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• We analyze the major challenges of running scientific workflows on the Cloud.
• We propose a reference framework to standardize the integration.
• The implementation experience proves that the framework is feasible and extendible.
• Cluster-recycling mechanism can improve the resource provisioning efficiency.
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a b s t r a c t

Cloud computing is gaining tremendous momentum in both academia and industry. In this context, we
define the term ‘‘Cloud Workflow’’ as the specification, execution and provenance tracking of large-scale
scientific workflows, as well as the management of data and computing resources to support the execu-
tion of large-scale scientific workflows in the Cloud. In this paper, we first analyze the gap between these
two complementary technologies, and what it means to bring Clouds and workflows together. Then, we
present the key challenges in supporting Cloud workflows, and present our reference framework for sci-
entific workflow management in the Cloud. Last we present our experience in integrating a scientific
workflowmanagement system—Swift into the Cloud.We discuss the performance of cluster provisioning
within the OpenNebula Cloud platform, the Eucalyptus Cloud platform and Amazon EC2, and we demon-
strate the capability and efficiency of the integration using a NASA MODIS image processing workflow
and the Montage image mosaic workflow.
Note to practitioners. Scientific workflowmanagement plays a very important role for scientific comput-
ing and application coordination, while Cloud computing offers scalability and resource on-demand. We
devise autonomousmethods to integrate scientific workflowmanagement systems with Cloud platforms
and also provision resources for large scale workflows, which can facilitate scientists to easily manage
their workflows in the Cloud, and take advantage of large scale Cloud resources. There are a few inte-
gration options and many challenges in the process, and the experience we gain will help researchers in
migrating their workflow management systems and workflow applications into the Cloud.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Governments, research institutes, and industry leaders are
strategically adopting Cloud computing [1], to solve their ever-
increasing computing and storage problems arising in the Inter-
net age. There has been a burgeoning of Cloud platforms and
applications in both academia and industry: not long after Ama-
zon opened its Elastic Computing Cloud (EC2) to the public, Google,
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IBM, and Microsoft all released their Cloud platforms one after an-
other. Meanwhile, several open source Cloud platforms, such as
Hadoop [2], OpenNebula [3], Eucalyptus [4], Nimbus [5], andOpen-
Stack [6], become available with fast growth of their own commu-
nities.

There are a couple of major benefits and advantages that are
driving thewidespread adoption of theCloud computingparadigm:
(1) Easy access to resources: resources are offered as services and
can be accessed over the Internet. (2) Scalability on demand: once
an application is deployed onto the Cloud, the application can be
automatically made scalable by provisioning the resources in the
Cloud on demand, and the capability of scaling out and in, and load
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balancing; (3) Better resource utilization: Cloud platforms can co-
ordinate resource utilization according to resource demand of the
applications hosted in the Cloud; and (4) Cost saving: Cloud users
are charged based on their resource usage in the Cloud, they only
pay for what they use, and if their applications get optimized, that
will be reflected into a lowered cost immediately.

In the meanwhile, scientific workflow has become an increas-
ingly popular paradigm for scientists to formalize and structure
complex scientific processes to enable and accelerate many sig-
nificant scientific discoveries. A scientific workflow management
system (SWFMS) is a system that supports the specification, mod-
ification, execution, failure handling, and monitoring of scientific
workflows using workflow logic to control the order of executing
workflow tasks. The importance of scientific workflows has been
recognized and re-emphasized in a science article titled ‘‘Beyond
the Data Deluge’’ [7], which concluded, ‘‘In the future, the rapid-
ity with which any given discipline advances is likely to depend on
howwell the community acquires the necessary expertise in database,
workflowmanagement, visualization, and cloud computing technolo-
gies.’’, and Cloud workflow would cover both the workflow and
Cloud aspects.

The world has entered into a ‘‘big data’’ era. The amount of data
created in the world is growing at an exponential rate. Advances
in science instrumentation and network technologies are posing
new challenges to ourworkflow systems in both data scale and ap-
plication complexity. Scientific workflow systems have been for-
merly applied over a number of execution environments such as
workstations, clusters/Grids, and supercomputers. In contrast to
Cloud environment, running workflows in these environments are
facing a series of obstacles when dealing with big data problems,
in addition to data scale and computation complexity, there are
also resource provisioning, collaboration in heterogeneous envi-
ronments, etc. [8]. While Cloud computing provides a high-level
abstraction of computing resources as services, scientific work-
flows provide a high-level abstraction of applications as dataflow-
oriented graphs. An emerging trend is to run scientific workflows
on the Cloud, thus delivering the benefits of both to end users.
Cloud computing provides a paradigm-shifting utility-oriented
computing environment in terms of the unprecedented size of
datacenter-level resource pool and the on-demand resource pro-
visioning mechanism, enabling scientific workflow solutions that
can address peta-scale scientific problems.

In the rest of the paper, we discuss the various aspects involved
in running Cloud workflows. In Section 2, we present key chal-
lenges in supporting Cloud workflows; In Section 3, we discuss
existing research and related work; In Section 4, we present a ref-
erence service framework for workflow integration and migration
into Cloud and our implementation experience in integrating Swift
with OpenNebula and other Cloud platforms; In Section 5, we dis-
cuss and compare the results in running Swift within OpenNeb-
ula, Eucalyptus and Amazon EC2 commercial Cloud; In Section 6,
we point out some research directions for researchers interested
in our work, and in Section 7, we draw our conclusions.

2. Challenges

Scientific workflow systems have been formerly applied over a
number of execution environments such as workstations, clus-
ters/grids, and supercomputers, where the new Cloud computing
paradigm with unprecedented size of datacenter-level resource
pool and on-demand resource provisioning can offer much more
to such systems, enabling scientific workflow solutions capable of
addressing peta-scale scientific problems. The benefit of running
scientific workflows on top of Cloud can be multifold:

(1) The scale of scientific problems that can be addressed by sci-
entific workflows can be greatly increased compared to Clus-
ter/Grid environments, which was previously upbounded by
the size of a dedicated resource pool with limited resource
sharing extension in the form of virtual organizations.

(2) Application deployment can be made flexible and convenient.
With bare-metal physical servers, it is not easy to change
the application deployment and the underlying supporting
platform. However with virtualization technology in a Cloud
platform, different application environments can be either pre-
loaded in virtual machine (VM) images, or deployed dynami-
cally onto VM instances.

(3) The on-demand resource allocation mechanism in Cloud can
improve resource utilization and change the experience of end
users for improved responsiveness. Cloud-based workflow ap-
plications can get resources allocated according to the number
of nodes at each workflow stage, instead of reserving a fixed
number of nodes upfront. Cloudworkflows can scale out and in
dynamically, resulting in a fast turn-around time for end users.

(4) Cloud computing provides a much larger room for the trade-
off between performance and cost. The spectrum of resource
investment now ranges from dedicated private resources, a
hybrid resource pool combining local resource and remote
clouds, and a full outsourcing of computing and storage to pub-
lic Clouds. Cloud Computing not only provides the potential of
solving larger-scale scientific problems, but also brings the op-
portunity to improve the performance/cost ratio.

Despite the advantages and opportunities that Cloud comput-
ing can provide for scientific workflows, there are many major ob-
stacles to the adaptation and running of scientificworkflows on the
Cloud. We have identified some of the key challenges in our prior
work [9] and we list them below.

Architectural challenges: Our previously designed scientific
workflowmanagement system reference architecture [10] consists
of four layers—Operational, TaskManagement,WorkflowManage-
ment, and Presentation Layers. To engineer an SWFMSonto Clouds,
it may not be as simple as to replace the Operational Layer with
a Cloud infrastructure. We need to take a bottom-up approach
and evaluate the requirements, look at integration problems at the
other three layers as well, to address compatibility and impedance
problems that are introduced by different Cloud providers and het-
erogeneous implementations.

Integration challenges: Many of the immediate challenges to
running scientificworkflows on theCloud are to integrate scientific
workflow systemswithCloud infrastructure and resources. Inmost
cases, we will need to change the way how an SWFMS acquires
resources, dispatches tasks, monitors the progress of those tasks,
tracks provenance information [11], and how it deals with errors
and exceptions in the Cloud.

Computing challenges: For scientific workflows, leveraging
large scale computing resources in the Cloud is not as straightfor-
ward as requesting a certain number of computing nodes, there
are challenges with regard to resource requirements and provi-
sioning, virtualization, fault tolerance and smart reruns. There are
also overheads introduced by some of the technologies employed
by most Clouds (e.g. virtualization) which might not be widely ac-
cepted by the scientific computing community.

Security challenges: Security has been identified as one of
the main concerns for the adoption and success of the Cloud [1]
and is the first major service that needs to be provided by a
Cloudprovider. For example,Microsoft Azure Cloud Platformoffers
access control as a primary service of the NET Services. To ensure
the security for Cloud-based SWFMSs, we can utilize the following
three mechanisms: access control, information flow control and
secure electronic transaction protocol, depending on scenarios.
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Data management challenges: Running workflows in the
Cloud has to deal with datamoving in to and out of the Cloud, large
scale data storage within the Cloud, and the exploration of data lo-
cality, data and computation co-location issues for efficiency pur-
poses, and the track of data provenance in order to understand and
reuse workflows. Furthermore, many scientific workflow systems
have been accustomed to global parallel file systems (e.g. GPFS,
PFVS, Lustre) as a tool tomanage, coordinate, and share data (which
is a reasonable assumption in a HPC environment), however most
available Clouds do not have such parallel file systems, and mostly
rely on distributed object stores (e.g. Amazon S3) which many
times break backwards compatibility of the applications (due to
a lack of POSIX support) requiring code modification.

Language challenges: Up to now,MapReduce has been the only
widely adopted computingmodel for Clouds, and there are a num-
ber of variations of languages based on this model for task speci-
fication. Examples are Sawzall [12], Pig [13], and DryadLINQ [14].
However, a workflow specification requires far more functionality
and flexibility than what MapReduce can provide, and the implicit
semantics incurred by a workflow specification goes far more than
just the ‘‘map’’ and ‘‘reduce’’ functional operations. For instance,
the mapping of computation to compute node and data partitions,
runtime optimization, retry on error, smart re-run, all need to be
optimized for the Cloud. The specification and the corresponding
implementation of the specificationwould carry about all the com-
puting anddatamanagement challenges associatedwith interpret-
ing and executing the specification.

