZHT directly in the SLURM source file, and named 

the whole prototype SLURM++. The source code is available at 

the GitHub website: https://github.com/kwangiit/SLURMPP. 

SLURM++ has dependencies on Google Protocol Buffer [20], 

ZHT [17], and SLURM [12]. 

2.2 SimSLURM++ SIMULATOR 
In order to study the scalability of the proposed architecture, we 

developed a simulator of SLURM++, SimSLURM++, which 

consists of multiple nodes, and each node has different roles to 

play (controller, ZHT server, compute daemon). There are two 

parallel queues in each simulated node: a communication queue 

for sending and receiving messages, and a processing queue for 

handling requests locally. The two queues operate in parallel, 

while within one queue, the requests are processed sequentially.  

We followed the simulation work we did before [18][21][22] to 

build SimSLURM++. SimSLURM++ is a discrete event simulator 

[23] that was built on top of peersim, a scalable peer-to-peer 

simulator that offers the framework and functionality of 

simulating distributed systems. SimSLURM++ is developed in 

Java, and has about 1500 lines of code, along with the peersim 

1.5.0 codebase package. The source code is available at the 

GitHub website: https://github.com/kwangiit/SimDJL. There are 

no other dependencies.  

3. EVALUATION 
We evaluate SLURM++ by comparing it with SLURM using 

micro-benchmarks containing “sleep 0” jobs on the Kodiak cluster 

from the Parallel Reconfigurable Observational Environment at 

Los Alamos National Laboratory [24] up to 500 nodes. We used 

SLURM version 2.6.5, the latest version when we ran experiments. 

We also run SimSLURM++ up to exascale with millions of nodes 

using real application traces with different configurations on the 

machine fusion.cs.iit.edu at IIT [18].   

3.1 SLURM++ vs SLURM 
The micro-benchmark contains independent “sleep 0” HPC jobs 

that require different number of compute nodes per job. The 

partition size is configured as 50; at the largest scale (500 nodes), 

the number of controllers is 10. We will use SLURM++ (M:N) to 

specify the ratio of the number of controller to the number of 

slurmds, where M is the number of slurmds and N is the number 

of controllers, such as SLURM++ (50:1), SLURM++ (1:1). 

We conducted experiments with three workloads: small-job 

workloads (50 jobs per controller, and job size is 1 node), 

medium-job workloads (50 jobs per controller, and job size is 1-

50 nodes), and big-job workloads (20 jobs per controller, and job 

size is 25-75 nodes).  Figure 2 shows that not only does 

SLURM++ outperform SLURM in nearly all cases, but the 

performance slowdown due to increasingly larger jobs at large 

scale is better for SLURM++ by 2X to 11X depending on the job 

size.  The reason that large jobs perform worse than medium jobs 

is because the larger the jobs are, the more extensively they 

compete resources. For small jobs, SLURM++'s performance is 

bounded by SLURM job launching procedure leading to the 

smallest improvement. Another fact is that as the scale increases, 

the throughput speedup is also increasing. This indicates that at 

larger scales, SLURM++ would outperform SLURM even more. 



 

Figure 2: Throughput comparison with different workloads 

3.2 Evaluation through SimSLURM++ 
This section presents the evaluation of the scalability of our 

proposed work through SimSLURM++ towards millions of nodes. 

3.2.1 SimSLURM++ HPC Configuration (1024:1) 
We configured SLURM++ with 1024:1 mapping. The workload 

comes from real applications run on the ANL Blue Gene/P 

machine, during an 8-month period [25]. There are 68,936 jobs. 

At each scale, we generated a workload with all jobs that preserve 

the job size distribution of the original workload by applying the 

job size percentage of the machine size. In addition, we reduced 

the job duration by 1M times to reduce the job duration 

granularity to pose significant challenge on launching jobs. 

 

Figure 3: SimSLURM++ (1024:1) throughput and latency 

Figure 3 shows the throughput and per-job average latency of 

SimSLURM++ with HPC configuration. We see that the 

throughput is increasing with the system scale. This shows that 

the proposed architecture is scalable. At the meanwhile, the per-

job average latency increases moderately from 1024-node to 

65536-node.  

3.2.2 SimSLURM++ MTC Configuration (1:1) 
We also evaluate SimSLURM++ up to millions of nodes with 

MTC orientation. The workload is micro-benchmark: each 

controller handles 10 “sleep 0” jobs, and each job requires 1 or 2 

nodes. Figure 4 shows the throughput and per-job average latency 

of SimSLURM++ with MTC configuration. We see that the 

throughput is increasing perfectly with the system scale. At 1M-

node scale, SimSLURM++ achieves throughput as high as 1.75M 

jobs/sec, which is very promising. At the same time, the per-job 

average latency increases trivially from 4-node to 1M-node. These 

results satisfy the requirements of high throughput and low 

latency of next-generation JMS for exascale ensemble computing. 

 

Figure 4: SimSLURM++ (1:1) and latency 

4. RELATED WORK 
There are other projects that have explored efficient job launch 

mechanisms. STORM [26] leveraged the hardware collective 

available in the Quadrics QSNET interconnect to broadcast the 

binaries to the compute nodes. However, the server is a single-

point-of-failure. LIBI/LaunchMON [27] is a scalable 

bootstrapping service where a tree is used to establish a single 

process on each compute node. This is a centralized service with 

no failover or no persistent daemons or state, therefore if a failure 

occurs they can just re-launch. PMI [28] is the process 

management layer in MPICH2. It uses a KVS to store job and 

system information. But the KVS is centralized. 

The light-weight task execution frameworks that are developed 

specifically for ensemble MTC workloads are Falkon [29], a 

centralized task execution fabric with the support of hierarchical 

scheduling, and MATRIX [30][31][32], a distributed task 

execution framework that uses work stealing [33] for load 

balancing. Though Falkon can deliver tasks at thousands of 

task/sec for MTC workloads, it is not sufficient for exascale 

systems and it lacks support for HPC workloads. Another fine 

grained framework that schedules sub-second tasks for data 

centers is Sparrow [34]. Though MATRIX and Sparrow have 

shown great scalability for MTC workloads, neither of them 

supports HPC workloads.  

5. CONCLUSIONS AND FUTURE WORK 
Extreme-scale supercomputers require next-generation JMS to be 

fully distributed that can be much more scalable to deliver jobs 

with much higher throughput. We have shown that DKVS is a 

valuable building block to allow scalable job launch. The 

performance is more preferable (10X) than the centralized 

production system. Furthermore, our simulation results showed 

that the distributed architecture resulted in great scalability trends 

towards extreme-scales supporting both MTC and HPC workloads. 

In future work, we will explore several techniques, such as 

caching and distributed monitoring, and MPI applications in both 

SLURM++ and SimSLURM++ to improve our work. Additions to 

this work would also include the investigations of distributed 

power-aware job launch at the core level. Currently, SLURM++ 

allocates the whole node to a job. In the future, we will over-

decompose a node, and launch jobs at the core level in order to 

save power. Another extension would be to integrate SLURM++ 

with the MTC task execution fabric, MATRIX [30] (and/or the 



SimMatrix simulator [35]), and study different job scheduling 

algorithms for both MTC and HPC workloads [36][37].   
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