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1. INTRODUCTION
Today’s science is generating significantly larger volume

of data than before. Data compression can potentially im-
prove application performance. However, in many scientific
applications and especially in large scale parallel scientific
applications, each process often just accesses parts of the
data. This can result in some data that are decompressed by
a process but not used. General compression libraries (e.g.
LZO [1], bzip2 [2] and zlib [3]) do not consider chunk size in
the context of parallel and distributed file systems. Index-
ing is a widely used technique for online scientific encoding
and query e.g. [4–6], even though it would not yield a high
compression ratio for large chunks. Some mechanisms [7–9]
were proposed by providing user level libraries, indicating
the application developers need to modify the application
and/or the high-level library.

We propose two techniques to leverage compression to im-
prove the performance of large scale parallel applications.
First, we enable decompression from the middle of the chunk
and stop decompression after we extract the data that we
need, which eliminates the overhead of decompressing the
data that is not needed by the process. Second, we build
compression into the parallel file system which allows caching
and prefeteching to be seamlessly integrated and allows ap-
plications to transparently leverage compression. Caching
decompressed data allows the data to be accessed in later
points.

2. METHOD
The procedure to compress a file is described in Algo-

rithm 1. We assume the file content could be split into a
logical array. The first phase of the compression algorithm is
to convert the original data entries to increments by XORing
every pairs of neighbor entries in the original file, as shown
in Lines 2 - 4. The number of leading zeros is stored in the
first 5 bits of the encoded data (more details in [7]). The
second phase is to append P reference points to the end of
the compressed file, as shown in Lines 6 - 8.

The decompression is described in Algorithm 2. The near-
est upper reference point is located as IDX at Line 3, and
GAP indicates the distance between the user-requested start-
ing address and the reference point. Lines 5 - 8 restores the
original data points by incrementally XORing from the ref-
erence point.

We will show how many reference points to pick for to
achieve the optimal end-to-end throughput. Here, by “end-
to-end”, we consider the overall I/O time for compression
(when write) and decompression (when read) in the worst

Algorithm 1 Compress a file

Require: F d is the original file to be compressed; F e is
the name of the compressed file; P is the number of
partitions to be applied to the original file

Ensure: F e could be used to recover the content of F d

1: SIZE = F d.size()
2: for (int i = 1; i < SIZE; i++) do
3: F e[i] = F d[i] xor F d[i - 1]
4: end for
5: BS = SIZE / P
6: for (int j = SIZE; j <= SIZE + P; j++) do
7: F e[j] = F d[BS * (j - SIZE)]
8: end for

Algorithm 2 Decompress a (portion of) file

Require: F e is the encoded file to be decompressed; F d−

is the decompressed data for the chunks to be decom-
pressed; P is the number of partitions to be applied to
the original file; BASE is the starting point from where
to decompress; LEN denotes the number of data entries
to be decompressed

Ensure: F d− is identical to same portion of the original file
1: SIZE = F e.size() - P
2: BS = SIZE / P
3: IDX = BASE / BS
4: GAP = BASE % BS
5: F d−[0] = F e[SIZE + IDX]
6: for (int i = 1; i < GAP + LEN; i++) do
7: F d−[i] = F d−[i - 1] xor F e[BASE - GAP + i]
8: end for

case (e.g. reading the last record).

Table 1: Terminology
Variable Description

Br Read Bandwidth
Bw Write Bandwidth
S File Size
N Number of Data Entries
R Number of Reference Points

We define the variables in Table 1. The overhead to write
the extra R reference points is

Tcompress =
R · S
N ·Bw

,



and we would save the following time in decompression:

Tdecompress =
S − S/R

Br
.

Now, to maximize F (R) = Tdecompress − Tcompress. By tak-
ing the derivative on R (suppose R is continuous) we have

R̂ =

√
N ·Bw

Br
.

Note that the second derivative of F (R) is negative and R
is a non-negative integer, so the optimal R is:

arg max
R

F (R) =

{
bR̂c if F (bR̂c) > F (dR̂e)
dR̂e otherwise

3. DESIGN AND IMPLEMENTATION
We designed a user-level filesystem prototype called Multi-

Reference Compression FileSystem (MRC-FS) with a trans-
parent compression/decompression layer. It leveraged the
FUSE [10] framework, and mounted each local compute
node to the remote GPFS [11] filesystem. The system was
implemented in about 3,000 lines of C/C++ code and Shell
script. The compression algorithm was implemented in the
mrc write() interface, that is the handler for catching the
write system calls in MRC-FS. mrc write() compressed the
raw data, cached it in the memory if possible, and wrote the
compressed data into the filesystem. The decompression al-
gorithm was implemented in the mrc read() interface, sim-
ilarly. When a read request came in, this function loaded
the compressed data (either from the cache or the disk) into
memory, applied the decompression algorithm to the com-
pressed data and passed the result to the end users.

4. EVALUATION
We evaluated the system on the IBM BlueGene/P su-

percomputer. We used up to 256 compute nodes (1024-
core), each of which has a FUSE mount point to the re-
mote GPFS file system of 128 storage nodes. The dataset
is 244.25GB of climate data from the high-resolution Global
Cloud-Resolving Model (GCRM).

The throughput when enabling the compression layer
is about 1.37X faster than the original data, when tested
with 1 – 2000 reference points. The overhead introduced by
the compression layer is smaller than 10%. We measured
the total I/O time from compressing the entire data set to
retrieving the latest (i.e. the last one to be compressed)
temperature. This is supposed to be the worst case I/O
time. We observed that a single reference point improved
the I/O time from 748 seconds to 501 seconds, and multiple
reference points (200 – 2000) further improved the I/O time
to below 348 seconds. We finally ran a real application
MMAT that calculated the minimal, maximal and average
temperatures on the GCRM dataset, when compressing the
data with R = 800 and the raw data. The former case re-
sulted in a 180.97

146.45
= 1.24X speedup on the overall execution

time.

5. CONCLUSION AND FUTURE WORK
We proposed a new compression mechanism particularly

for scientific data with high compression ratio and low com-
putation overhead. We implemented the compression layer

at the filesystem level that significantly improved the end-
to-end I/O throughput.

We are planning to apply MRC to HyCache [12, 13] to
further improve the caching effect for distributed file sys-
tems in general. Particularly, we will integrate MRC into
FusionFS [14, 15], which is a new distributed file system tar-
geting exascale [16] with unique features such as distributed
metadata [17], high reliability through erasure coding [18],
and efficient data provenance [19, 20].
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