Last but not the least, are service management challenges, as
Clouds aremostly built on top of service oriented architecture, and
SWFMSs are also shifting from conventional applications to service
systems. We need to deal with service discovery, large input and
output handling, data services, and all the other challenges that we
are facing in migrating applications into a service world.

We elaborate on architectural challenges, integration chal-
lenges, computing challenges and security challenges in the fol-
lowing sections since they are closely related to SWFMSmigration
into the Cloud.

2.1. Architectural challenges

The reference architecture for SWFMSs [10] is proposed as an
endeavor to standardize SWFMS research anddevelopment efforts.
As shown in Fig. 1, the reference architecture consists of 4 logical
layers, 7 major functional subsystems, and 6 interfaces. The refer-
ence architecture would allow the scientific workflow community
to focus on different layers and subsystems of SWFMSs, and also
enable such systems to interact and interoperate with each other
based on the interface definitions.

The first layer is the Operational Layer, which consists of a
wide range of heterogeneous and distributed data sources, soft-
ware tools, services, and their operational environments, including
high-end computing environments. The separation of the Opera-
tional Layer from other layers isolates data sources, software tools,
services, and their associated high-end computing environments
from the scope of an SWFMS.

The second layer is called the Task Management Layer. This
layer consists of three subsystems: Data Product Management,
Provenance Management, and Task Management. The separation
of the Task Management Layer from the Operational Layer pro-
motes the extensibility of the Operational Layer with new services
and new high-end computing facilities, and localizes system evo-
lution due to hardware or software advances to the interface be-
tween the Operational Layer and the Task Management Layer.

The third layer, called the Workflow Management Layer,
consists of Workflow Engine and Workflow Monitoring. The sep-
aration of the Workflow Management Layer from the Task Man-
agement Layer concerns two aspects as follows: (1) it isolates the

Fig. 1. A reference architecture for SWFMSs.

choice of a workflow model from the choice of a task model, so
changes to the workflow structure do not need to affect the struc-
tures of tasks and (2) it separates workflow scheduling from task
execution, thus improves the performance and scalability of the
whole system.

Finally, the fourth layer—the Presentation Layer, consists of the
Workflow Design subsystem and the Presentation and Visualiza-
tion subsystem. The separation of the Presentation Layer from
other layers provides the flexibility of customizing the user inter-
faces of the system and promotes the reusability of the rest of sys-
tem components for different scientific domains.

We argue that the above reference architecture is still valid for
a Cloud-enabled SWFMS. Here, we consider four possible solutions
for deploying the proposed reference architecture in a Cloud
computing environment:
(1) Operational-Layer-in-the-Cloud. In this solution, only the Oper-

ational Layer lies in the Cloud with an SWFMS running out of
the Cloud. An SWFMS can now leverage Cloud applications as
another type of task components. In contrast to other applica-
tions, Cloud-based applications can take advantage of the high
scalability provided by the Cloud and the infinite resource ca-
pacity provisioned by large datacenters. This solution also re-
lieves a user the concern of vendor lock-in due to the relative
ease of using alternative Cloud platforms for running Cloud ap-
plications. However, the SWFMS itself cannot benefit from the
scalability offered by the Cloud.

(2) Task-Management-Layer-in-the-Cloud. In this solution, both the
Operational Layer and the Task Management Layer will be
deployed in the Cloud. In contrast to traditional deployment
strategies, Data Product Management, Provenance Manage-
ment, and Task Management can now leverage the high scala-
bility provided by the Cloud. In particular, Data Product Man-
agement and Provenance Management can take advantage of
the data models provided by the Cloud, such as blobs, tables,
and queues provided by Microsoft Azure. In the meanwhile,
Task Management, rather than accommodating the user’s re-
quest based on a batch-based scheduling system, all-ready
tasks can now be immediately deployed over some Cloud com-
puting nodes and get executed instead ofwaiting in a job queue
for the availability of resources. One limitation of this solu-
tion is that the economic cost associated with the storage of
provenance and data products in the Cloud. Possible workflow
tasks might also be restricted to the types of applications and
environments (VM instances created by images) that are sup-
ported by a particular Cloud infrastructure, which is yet to be
standardized. Moreover, although task scheduling and man-
agement can benefit from the scalability offered by the Cloud,
workflow scheduling andmanagement are not since thework-
flow engine runs outside of the Cloud.
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(3) Workflow-Management-Layer-in-the-Cloud. In this solution, the
Operational Layer, the TaskManagement Layer, and theWork-
flow Management Layer are deployed in the Cloud with
the Presentation Layer deployed at a client machine. This
solution provides a good balance between system perfor-
mance and usability: the management of computation, data,
and storage and other resources are all encapsulated in the
Cloud, while the Presentation Layer remains at the Client ma-
chine to support the key architectural requirement of user
interface customizability and user interaction support [15].
Such a solution is also most suitable for a scientific workflow
application system in which ad hoc domain-specific require-
ments are constantly evolving, demanding constant changes to
the Presentation Layer for that domain. In this solution, both
workflow and task management can benefit from the scalabil-
ity offered by the Cloud, but the downside is that they become
more dependent on the Cloud platform over which they run.

(4) All-in-the-Cloud. In this solution, a whole SWFMS is deployed
inside the Cloud and accessible via a Web browser. A distinct
feature of this solution is that no software installation is needed
for a scientist to use an SWFMS and an SWFMS can fully take
advantage of all the services provided in a Cloud infrastructure.
Moreover, the Cloud-based SWFMS can provide highly scalable
scientific workflow and task management as services, provid-
ing one kind of Software-as-a-Service (SaaS). One concern the
user might have is the economic cost associated with the ne-
cessity of using Cloud on a daily basis, the dependency on the
availability and reliability of the Cloud, as well as the risk asso-
ciated with vendor lock-in. One way to address such a concern
is to use an on-premise Cloud or a hybrid Cloud, inwhich public
Clouds are used only for shifting out peak workloads.

As we described, each of the above solutions has its pros and
cons. In practice, a hybrid approachmight be desirable, inwhich for
each layer, one subsystem or a piece of the subsystem is deployed
in the Cloud, while the rest is deployed outside of the Cloud. For
each solution, a refined microarchitecture for each layer and sub-
system is an important research problem. We envision that in the
future, many solution instances of the proposed reference archi-
tecture will coexist, each optimized for a particular deployment
strategy. In the meanwhile, as each solution instance conforms
to the same deployment-strategy-independent reference architec-
ture, interoperability is ensured.

2.2. Integration challenges

Many of the immediate challenges to running scientific work-
flows on the Cloud are to integrate scientific workflow systems
with Cloud infrastructure and resources. As we have discussed in
the previous section, the degree of integration also depends on
howwe choose to deploy an SWFMS into Clouds.We identify some
of the practical ones below, and also discuss possible solutions to
them.

Applications, services, tools integration: In the Operational-
Layer-in-the-Cloud approach, we treat applications, services, and
tools hosted in the Cloud as task components in a workflow, the
scheduling and management of a workflow are mostly outside
the Cloud, where these task components are invoked as they are
scheduled to execute. The invocation would involve just figuring
out the right interface to interact with such applications, services,
tools, for instance, via HTTP or REST protocols, or Web services
calls, and then in the workflow, it needs to transform the output
of one invocation, and feed it as an input to another invocation. A
majority of the mashup sites (such as those that leverage Google’s
map service) take this approach, and they use ad hoc scripts and
programs or shimming techniques [16,17] to glue the services

together. An early exploration of the Taverna workflow engine
and gRAVI services in the caBIG project [18] can also be thought
as an example of integrating an off-the-shelf workflow engine
with Cloud/Grid services. gRAVI can rapidly wrap and expose
applications, scripts and workflows as Web services, and deploy
them into Grids, or the Nimbus Cloud environment.

We notice that while the approach works for applications with
small data exchanges, moving large datasets in and out the Cloud
would incur serious overhead. For data intensive applications, it is
necessary to migrate data into the Cloud. Loading data in and out
the Cloud is not a trivial process, for instance, within Microsoft, to
load each day’s Bing search log into the Cloud, this task itself takes
hundreds of dedicated servers working around the clock. So in an
ideal Cloudworkflow solution, we should avoid such operations as
much as possible.

Once we decide to get task dispatching and scheduling into the
Cloud, resource provisioning becomes the next issue to resolve.
Although conceptually Cloud offers uncapped resources, and a
workflow can request as many resources as it requires, this comes
with a cost and the presumption that the workflow engine can talk
directly with the resource allocated in the Cloud (which is usually
not true without tweaking the configuration of the workflow
engine). Taking these two factors into consideration, some existing
solutions such asNimbuswould acquire a certain number of virtual
machines, and assemble them as a virtual cluster, onto which
existing cluster management systems such as PBS can be deployed
and used as a job submission/execution service that a workflow
engine can directly interact with. Some existing study [19] simply
choosemanual deployment over automated provisioning, inwhich
the provisioning step involves construction of a virtual Condor
pool, where the VMs act as Condor worker nodes and report to a
Condor Master node that runs on a submit host outside the Cloud.

Debugging,monitoring, and provenance tracking forworkflows
become increasingly difficult in a Cloud environment, since com-
pute resources are usually dynamically assigned and based on vir-
tual machine images, the environment that a task is executed on
could be destroyed right after the task is finished, and assigned to
a complete different user and task. Some Clouds also support task
migration where tasks can be migrated to another virtual machine
if there is problemwith the node that the taskwas initially running
on.

Porting an SWFMS into the Cloud can also be a concern, which
would usually involve wrapping up an SWFMS as a Cloud service.
To fully explore the capability and scalability of the Cloud, a work-
flow engine may need to be re-engineered to be able to interact
directly with various Cloud services such as storage, resource allo-
cation, task scheduling, and monitoring. At the client side, either
a complete Web-based user interface needs to be developed to al-
low users to specify and interact with the SWFMS (e.g., the latest
VIEW [16]), or a thin desktop client application needs to be devel-
oped to interact with the SWFMS Cloud service.

2.3. Computing challenges

Although Clouds can potentially offer unlimited resources to an
SWFMS, managing large-scale computing resources is not a trivial
task. Workflow systems may not be able to talk to Cloud resources
directly, and they may need to go through middleware services
such as Nimbus [5] and Falkon [20] that handle resource provision-
ing and task dispatching. Things can be even more complicated if
we take into consideration of issues such as workflow resource re-
quirement, data dependencies, Cloud virtualization, etc.

Resource provisioning is the first thing to consider when man-
aging task executions in a Cloud. Different stages of a workflow
may require different types of resources, and Cloud virtualization
can configure Virtual Machines (VMs) differently to meet such re-
quirements, but to what extent (i.e. at what level of granularity)
and how flexible it can be would be hard to decide. Amazon only



Y. Zhao et al. / Future Generation Computer Systems ( ) – 5

offers a few EC2 instance types which are coarsely categorized as
small, medium and large, and they are charged differently accord-
ing to the computing power they provide. Resource provisioning
also needs to be dynamic since the number of resources required
for different stages of a workflow can be different, and having a
fixed number of allocation can be either insufficient, or wasteful.

SWFMSs also place special emphasis on fault tolerance and
smart reruns. Aworkflowmay involve a large number of computa-
tions and the whole process can be lengthy, so typically an SWFMS
will try to automatically recover when non-fatal errors happen (by
usingmechanisms such as retry on error, re-schedule computation
to a different resource, etc.). Also, in the case that aworkflow has to
be stopped, detailed execution information will be logged, and the
next time the workflow is re-started, it will be able to pick up from
where it is stopped. This is called smart-rerun. In a Cloud environ-
ment, the scale of a workflow can be much larger, and more com-
ponents (such as VMs) can be involved, some extra measures need
to be taken to support such features. Task duplication has been
adopted, e.g. in Google’s MapReduce system, and in Dryad/Scope
to handle a problem called ‘‘straggler’’ where out of a large num-
ber of tasks, one or a few outliers may run for unusually long time,
or eventually fail due to various issues. Although this has resource
utilization implications, the overall reliability and turnaround time
can be improved dramatically using this mechanism.

2.4. Security challenges

Although much research has been done on workflow security,
security for Cloud-based SWFMSs is still preliminary, of which we
briefly discuss the following three aspects:

Access control. Access control concerns about which principals
have the privileges to access which resources [21,22]. In a Cloud-
based SWFMS, the resources include Cloud services, SWFMS ser-
vices and products such as scientific workflows, tasks, provenance,
data products, and other artifacts. Due to the dynamic nature (ar-
tifacts can be produced constantly) and the large-scale data, meta-
data, and service sharing nature of the Cloud, access control is a
challenging but important research problem.

Information flow control. Information flow control concerns
about towhom a piece of information can be passed on. Since a sci-
entific workflow might orchestrate a large number of distributed
services, data, and applications, particularly in a large-scale Cloud
environment, the mechanism that controls mission-critical infor-
mation and intellectual property (e.g., secrete parameters used to
run a scientificworkflow) not being propagated to an unauthorized
user is worth looking into.

Secure electronic transaction protocol. Cloud Computing is one
kind of utility computing based on the pay-as-you-go pricing
model. A secure electronic transaction protocol is to ensure goods
atomicity—a user is charged if and only if a service or resource is
used by a user and the charge should be no more and no less. To
prevent the abuse of Cloud accounts and double or wrong charges
by a Cloud provider, further research might be needed to ensure
the security of Cloud-based transaction protocols.

2.5. Mapping VIEW and Swift into the reference architecture

As the reference architecture for SWFMSs can provide a guid-
ance for the architectural design of a particular SWFMS in various
scientific domains.We use two real-world scientific workflow sys-
tems: VIEW and Swift, as a showcase, and explain in detail how
their architecture is mapped into the reference architecture.

2.5.1. The VIEW workflow management system
TheVisual sciEntificWorkflowmanagement system (VIEW) [23]

seamlessly integrates the interoperability, extensibility, and rea-
soning advantages of Semantic Web technology, the querying and
storage power of a RDBMS, and the appealing visual features of vi-
sualization techniques.

Fig. 2. Overall architecture of the VIEW system.

Fig. 3. Swift system architecture.

As shown in Fig. 2, the overall architecture of VIEW [15] is
consistent with the reference architecture for SWFMSs. The VIEW
system consists of six loosely-coupled, autonomous, reusable, and
discoverable service components that correspond to the main
functional subsystems proposed in the reference architecture.
The Operational Layer is omitted from the figure for simplicity.
Except for Workbench, the interface for each service component
is defined and described by WSDL: IWE, IWM , ITM , IPM and IDPM
for the interface of the Workflow Engine, Workflow Monitor,
Task Manager, Provenance Manager, and Data Product Manager,
respectively. Service components interact with one another by
Web service invocation using SOAP messages via Internet based
protocols.

2.5.2. The Swift workflow management system
Swift is a system that bridges scientific workflows with parallel

computing. It is a parallel programming system for rapid and re-
liable specification, execution, and management of large-scale sci-
ence and engineeringworkflows. Swift takes a structured approach
to workflow specification, scheduling, and execution. It consists of
an elegant scripting language called SwiftScript for concise speci-
fication of complex parallel computations based on dataset typing
and iterations [24], and dynamic dataset mappings for accessing
large-scale datasets represented in diverse data formats. The run-
time system provides an efficient workflow engine for scheduling
and load balancing, and it can interact with various resource man-
agement systems such as PBS and Condor for task execution.

The Swift system architecture consists of four major compo-
nents: Program Specification, Scheduling, Execution, and Provi-
sioning, as illustrated in Fig. 3. Computations are specified in
SwiftScript, which has been shown to be simple yet powerful.
SwiftScript programs are compiled into abstract computation
plans, which are then scheduled for execution by theworkflow en-
gine onto provisioned resources. Resource provisioning in Swift is
very flexible, tasks can be scheduled to execute on various resource
providers, where the provider interface can be implemented as a
local host, a cluster, a multi-site Grid, or the Amazon EC2 service.

The four major components of the Swift system can be eas-
ily mapped into the four layers in the reference architecture: the



6 Y. Zhao et al. / Future Generation Computer Systems ( ) –

specification falls into the Presentation Layer, although SwiftScript
focuses more on the parallel scripting aspect for user interaction
than on Graphical representation; the scheduling components cor-
respond to the Workflow Management Layer; the execution com-
ponentsmaps to the TaskManagement layer; and the provisioning
layer can be thought as mostly in the Operational Layer.

3. Related work

There have been a couple of early explorers that tried to eval-
uate the feasibility, performance, and adaptation of running data
intensive and HPC applications on Clouds or hybrid Grid/Cloud
environments. Palankar et al. [25] evaluated the feasibility, cost,
availability and performance of using Amazon’s S3 service to
provide storage support to data intensive applications, and also
identified a set of additional functionalities that storage ser-
vices targeting data-intensive science applications should support.
Oliveira et al. [26] evaluated the performance of X-ray Crystallog-
raphy workflow using SciCumulus middleware with Amazon EC2.
Wang et al. [27] presented their early definition and experience
of scientific Cloud computing in the Cumulus project by merging
existing Grid infrastructures with new Cloud technologies. These
studies provide good sources of information about Cloud platform
support for science applications. Other studies investigated the ex-
ecution of real science applications on commercial Clouds [28,19],
mostly beingHPC applications, and compared the performance and
cost against Grid environments. While such applications indeed
can be ported to a Cloud environment, Cloud execution does not
show significant benefit due to the applications’ tightly coupled
nature.

Srirama et al. [29] studied the effects of moving parallel scien-
tific applications onto the Cloud through deploying several bench-
mark applications (e.g. matrix–vector operations, NAS parallel
benchmarks, and DOUG—Domain decomposition On Unstructured
Grids) on the Cloud. The authors also observed the limitations of
Cloud and its comparison with cluster in terms of performance,
and raises important issues around the necessity for better frame-
works or optimizations forMapReduce style applications. Parashar
et al. [30] proposed a framework to manage autonomics, including
scheduling the mix of hybrid resources, application management,
monitoring resources and adaptation of resource provisioning
based on objectives and metrics. The authors explored the auto-
nomics using a realworld scientificworkflow, theDefiant reservoir
simulator using an Ensemble Kalman Filter with several different
objectives (e.g. acceleration, conservation and resilience) andmet-
rics (e.g. deadline and budget). They formed a hybrid infrastructure
with TeraGrid and several instance types of Amazon EC2 and the
results show that the proposed framework for autonomics works
well for the application workflow achieving the objectives using
the metrics.

Deelman et al. have studied the cost and performance of work-
flows in the cloud via simulation [28], using an experimental Nim-
bus cloud [31], individual Elastic Compute Cloud (EC2) nodes [32],
and a variety of different intermediate storage systems on EC2 [33].
Vecchiola et al. have done similar investigations on EC2 and
Grid5000 [19]. These studies primarily analyzed the performance
and cost of workflows in the cloud, rather than the practical expe-
rience of deploying workflows in the cloud. To address the short-
ages, Juve et al. [34] also related the practical experience of trying
to run a nontrivial scientific workflow application on three differ-
ent infrastructures and compared the benefits and challenges of
each platform.

With VGrADS [35], not only the virtual Grid abstraction enabled
a more sophisticated and effective scheduling of workflow sets,
unifying workflow execution over batch queue systems and cloud
computing sites (including Amazon EC2 and Eucalyptus), but also

Table 1
Use cases of SWFMSs.

SWFMSs Application fields Use cases

Swift Climate science Climate data analysis [41]
Taverna Bioinformatics Single nucleotide polymorphisms

analysis [42]
Vistrails Earth science NASA earth exchange [43]
Kepler Physics Hyperspectral image

processing [44]
VIEW Medical science Neurological disorder diagnosis [15]

the Virtual Grid Execution System provided a uniform interface for
provisioning, querying, and controlling the resources. Its workflow
planner could interact with a DAG scheduler, an EC2 planner
and fault tolerance sub-components to trade-off various system
parameters—performance, reliability and cost.

SWFMSs such as Taverna [36], Kepler [37], Vistrails [38],
Pegasus [39], Swift [40], and VIEW [15] have seen wide adoption
in various disciplines such as Physics, Astronomy, Bioinformatics,
Neuroscience, Earth Science, and Social Science. In Table 1, we list
some use cases that focused on applying SWFMSs to execute data-
intensive applications.

Oozie represents a major advancement as a scalable, multi-
tenant, secure, and operable workflow service for Hadoop. Islam
et al. [45] illustrated the need for Hadoop workflow by describing
the requirements not met by existing workflow systems in the
large-scale Hadoop computing environments. After discussing the
architecture of Oozie, they analyzed the characteristics of the
Oozie service in production, followed by some experimentation
to quantify the scaling limiters for Oozie. Although Oozie can
provide Yahoo and other organizations with major advantages in
security, scalability and operability for Hadoop-based applications,
simply mapping all the existing mature scientific workflows
applications intoOozie-basedworkflows can be very impracticable
andmay cost scientists large amount of time beyond their research
topics.

Amazon Simple Workflow Service (SWF) defines an inter-
face for workflow orchestration and provides state persistence
for workflow executions. Amazon SWF applications involve com-
munication between the following entities: The Amazon Sim-
ple Workflow Service, Workflow Executors, Deciders and Activity
Workers. However, an important downside of SWF is its incom-
patibility with existing workflow systems, and lack of means for
reusing scientific legacy code [46].

Since both the Oozie and Amazon SWF are bound to particu-
lar Cloud platforms, users may need to evaluate the risk associated
with vendor lock-in when choosing workflow services. To address
these disadvantages, we try to integrate the scientific workflow
management systems with various Cloud platforms, without de-
pending on one specific Cloud vendor, to provide a Cloudworkflow
platform as a service for scientists and developers.

4. Integration framework

In this section we present a general framework that addresses
the integration of SWFMSs into the Cloud, and also describe our
end-to-end practical application of the framework to integrate
Swift [40], an SWFMS that has broad application in Grids and
supercomputers [47], with the OpenNebula Cloud computing
platform. The integration covers all the major aspects involved in
workflow management in the Cloud, from client-side workflow
submission to the underlying Cloud resource management, thus
enabling scientific workflow management in the Cloud. We
describe some earlier integration experience in [48], and we
present here extended work with other Cloud platforms such as
Eucalyptus and Amazon EC2.
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Fig. 4. The service framework.

4.1. Service framework

For easy integrationwith aCloudplatform, a ‘‘Task-Management-
layer-in-the-Cloud’’ approach can be chosen by implementing, for
instance an ‘‘Amazon EC2’’ resource provider to an SWFMS, then
tasks in a workflow can be dispatched into EC2 and executed on
EC2 VM instances. However, this approachwould leavemost of the
workflow management and dynamic resource scaling outside the
Cloud. For application developers, wewould like to free them from
complicated Cloud resource configuration and provisioning is-
sues, and provide them with the convenience and transparency to
scalable Cloud resources, therefore we choose to take the
‘‘Workflow-Management-Layer-in-the-Cloud’’ approach,which re-
quires minimal configuration at the client side and supports easy
deployment with virtualization techniques.

We propose a reference service framework that addresses the
above mentioned challenges and covers all the major aspects
involved in themigration and integration of SWFMS into the Cloud,
from client-side workflow specification, service-based workflow
submission and management, task scheduling and execution, to
Cloud resource management and provisioning. As illustrated in
Fig. 4(b), the service framework includes 4 layers, 8 components
and 6 interfaces. Fig. 4(a) shows a typical service stack of Cloud
computing: on top of the IaaS layer, the WaaS is designed to
provide workflow as a service for researchers and application
developers. We position the WaaS layer across both the Saas and
PaaS layers, because our proposed service framework can also
be applied to provide workflow platform as a service for related
scientists.

The first layer is the Infrastructure Layer, which consists of
multiple Cloud platforms with the underlying server, storage and
network resources. The second layer is called the Middleware
Layer. This layer consists of three subsystems: Cloud Resource
Manager, Scheduling Management Service and Task Scheduling
Frameworks. The third layer, called the Service Layer, consists
of Cloud Workflow Management Service and Workflow Engines.
Finally, the fourth layer—the Client Layer, consists of theWorkflow
Specification and Submission and the Workflow Presentation and
Visualization subsystem. The service architecture would help to
break through workflows’ dependence on the underlying resource
environment, and take advantage of the scalability and on-demand
resource allocation of the Cloud.

We present a layered service framework for the implementa-
tion and application of integrating SWFMS into manifold Cloud
platforms, which can also be applicable when deploying a work-
flow system in Grid environments. The separation of each layer
enables abstractions and different independent implementations

for each layer, and provides the opportunity for scientists to de-
velop a stable and familiar problem solving environment where
rapid technologies can be leveraged but the details of which are
shielded transparently from the scientists who need to focus on
science itself. The Interfaces defined in the framework is flexible
and customizable for scientists to expand or modify according to
their own specified requirements and environments.

4.2. The integration framework

Based on the service framework, we propose an end-to-end
integration framework that covers all themajor aspects involved in
the integration, including a client side workflow submission tool, a
Cloudworkflowmanagement service that accepts the submissions,
a Cloud Resource Manager (CRM), which is a central component of
the integration that accepts resource requests from the workflow
service and dynamically instantiates a virtual cluster, and a cluster
monitoring service that monitors the health of the acquired
Cloud resources. The architecture of the integration is shown in
Fig. 5. The Cloud workflow service accepts workflow submissions
from the client tool, and makes resource requests to the Cloud
resource manager, which in turn provisions a virtual cluster on-
demand and also deploys the Falkon [20,49] execution service
into the cluster. Falkon is a light-weight task execution service for
optimized task throughput and resource efficiency delivered by a
streamlined dispatcher, a dynamic resource provisioner. Individual
jobs from the workflow service are then passed onto the Falkon
service for parallel execution within the virtual cluster, and results
delivered back to the workflow service. A common API is defined
in between the CRM and the underlying Cloud platform, so that
various Iaas Cloud platforms can be plugged in. We have firstly
chosen to implement the interface with the OpenNebula Cloud
platform to manage Cloud datacenter resources such as servers,
network and storage. In addition, we firstly choose to integrate
the Swift scientific workflow system with IaaS platforms. Swift is
a parallel programming system for rapid and reliable specification,
execution, andmanagement of large-scale science and engineering
workflows. Moreover, The Swift workflow system has flexible
interfaces for developers to customize and can be easily mapped
into our architecture.

4.3. The OpenNebula Cloud platform

OpenNebula is a full set of open-source toolkit to build IaaS
private, public and hybrid Clouds, and a modular system that can
implement a variety of Cloud architectures. OpenNebula orches-
trates storage, network, virtualization, monitoring, and security
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Fig. 5. The integration architecture.

Fig. 6. The Client Submission Tool.

technologies to deploy multi-tier services [50,51] as virtual ma-
chines on distributed infrastructures, combining both datacenter
resources and remote Cloud resources, according to allocation poli-
cies.

The OpenNebula internal architecture can be divided into three
layers: Tools, Core, and Drivers.

Tools: This layer contains tools distributed with OpenNebula,
such as the CLI, the scheduler, the libvirt API implementation or
the Cloud RESTful interfaces, and also third party tools that can
be easily created using the XML-RPC interface or the OpenNebula
client API.

Core: The core consists of a set of components to control and
monitor virtual machines, virtual networks, storage and hosts.
The management of VMs, storage devices and virtual network is
implemented in this layer by invoking a suitable driver.

Drivers: This layer is responsible for directly interacting with
specific middleware (e.g. virtualization hypervisor, file transfer
mechanisms or information services). It is designed to plug-in
different virtualization, storage and monitoring technologies and
Cloud services into the core.

We choose OpenNebula for our implementation because it has
a flexible architecture and is easy to customize, and also because
it provides a set of tools and service interfaces that are handy for
integration. Other Cloud platforms can be integrated in similar
means. In the following, we describe the core components in the
integration and the interactions among them.

4.4. Key components

4.4.1. The Client Submission Tool
The Client Submission Tool (illustrated in Fig. 6) is a standalone

Java application that provides an IDE for workflow development,
and allows users to edit, compile, run and submit SwiftScripts.
Scientists and application developers can write their scripts in this
environment and also test run theirworkflows on local host, before
they make final submissions to the Swift Cloud service to run in

Fig. 7. System control diagram.

the Cloud. For submission, it providesmultiple submission options:
execute immediately, execute at a fixed time point, or execute
recurrently (per day, per week etc.).

4.4.2. The Cloud workflow management service
As shown in Fig. 7, one of the key components of the system

is the Cloud workflow management service that acts as an inter-
mediary between the workflow client and the backend Cloud Re-
source Manager. The service has a Web interface for configuration
of the service, the resourcemanager and application environments.
It supports the following functionalities: SwiftScript programming,
SwiftScript compilation, workflow scheduling, resource acquisi-
tion, and status monitoring. In addition, the service also imple-
ments fault-tolerance mechanism.

4.4.3. The Cloud Resource Manager
The Cloud Resource Manager accepts resource requests from

the Cloud workflow management service, and is in charge of
interfacing with the underlying Cloud platform (e.g. OpenNebula)
and provisioning Falkon virtual clusters dynamically to the
workflow service. In addition, it also monitors the virtual clusters.
The process to start a Falkon virtual cluster is as follows:

(1) CRM provides a service interface to the workflow service, and
the latter makes a resource request to CRM.

(2) CRM initializes and maintains a pool of virtual machines, the
number of virtual machines in the pool can be set via a config
file, Ganglia is started on each virtual machine to monitor CPU,
memory and I/O.

(3) Upon a resource request from the workflow service, the CRM
fetches a VM from the VM pool and starts the Falkon service
in that VM. The CRM fetches another VM and starts the Falkon
worker in that VM, which is registered to the Falkon service.
CRM repeats fetching additional VMs and starting them until
all the Falkon workers are started and registered. If the VMs in
the pool are not enough, then CRMwill make resource request
to the underlying OpenNebula platform to create more VM
instances.

(4) CRM returns the end point reference of the Falkon server to the
workflow service, and the workflow service can now dispatch
tasks to the Falkon execution service.

(5) CRM starts the Cluster Monitoring Service to monitor the
health of the Falkon virtual cluster. The monitoring service
checks heartbeat from all the VMs in the virtual cluster, and
will restart a VM if it becomes irresponsive. Upon unrecover-
able failure, or if the Falkon service fails, a new VMwill be allo-
cated and the Falkon service started, and all theworkers would
re-register to the new service. VMs running Falkon workers
need only reconfigure their workers, such as shutting them
down and restarting with the new service end-points.
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Note that we also implement an optimization technique to
speed up the Falkon virtual cluster creation. When a Falkon virtual
cluster is decommissioned, we change its status to ‘‘standby’’,
and it can be re-activated. When CRM receives resource request
from the workflow service, it checks if there is a ‘‘standby’’ Falkon
cluster, if so, it will return the information of the Falkon service
directly to the workflow service, and also check the number of the
Falkon workers already in the cluster:

(1) If the number ismore than requested, then the surplusworkers
are de-registered and put into the VM pool.

(2) If the number is less than required, then additional VMswill be
pulled from the VM pool to create more workers.

As for the management of VM images, VM instances, and VM
network, CRM interacts with and relies on the underlying Open-
Nebula Cloud platform. Our resource provisioning approach takes
into consideration not only the dynamic creation and deployment
of a virtual cluster with a ready-to-use execution service, but also
efficient instantiation and re-use of the virtual cluster, as well
as the monitoring and recovery of the virtual cluster. Next, we
demonstrate the capability and efficiency of our integration using
a small scale experiment setup.

4.5. Discussion

Through the introduction of the reference service framework
and the implementation of different modules that can be
mapped into the proposed framework, there are three advantages:
(1) proposing a framework to bridge various SWFMSs with
multiple heterogeneous Cloud environments; (2) breaking the
limitations that a specific SWFMS is bound to a particular Cloud
environment; (3) providing both practical and reference values
to researchers who are devoted to the study of running scientific
workflows in Clouds, so that they can contribute and share
components designed and implemented by the guidance of the
service framework, which is beneficial to both the workflow and
the Cloud computing communities.

The separation between different layers can help to isolate the
unnecessary influence between each layer, enhance the reusability
of each module. Within the integration framework, we define
a series of interfaces to standardize the integration between
different SWFMSs and Cloud platforms. Based on the framework,
every module can be replaced by its counterpart, as long as
it implements the interfaces defined to interact with the other
modules.

As we have discussed in the Challenges section, there are many
major obstacles to the adaptation and running of scientific work-
flows on the Cloud. To address the architectural challenges, we
take the ‘‘Workflow-Management-Layer-in-the-Cloud’’ approach
for integration, which requires minimal configuration at the client
side and supports easy deployment with virtualization techniques.
We introduce the Cloud Resource Manager component to provide
resource provision as a service for SWFMSs and deal with the com-
patibility and impedance problems that are introduced by differ-
ent Cloud providers and heterogeneous implementations. As for
dynamic scale-out and scale-in, we have discussed the resource
provisioning, the various allocation and de-allocation policies, and
how dynamic and adaptive provisioning can be adopted in light of
varying workloads in our previous papers [52,53]. We can couple
mechanisms similar to the dynamic resource provisioning (DRP)
mechanism built in Falkon to enable scientific workflows to dy-
namically acquire/dismiss computing resources based on execu-
tion time and queue situation.

In addition, we utilize the access control mechanism to ensure
security for Cloud-based SWFMSs, and we address data manage-
ment challenges both inside and outside the SWFMSs, involving

Fig. 8. MODIS image processing workflow.

the Infrastructure layer, Middleware layer and Service layer. To
address the language challenges, we adopt SwiftScript to serve as
a general purpose coordination language, where existing applica-
tions can be invoked without modification. The service manage-
ment challenges such as service discovery, large input and output
handling, data services, etc. can be addressed inside the SWFMSs.

5. Performance evaluation

In this section,we first demonstrate and analyze our integration
with OpenNebula using a NASA MODIS image processing work-
flow. We then present the cluster provisioning results within the
Eucalyptus Cloud platform and analyze theMontage ImageMosaic
Workflow processing results in Amazon EC2. We also identify that
distributed storage in Cloud platforms may be one of the key ar-
eas of improvement towards the better support of scientific work-
flows.

We use (1) to calculate the percent of time savedwhen applying
recycling mechanism for resource provisioning. The PTS means the
percent of time saved, and TB represents the baseline to create
a Falkon cluster with specified worker number. TC indicates the
time cost to initialize a Falkon cluster when applying the recycling
mechanism. As shown in the following tables, we can clearly see
that the recyclingmechanism is efficientwhen initializing a cluster
based on the ‘‘standby’’ Falkon cluster.

PTS = [(TB − TC )/TB] ∗ 100%. (1)

5.1. The MODIS image processing workflow

The NASA MODIS dataset [54] we use is a set of satellite aerial
data blocks, each block is of size around 5.5 MB, with digits
indicating the geological feature of each point in that block, such
as water, sand, green land, urban area, etc.

The workflow (illustrated in Fig. 8) takes a set of data blocks,
gets the size of the urban area in each of the blocks, analyzes and
picks the top 12 of the blocks that have the largest urban area,
converts them into displayable format, and assembles them into
a single PNG file.

Each machine in the experiment is configured with Intel Core
i5 760 with 4 cores at 2.8 GHz, 4 GB memory, 500 GB HDD, and
connected with Gigabit Ethernet LAN. The operating system is
Ubuntu 10.04.1, installed with OpenNebula 2.2. The configuration
for each VM is 1 core, 1.5 GB memory, 20 GB HDD, and we use
KVMas the hypervisor. One of themachines is used as the frontend
which hosts the workflow service, the CRM, and the monitoring
service. The other 5 machines are used to instantiate VMs, and
each physical machine can host up to 2 VMs, so at most 10 VMs
can be instantiated in the environment, we use the small set of
resources in order to reach resource limit easily, nevertheless, they
are enough for other performance tests.

In our experiment, we control the workload by changing the
number of input data blocks and the resource required.We run two
types of experiments:

(1) The serial submission experiment.
(2) The different number of data blocks experiment.
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Table 2
The baseline for cluster creation (OpenNebula).

Cluster
size

Server
initialization (s)

Worker
registration (s)

Total time (s)

1 4.674 10.603 15.277
3 4.626 12.124 16.75
5 4.716 14.12 18.836
7 4.619 16.346 20.965
9 4.66 18.592 23.252

Table 3
Serial submission, decreasing required resources.

Cluster size Time (s) Baseline (s) Time saved

5 17.961 18.836 –
3 4.138 16.75 75%
1 3.683 15.277 76%

In all the experiments, VMs are pre-instantiated and put in the
VM pool. The time to instantiate a VM is around 42 s and this does
not change much for all the VMs created.

5.1.1. Serial submission
In the serial submission experiment, we first measure the

baseline for server initialization time andworker registration time.
We create a Falkon virtual cluster with 1 server, and varying
number of workers, and we do not reuse the virtual cluster.

In Table 2, we can observe that the server initialization time is
quite stable, around 4.7 s every time, and for worker parallel reg-
istration, the time increases slightly with the worker number.

Then, we submit a workflow after the previous one has finished
to test virtual cluster recycling. In Table 3, the resources required
are one Falkon server with 5 workers, one server with 3 workers
and one server with 1 worker. As the ‘‘standby’’ Falkon cluster
can be reused, for the second and third submissions, the server
initialization and worker registration time is zero, and only the
surplusworkers need to de-register themselves.We can clearly see
that the recycling mechanism is efficient.

5.1.2. Varying the data blocks
In this experiment, we change the number of input data blocks

from 50 blocks to 25 blocks, and measure the total execution time
with varying number of workers in the virtual cluster.

In Fig. 9, we can observe that with the increase of the number of
workers, the execution time decreases accordingly (i.e. execution
efficiency improves), however at 5 workers to process the work-
flow, the system reaches efficiency peak. After that, the execution
time goes up with more workers. This means that the improve-
ment cannot subsidize themanagement and registration overhead
of the added worker. The time for server initialization and worker
registration remain unchanged when we change the input size (as
have been shown in Table 2). The experiment indicates that while
our virtual resource provisioning overhead is well controlled, we
do need to carefully determine the number of workers used in the
virtual cluster to achieve resource utilization efficiency, which will
be tuned in our future research endeavor.

5.2. Eucalyptus experiments

In this section, we show the integration results of using Eu-
calyptus instead of OpenNebula for resource provisioning and
as the underlying Cloud platform. Considering the efficient and
convenient services provided by FutureGrid1 with Eucalyptus

1 FutureGrid: https://portal.futuregrid.org/.

Fig. 9. Different input sizes.

Table 4
The baseline for virtual cluster creation (Eucalyptus).

Cluster
size

Server
initialization (s)

Worker
registration (s)

Total time (s)

1 10.764 10.739 21.503
2 11.66 12.231 23.891
4 10.994 14.059 25.053
8 10.766 17.565 28.331

16 11.508 22.665 34.173
32 11.481 28.895 40.376

deployment, we choose FutureGrid as the experiment environ-
ment. FutureGrid is a project led by Indiana University and
funded by the National Science Foundation (NSF) to develop a
high-performance Grid test bed that lets scientists collaboratively
develop and test innovative approaches to parallel, Grid, and
Cloud computing. The FutureGrid Project makes it possible for re-
searchers to tackle complex research challenges in computer sci-
ence related to the use and security of grids and clouds. These
include topics ranging fromauthentication, authorization, schedul-
ing, virtualization, middleware design, interface design, and cyber
security, to the optimization of grid-enabled and cloud-enabled
computational schemes for researchers in astronomy, chemistry,
biology, engineering, atmospheric science and epidemiology.

In addition, the Eucalyptus API is compatible with Amazon EC2
so the implementation can easily support Amazon EC2 Cloud.
We measure the performance to establish a baseline for resource
provisioning and Cloud resource management overhead in the
science Cloud environment.

5.2.1. Experiment configuration
The instance type used in our experiment is m1.small: 1 CPU

Unit, 1 CPU Core and 500MBMemory. All the instances use Ubuntu
Server 12.04 as the operating system. In all the experiments, VM
instances are pre-launched using created images and we initialize
a resource pool with 33 instances.

5.2.2. Framework overhead evaluation
In the overhead evaluation experiment, we measure the server

initialization time and worker registration time to compare with
those in the OpenNebula setting.

In Table 4, we observe the time to create a Falkon server and
start the service is around 11 s, much longer than that in Table 2.
We attribute this to the m1.small configuration. Worker registra-
tion takesmore time than in Table 2 due to slower network connec-
tion. The overall time increases slightly with theworker number as
all the worker registration is executed concurrently, which shows
a similar pattern to that in Table 2.

Then we measure the server initialization and worker regis-
tration time of one Falkon cluster consisting of one server and
32 workers. We submit requests with exponentially decreasing

https://portal.futuregrid.org/


Y. Zhao et al. / Future Generation Computer Systems ( ) – 11

Table 5
Serial submission, decreasing resource required.

Cluster size Time (s) Baseline (s) Time saved

32 39.598 40.376 –
16 9.548 34.173 72%
8 7.61 28.331 73%
4 5.844 25.053 76%
2 4.571 23.891 80%
1 4.482 21.503 79%

Table 6
Serial submission, increasing resource required.

Cluster size Time (s) Baseline (s) Time saved

1 21.98 21.503 –
2 11.16 23.891 53%
4 12.776 25.053 49%
8 13.81 28.331 51%

16 17.322 34.173 49%
32 22.15 40.376 45%

worker number. Except the first request, the server initialization
time of the other requests is zero, and the time taken is to dereg-
ister 16 workers → 8 workers → 4 workers → 2 workers →

1 worker from previous ‘‘standby’’ Falkon cluster. The results are
shown in Table 5.

In Table 6, we measure the server initialization and worker
registration time of a Falkon cluster starting from one server and
one worker. Then we expand the cluster size exponentially by
adding 1 worker → 2 workers → 4 workers → 8 workers →

16 workers into the cluster.
As shown in Table 6, we can see that although the worker

number increases exponentially, the time rises almost linearly.
The reason is that the workers can simultaneously register to the
already existing server. The time cost to register each individual
worker is similar to that in Table 4.

In Table 7, we first request a virtual cluster with 1 server and 32
workers, we thenmake 5 parallel requests for virtual clusters with
1 server and 5 workers. According to the cluster reuse mechanism,
one of the clusters can be created based on available cluster, while
the other 4 are created on-demand. In this case, it is much faster
to de-register the surplus workers than to create the server from
scratch.

From the experiment results in FutureGrid,we can observe that,
compared with the local cluster based OpenNebula Cloud environ-
ment, within the production scientific Grid/Cloud platform, with a
relatively larger resource provisioning setting, although the provi-
sioning overhead is larger than in the local setting, the virtual clus-
ter recycling mechanism works in similar pattern and efficiency.

5.3. Amazon EC2 experiments

In this section, we show the results of using Amazon EC2 as
the resource provisioner, and use a Montage image mosaic work-
flow [28] for illustration. The workflow processes 2MASS nebula
graph. The region size of the graph is 0.5, and the image data are
divided into 18 FITS images with size of 2 MB in each survey band
(H, J and Ks), the number of input image files to the workflow
can vary from hundreds to tens of thousands. With these results,
we demonstrate that our integration framework supports not only
both research Clouds and commercial Clouds, but also a variety of
scientific workflows.

5.3.1. The montage image mosaic workflow
Montage is a suite of software tools developed to generate large

astronomical image mosaics by composing multiple small images,
as shown in Fig. 10: the left side shows the workflow stages

Table 7
Serial submission, mixed resource required.

Cluster size Time (s) Baseline (s) Time saved

32 39.98 21.503 –
5 12.866 24.891 48%
5 25.514 24.891 –
5 24.302 24.891 –
5 24.987 24.891 –
5 25.62 24.891 –

for generating the mosaic of 3 images, and the right side shows
the multiple stages (in ellipse) and the corresponding input and
output files (in parallelogram) and their dependencies. The typical
workflow process involves the following key steps:

• Image projection
◦ Re-project each image into a common coordinate space

(mProjectPP)
• Background rectification

◦ Calculate a list of overlapping images (mOverlaps)
◦ Perform image difference between each pair of overlapping

images (mDiffFit)
◦ Fit difference images into a plane (mConcatFit)
◦ Background correction (mBackground)

• Image co-addition (mAdd)
◦ Optionally divide a region into a grid of sub-regions, and

co-add the images in each region into a mosaic.
◦ Co-add the processed images (ormosaics in sub-regions) into

a final mosaic.

And finally the mosaic is shrunk (mShrink) and converted into a
JPEG image (mJPEG) for display.

There are two Amazon instance types used in our experiment.
Falkon server and Swift server use the same configuration: instance
type is c1.medium with 5 CPU Units, 2 CPU Cores and 1.7 GB
memory. Falkonworker is configuredwith instance typem1.small:
1 CPU Unit, 1 CPU Core and 1.7 GB memory. All the instances use
Ubuntu Server 11.10 as the operating system and are in the same
Security Group.

In the experiment in Amazon EC2, we measure the time to
initialize the Falkon cluster and to process 2MASS nebula graph,
weperform themeasurement 10 times and take the average. As the
overall test environment is in a commercially operatedCloud, there
may appear a few unreasonable data which have been deemed
outliers and excluded. In all the experiments, VM instances are
pre-launched using AMIs.

5.3.2. Application evaluation
In this experiment,we submit a 2MASSnebula graphprocessing

workflow to the swift service, which schedules and dispatches
tasks to a number of Falkonworkers through the Falkon server.We
change the number of workers in the Falkon cluster and measure
the time of the whole procedure except the cluster initialization
time.

In Fig. 11, we can observe that with the increase of the number
of workers, the montage workflow processing time decreases
accordingly. After the number of workers has reached 8, the time
cost decreases slowly. If we take into consideration both the
montage processing time and the cluster creation time, the total
time becomes longer when the number of workers reaches 20,
then we will arrive at the same conclusion as summarized from
Fig. 9. We should choose an appropriate cluster size to achieve
resource utilization efficiency and performance/cost balance. The
saturation at 8-node scales is due to the data-intensive nature of
the application, and the inability for the storage system to keep
up with the demand. We believe that distributed storage in Cloud
platforms is perhaps one of the key areas of improvement towards
the better support of scientific workflows.
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Fig. 10. The montage workflow.

Fig. 11. Montage processing.

6. On-going work and research directions

The proposed framework is open, flexible and expandable. The
separation between different layers makes it easy to introduce
new and mature techniques and components into our framework
to improve the performance and functionality. In this section, we
would like to introduce our on-going work and present some
research directions.

OpenStack integration: Currently, we are cooperating with
the Joint Lab for Medical Physics of Sichuan Provincial People’s
Hospital, using our proposed framework to process massive
medical images. We use Openstack as the underlying Cloud
platform, which is themost popular open-source Cloud computing
platform at present. The platform consists of a series of interrelated
projects that control pools of processing, storage, and networking
resources throughout a datacenter, which can be managed or
provisioned through aWeb-based dashboard, command-line tools,
or a RESTful API. The OpenStack APIs are compatible with Amazon
EC2/S3 and thus client applications written for Amazon Web

Services can be used with OpenStack with minimal porting effort.
We have defined clear interfaces in the framework, so that
the Openstack Cloud platform can be easily mapped into the
framework, as long as we implement the defined interfaces to
communicate with the other components in the framework.

Auto-scaling: Tominimize cost andmeet application deadlines
in Cloud workflows, we are investigating the auto-scaling mecha-
nism, which can adjust the number of workers automatically ac-
cording to workflow workload. As we have discussed above, we
may use the interfaces defined in the task scheduling framework
to monitor the task queue during the execution, and dynamically
acquire/dismiss computing resources based on execution time and
queue situation.

Load balancing: We are also integrating work stealing strategy
in the task scheduling framework that can improve workflow task
scheduling efficiency and load balance. We have improved three
dynamic load balancing algorithms, including addition strategy,
multiplication strategy, and dichotomy strategy [55]. Based on
the above work-stealing strategies, we are investigating the
prefetching mechanism to improve resource utilization and task
scheduling throughput.

Dynamic network provisioning: We have seen recent ad-
vances in enabling on-demand network circuits in the national
and international backbones coupled with Software Defined Net-
working (SDN) advances like OpenFlow and programmable edge
technologies like OpenStack [56]. Integrating SDN techniques into
our framework enables network control to become directly pro-
grammable and the bandwidth-provisioned high-speed circuits to
be allocated dynamically, which can increase the ability of Cloud
workflows to access and stage large datasets from remote data
repositories or to move computation to remote sites and access
data stored locally.

Cloud orchestration: With the proposed framework, we can
provide scientific workflow platform as a service to researchers
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andworkflowdevelopers. However, the deployment of such a plat-
form still requires a lot of efforts and specific techniques. We can
apply Cloud orchestration to realize the automatic deployment and
management of cloud workflow platform. To standardize the pro-
cesses and operations, we are looking at the TOSCA (the Topology
and Orchestration Specification for Cloud Applications) standard
tomodel the components, relationships between components, and
components management.

7. Conclusions

As more and more scientific communities and applications
are adopting Cloud platforms, it is important to migrate SWFMSs
into Clouds to take advantage of both convenient and powerful
workflow management and Cloud scalability, and to handle the
ever increasing demand of big data applications. Cloud offers un-
precedented scalability to workflow systems, and will potentially
change the way we perceive and conduct scientific experiments.
The scale and complexity of the science problems that can be han-
dled can be greatly increased on the Cloud, and the on-demand
nature of resource allocation on the Cloud will also help improve
resource utilization and user experience. We coin the term ‘‘Cloud
Workflow’’ and analyze the major obstacles to the adaptation and
running of scientific workflows on the Cloud. Based on the service
framework, we present our early effort in designing an integra-
tion framework for scientific workflow management in the Cloud,
of which a Cloud workflow management service, a Cloud resource
manager, and a cluster monitoring service are core components.
We also conduct a set of experiments in OpenNebula as well as in
Eucalyptus and Amazon EC2 tomeasure resource provisioning and
management efficiency and to find the cost/performance balance.

Acknowledgments

This work was supported by National Natural Science Founda-
tion of China No. 61272528, No. 61034005, and the Central Univer-
sity Fund (ID-ZYGX2013J073).

References

[1] I. Foster, Y. Zhao, I. Raicu, S. Lu, Cloud computing and grid computing
360-degree compared, in: IEEE Grid Computing Environments, GCE08, 2008,
Co-located with IEEE/ACM Supercomputing 2008, Austin, TX, pp. 1–10.

[2] Hadoop, 2014 [Online]. Available: http://hadoop.apache.org/.
[3] OpenNebula, 2014 [Online]. Available: http://www.OpenNebula.org.
[4] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff,

D. Zagorodnov, The eucalyptus open-source cloud-computing system, in:
9th IEEE/ACM International Symposium on Cluster Computing and the Grid,
CCGRID’09, 2009, pp. 124–131.

[5] K. Keahey, T. Freeman, Contextualization: providing one-click virtual clusters,
in: eScience 2008, Indianapolis, IN, 2008, pp. 301–308.

[6] Openstack, 2014 [Online]. Available: http://www.openstack.org.
[7] G. Bell, T. Hey, A. Szalay, Beyond the data deluge, Science 323 (5919) (2009)

1297–1298.
[8] Yong Zhao, Youfu Li, Shiyong Lu, Ioan Raicu, Cui Lin, Devising a cloud scientific

workflow platform for big data, in: IEEE International Symposiumon Scientific
Workflows and Big Data Science, SWF, 2014.

[9] Y. Zhao, X. Fei, I. Raicu, S. Lu, Opportunities and challenges in running scientific
workflows on the cloud, in: IEEE International Conference on Cyber-Enabled
Distributed Computing and Knowledge Discovery, CyberC, 2011, pp. 455–462.

[10] C. Lin, S. Lu, X. Fei, A. Chebotko, D. Pai, Z. Lai, F. Fotouhi, J. Hua, A reference
architecture for scientific workflow management systems and the VIEW SOA
solution, IEEE Trans. Serv. Comput. (TSC) 2 (1) (2009) 79–92.

[11] Yong Zhao, Shiyong Lu, A logic programming approach to scientific workflow
provenance querying, in: Proc. of the 2008 International Provenance and
Annotation Workshop (IPAW 2008), Salt Lake City, Utah, in: Lecture Notes in
Computer Science, vol. 5272, 2008, pp. 31–44.

[12] Rob Pike, Sean Dorward, Robert Griesemer, Sean Quinlan, Interpreting the
data: parallel analysis with Sawzall, Sci. Program. 13 (4) (2005) 277–298.

[13] C. Olston, B. Reed, U. Srivastava, R. Kumar, A. Tomkins, Pig Latin: a not-so-
foreign language for data processing, in: SIGMOD 2008.

[14] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P.K. Gunda, J. Currey,
DryadLINQ: a system for general-purpose distributed data-parallel computing
using a high-level language, in: Symposium on Operating System Design and
Implementation, OSDI, San Diego, CA, December 8–10, 2008.

[15] C. Lin, S. Lu, Z. Lai, A. Chebotko, X. Fei, J. Hua, F. Fotouhi, Service-oriented
architecture for VIEW: a visual scientific workflow management system, in:
Proc. of the IEEE 2008 International Conference on Services Computing, SCC,
Honolulu, Hawaii, USA, July 2008, pp. 335–342.

[16] Andrey Kashlev, Shiyong Lu, Artem Chebotko, Coercion approach to the
shimming problem in scientific workflows, in: Proc. of the IEEE International
Conference on Services Computing, SCC, Santa Clara, CA, USA, 2013.

[17] Cui Lin, Shiyong Lu, Xubo Fei, Darshan Pai, Jing Hua, A task abstraction and
mapping approach to the shimming problem in scientific workflows, in: IEEE
International Conference on Services Computing, SCC, Bangalore, India, 2009,
pp. 284–291.

[18] W. Tan, K. Chard, D. Sulakhe, R.Madduri, I. Foster, S.S. Reyes, C. Goble, Scientific
workflows as services in caGrid: a Taverna and gRAVI approach, in: ICWS2009,
pp. 413–420.

[19] C. Vecchiola, S. Pandey, R. Buyya, High-performance cloud computing: a
view of scientific applications, in: International Symposium on Parallel
Architectures, Algorithms, and Networks, 2009, pp. 4–16.

[20] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, M. Wilde, Falkon: a fast and light-
weight tasK executiON framework, in: IEEE/ACM SuperComputing 2007, pp.
1–12.

[21] A. Chebotko, S. Lu, S. Chang, et al., Secure abstraction views for scientific
workflow provenance querying, IEEE Trans. Serv. Comput. 3 (4) (2010)
322–337.

[22] Z. Yang, S. Lu, P. Yang, Itinerary-based access control for mobile tasks in
scientific workflows, in: Advanced Information Networking and Applications
Workshops, 2007, AINAW’07. 21st International Conference on IEEE, Vol. 2,
2007, pp. 506–511.

[23] A. Chebotko, C. Lin, X. Fei, et al., VIEW: a VIsual sciEntificWorkflow
management system, in: Services 2007 IEEE Congress on, IEEE, 2007,
pp. 207–208.

[24] Y. Zhao, J. Dobson, I. Foster, L. Moreau, M. Wilde, A notation and system for
expressing and executing cleanly typed workflows on messy scientific data,
SIGMOD Rec. 34 (3) (2005) 37–43.

[25] M. Palankar, A. Iamnitchi, M. Ripeanu, S. Garfinkel, Amazon S3 for science
grids: a viable solution?, in: Proceedings of the 2008 International Workshop
on Data-aware Distributed Computing, DADC’08, 2008, pp. 55–64.

[26] D. Oliveira, K. Ocaña, E. Ogasawara, J. Dias, F. Baião, M.Mattoso, A performance
evaluation of X-ray crystallography scientific workflow using SciCumulus,
in: IEEE CLOUD 2011, pp. 708–715.

[27] L. Wang, J. Tao, M. Kunze, A.C. Castellanos, D. Kramer, W. Karl, Scientific
cloud computing: early definition and experience, in: 10th IEEE International
Conference on High Performance Computing and Communications, HPCC’08,
2008, pp. 825–830.

[28] E. Deelman, G. Singh, M. Livny, B. Berriman, J. Good, The cost of doing
science on the cloud: the Montage example, in: Proceedings of the 2008
ACM/IEEE Conference on Supercomputing, SC’08, Piscataway, NJ, USA, 2008,
pp. 50:1–50:12.

[29] S. Srirama, O. Batrashev, P. Jakovits, E. Vainikko, Scalability of parallel scientific
applications on the cloud, Sci. Program. J. 19 (2–3) (2011) (Special Issue on
Science-Driven Cloud Computing).

[30] M. Parashar, H. Kim, Autonomic management of applications workflows on
hybrid computing infrastructure, Sci. Program. J. 19 (2–3) (2011) (Special Issue
on Science-Driven Cloud Computing).

[31] C. Hoffa, G. Mehta, T. Freeman, et al., On the use of cloud computing for
scientificworkflows, in: eScience, 2008. eScience’08. IEEE Fourth International
Conference on, IEEE, 2008, pp. 640–645.

[32] G. Juve, E. Deelman, K. Vahi, et al., Scientific workflow applications on Amazon
EC2, in: E-Science Workshops, 2009 5th IEEE International Conference on,
IEEE, 2009, pp. 59–66.

[33] G. Juve, E. Deelman, K. Vahi, et al., Data sharing options for scientificworkflows
on Amazon EC2, in: Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and
Analysis, IEEE Computer Society, 2010, pp. 1–9.

[34] G. Juve, M. Rynge, E. Deelman, et al., Comparing FutureGrid, Amazon EC2, and
open science grid for scientific workflows, Comput. Sci. Eng. 15 (4) (2013)
20–29.

[35] L. Ramakrishnan, C. Koelbel, Y.-S. Kee, R. Wolski, D. Nurmi, D. Gannon,
G. Obertelli, A. YarKhan, A. Mandal, T.M. Huang, K. Thyagaraja, D. Zagorodnov,
VGrADS: enabling e-science workflows on grids and clouds with fault
tolerance, in: Proc. Conf. High Performance Computing Networking, Storage
and Analysis, SC’09, No. 47, 2009.

[36] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. Pocock, P. Li, T. Oinn, Taverna:
a tool for building and running workflows of services, Nucleic Acids Res. 34
(Web Server Issue) (2006) 729–732.

[37] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E.A. Lee,
J. Tao, Y. Zhao, Scientific workflow management and the Kepler system,
Concurr. Comput.: Pract. Exper. 18 (10) (2006) 1039–1065 (Special Issue:
Workflow in Grid Systems).

[38] J. Freire, C.T. Silva, S.P. Callahan, E. Santos, C.E. Scheidegger, H.T. Vo, Managing
rapidly-evolving scientific workflows, in: Provenance and Annotation of
Data, in: Lecture Notes in Computer Science, vol. 4145, 2006, pp. 10–18.
http://dx.doi.org/10.1007/11890850_2.

[39] E. Deelman, et al., Pegasus: a framework for mapping complex scientific
workflows onto distributed systems, Sci. Program. 13 (3) (2005) 219–237.

http://hadoop.apache.org/
http://www.OpenNebula.org
http://www.openstack.org
http://refhub.elsevier.com/S0167-739X(14)00217-9/sbref7
http://refhub.elsevier.com/S0167-739X(14)00217-9/sbref10
http://refhub.elsevier.com/S0167-739X(14)00217-9/sbref11
http://refhub.elsevier.com/S0167-739X(14)00217-9/sbref12
http://refhub.elsevier.com/S0167-739X(14)00217-9/sbref21
http://refhub.elsevier.com/S0167-739X(14)00217-9/sbref23
http://refhub.elsevier.com/S0167-739X(14)00217-9/sbref24
http://refhub.elsevier.com/S0167-739X(14)00217-9/sbref29
http://refhub.elsevier.com/S0167-739X(14)00217-9/sbref30
http://refhub.elsevier.com/S0167-739X(14)00217-9/sbref31
http://refhub.elsevier.com/S0167-739X(14)00217-9/sbref32
http://refhub.elsevier.com/S0167-739X(14)00217-9/sbref33
http://refhub.elsevier.com/S0167-739X(14)00217-9/sbref34
http://refhub.elsevier.com/S0167-739X(14)00217-9/sbref36
http://refhub.elsevier.com/S0167-739X(14)00217-9/sbref37
http://dx.doi.org/doi:10.1007/11890850_2
http://refhub.elsevier.com/S0167-739X(14)00217-9/sbref39


14 Y. Zhao et al. / Future Generation Computer Systems ( ) –

[40] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G.v. Laszewski, I. Raicu, T.S. -Praun,
M. Wilde, Swift: fast, reliable, loosely coupled parallel computation, in: IEEE
Workshop on Scientific Workflows 2007, pp. 199–206.

[41] M.Woitaszek, J. Dennis, T. Sines, Parallel high-resolution climate data analysis
using swift, in: 4th Workshop on Many-Task Computing on Grids and
Supercomputers, 2011.

[42] K. Damkliang, P. Tandayya, T. Phusantisampan, et al., Taverna workflow
and supporting service for single nucleotide polymorphisms analysis,
in: Information Management and Engineering, 2009. ICIME’09. International
Conference on, IEEE, 2009, pp. 27–31.

[43] J. Zhang, P. Votava, T.J. Lee, et al., Bridging vistrails scientific workflow
management system to high performance computing, in: Services (SERVICES),
203 IEEE Ninth World Congress on, IEEE, 2013, pp. 29–36.

[44] J. Zhang, Ontology-driven composition and validation of scientific grid
workflows in Kepler: a case study of hyperspectral image processing, in: Grid
and Cooperative Computing Workshops, 2006. GCCW’06. Fifth International
Conference on, IEEE, 2006, pp. 282–289.

[45] M. Islam, A.K. Huang, M. Battisha, et al., Oozie: towards a scalable workflow
management system for hadoop, in: Proceedings of the 1st ACM SIGMOD
Workshop on Scalable Workflow Execution Engines and Technologies, ACM,
2012, p. 4.

[46] M. Janetschek, S. Ostermann, R. Prodan, Bringing scientific workflows to
Amazon SWF, in: Software Engineering and Advanced Applications (SEAA),
2013 39th EUROMICRO Conference on, IEEE, 2013, pp. 389–396.

[47] M. Wilde, I. Foster, K. Iskra, P. Beckman, Z. Zhang, A. Espinosa, M. Hategan,
B. Clifford, I. Raicu, Parallel scripting for applications at the petascale and
beyond, IEEE Comput. 42 (11) (2009) 50–60 (Special Issue on Extreme Scale
Computing).

[48] Y. Zhao, Y. Zhang, W. Tian, R. Xue, C. Lin, Designing and deploying a scientific
computing cloud platform, in: ACM/IEEE 13th International Conference on
Grid Computing, 2012, pp. 104–113.

[49] I. Raicu, Y. Zhao, I. Foster, A. Szalay, Accelerating large-scale data exploration
through data diffusion, in: InternationalWorkshop onData-AwareDistributed
Computing 2008, Co-locate with ACM/IEEE International Symposium High
Performance Distributed Computing, HPDC, 2008, pp. 9–18.

[50] R. Moreno-Vozmediano, R.S. Montero, I.M. Llorente, Multi-cloud deployment
of computing clusters for loosely-coupled MTC applications, IEEE Trans.
Parallel Distrib. Syst. 22 (6) (2011) 924–930.

[51] R.S. Montero, R. Moreno-Vozmediano, I.M. Llorente, An elasticity model for
high throughput computing clusters, J. Parallel Distrib. Comput. 71 (6) (2011)
750–757.

[52] I. Raicu, Y. Zhao, C. Dumitrescu, et al. Dynamic resource provisioning in grid
environments, 2007.

[53] I. Raicu, I.T. Foster, Y. Zhao, et al., The quest for scalable support of data-
intensive workloads in distributed systems, in: Proceedings of the 18th ACM
International Symposium on High Performance Distributed Computing, ACM,
2009, pp. 207–216.

[54] NASA MODIS dataset, 2014 [Online]. Available: http://modis.gsfc.nasa.gov/.
[55] Work-stealing strategies technical report, 2014 [Online]. Available: http://

www.cloud-uestc.cn/projects/serviceframework/resource/documents/
technical-report_work-stealing.pdf.

[56] P. Ruth, A. Mandal, Y. Xin, et al., Dynamic network provisioning for data
intensive applications in the cloud, in: E-Science (e-Science), 2012 IEEE 8th
International Conference on, IEEE, 2012, pp. 1–2.

Yong Zhao is a professor at the School of Computer
Science and Engineering, University of Electronic Science
and Technology of China. Before joining the university, he
worked at Microsoft on Business Intelligence projects that
leveraged Cloud storage and computing infrastructure.
He obtained his Ph.D. in Computer Science from the
University of Chicago under Dr. Ian Foster’s supervision.
He has published more than 30 papers in top journals
and conferences, which are referenced more than 2000
times by other scholars and researchers. His research areas
are in cloud computing, many-task computing and data

intensive computing. He is a member of ACM, IEEE and CCF.

Youfu Li is a graduate student with the School of Com-
puter Science and Engineering, University of Electronic
Science and Technology of China. His research interest is in
Cloud computing, scientificworkflows and real-time com-
puting. He is a student member of the IEEE.

Ioan Raicu is an assistant professor in the Department
of Computer Science at Illinois Institute of Technology, as
well as a guest research faculty in theMaths and Computer
Science Division at Argonne National Laboratory (ANL).
He has received the prestigious NSF CAREER award
(2011–2015) for his innovative work on distributed file
systems for exascale computing. He obtained his Ph.D. in
Computer Science from the University of Chicago under
the guidance of Dr. Ian Foster in March 2009. He is
particularly interested in resource management in large
scale distributed systems with a focus on many-task

computing, data intensive computing, cloud computing, grid computing, andmany-
core computing. He is a member of the IEEE and ACM.

Shiyong Lu is an associate professor in the Department
of Computer Science at Wayne State University and the
Director of the Big Data Research Laboratory. He received
his Ph.D. in Computer Science from Stony BrookUniversity
in 2002. His research focuses on big data, scientific
workflows, and data mining. He is an author of two books
and over 100 papers. He is the founding chair of IEEE
International Symposium of Scientific Workflows and Big
Data Science since 2007. He is a Co-Editor-in-Chief of the
International Journal of Cloud Computing and Services
Science. He is a senior member of the IEEE.

Wenhong Tian is an associate professor at the School
of Computer Science and Engineering, University of Elec-
tronic Science and Technology of China, Chengdu, China.
His research interest is in resource management and
scheduling in Cloud datacenters. He is a member of the
IEEE.

Heng Liu is a student with the School of Computer Science
and Engineering, University of Electronic Science and
Technology of China. His research interest is in Cloud
computing and Big Data.

http://refhub.elsevier.com/S0167-739X(14)00217-9/sbref42
http://refhub.elsevier.com/S0167-739X(14)00217-9/sbref43
http://refhub.elsevier.com/S0167-739X(14)00217-9/sbref44
http://refhub.elsevier.com/S0167-739X(14)00217-9/sbref45
http://refhub.elsevier.com/S0167-739X(14)00217-9/sbref46
http://refhub.elsevier.com/S0167-739X(14)00217-9/sbref47
http://refhub.elsevier.com/S0167-739X(14)00217-9/sbref50
http://refhub.elsevier.com/S0167-739X(14)00217-9/sbref51
http://refhub.elsevier.com/S0167-739X(14)00217-9/sbref53
http://modis.gsfc.nasa.gov/
http://www.cloud-uestc.cn/projects/serviceframework/resource/documents/technical-report_work-stealing.pdf
http://www.cloud-uestc.cn/projects/serviceframework/resource/documents/technical-report_work-stealing.pdf
http://www.cloud-uestc.cn/projects/serviceframework/resource/documents/technical-report_work-stealing.pdf
http://www.cloud-uestc.cn/projects/serviceframework/resource/documents/technical-report_work-stealing.pdf
http://www.cloud-uestc.cn/projects/serviceframework/resource/documents/technical-report_work-stealing.pdf
http://www.cloud-uestc.cn/projects/serviceframework/resource/documents/technical-report_work-stealing.pdf
http://www.cloud-uestc.cn/projects/serviceframework/resource/documents/technical-report_work-stealing.pdf
http://www.cloud-uestc.cn/projects/serviceframework/resource/documents/technical-report_work-stealing.pdf
http://www.cloud-uestc.cn/projects/serviceframework/resource/documents/technical-report_work-stealing.pdf
http://www.cloud-uestc.cn/projects/serviceframework/resource/documents/technical-report_work-stealing.pdf
http://www.cloud-uestc.cn/projects/serviceframework/resource/documents/technical-report_work-stealing.pdf
http://refhub.elsevier.com/S0167-739X(14)00217-9/sbref56

	Enabling scalable scientific workflow management in the Cloud
	Introduction
	Challenges
	Architectural challenges
	Integration challenges
	Computing challenges
	Security challenges
	Mapping VIEW and Swift into the reference architecture
	The VIEW workflow management system
	The Swift workflow management system


	Related work
	Integration framework
	Service framework
	The integration framework
	The OpenNebula Cloud platform
	Key components
	The Client Submission Tool
	The Cloud workflow management service
	The Cloud Resource Manager

	Discussion

	Performance evaluation
	The MODIS image processing workflow
	Serial submission
	Varying the data blocks

	Eucalyptus experiments
	Experiment configuration
	Framework overhead evaluation

	Amazon EC2 experiments
	The montage image mosaic workflow
	Application evaluation


	On-going work and research directions
	Conclusions
	Acknowledgments
	References


