
SimMatrix: SIMulator for MAny-Task computing execution fabRIc at eXascale

Ke Wang
†
, Kevin Brandstatter

†
, Ioan Raicu

†‡

†
Department of Computer Science, Illinois Institute of Technology, Chicago IL, USA

‡
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne IL, USA

kwang22@hawk.iit.edu, kbrandst@hawk.iit.edu, iraicu@cs.iit.edu

Keywords: Exascale, many-task computing, discrete event

simulation, scheduling

Abstract

 Exascale computers (expected to be composed of

millions of nodes and billions of threads of execution) will

enable the unraveling of significant scientific mysteries.

Many-task computing is a distributed paradigm, which can

potentially address three of the four major challenges of

exascale computing, namely Memory/Storage,

Concurrency/Locality, and Resiliency. Exascale computing

will require efficient job scheduling/management systems

that are several orders of magnitude beyond the state-of-the-

art, which tend to have centralized architecture and are

relatively heavy-weight. This paper proposes a light-weight

discrete event simulator, SimMatrix, which simulates job

scheduling system comprising of millions of nodes and

billions of cores/tasks. SimMatrix supports both centralized

(e.g. first-in-first-out) and distributed (e.g. work stealing)

scheduling. We validated SimMatrix against two real

systems, Falkon and MATRIX, with up to 4K-cores,

running on an IBM Blue Gene/P system, and compared

SimMatrix with SimGrid and GridSim in terms of resource

consumption at scale. Results show that SimMatrix

consumes up to two-orders of magnitude lower memory per

task, and at least one-order of magnitude (and up to four-

orders of magnitude) lower time per task overheads. For

example, running a workload of 10 billion tasks on 1

million nodes and 1 billion cores required 142GB memory

and 163 CPU-hours. These relatively low costs at exascale

levels of concurrency will lead to innovative studies in

scheduling algorithms at unprecedented scales.

1. INTRODUCTION

 There are many domains (e.g. weather modeling,

national security, energy) that will achieve revolutionary

advancements due to exascale computing. Predictions are

that by the end of the decade, supercomputers will reach

exascale with millions of nodes and billions of threads of

execution [1]. The era of exascale computing will bring

fundamental challenges in how we build computing systems

and hardware, how we manage and program them. The

techniques designed decades ago will have to be

dramatically changed to support the coming extreme-scale

general purpose parallel computing. The four most

significant challenges of exascale computing are: Energy

and Power; Memory and Storage; Concurrency and Locality

[33]; Resiliency [1]. One attempt to address these challenges

is to take a radically different approach to the traditional

HPC/MPI [2] programming paradigm, which is usually the

source of these challenges. For example, many HPC

applications use MPI for synchronous communication,

making it hard to be resilient in face of a decreasing MTTF

[3]. Checkpointing (the state-of-the-art mechanism to make

HPC systems reliable) is increasingly less effective with

larger systems for HPC [42]. One alternate programming

model to HPC is Many-Task Computing (MTC) [4][38].

 MTC [4] was introduced to describe a class of

applications that did not fit easily into the categories of

traditional HPC or HTC [41]; many such applications can

be found in astronomy [35], medicine [6], biology [6], and

many others. Many MTC applications are structured as

graphs of discrete tasks, with explicit input and output

dependencies forming the graph edges. Tasks may be small

or large, uniprocessor or multiprocessor, compute-intensive

or data-intensive [39]. The set of tasks may be static or

dynamic, homogeneous or heterogeneous, loosely coupled

or tightly coupled. For many applications, a graph of

distinct tasks is a natural way to conceptualize the

computation and build the application [4]. MTC can address

three of the four major challenges (except for Energy and

Power) of exascale computing. It offers better resiliency

than HPC due to the asynchronous nature, which makes task

level checkpointing easy, and failures only affect the tasks

running on the failed nodes. Concurrency can be addressed

more transparently, based on the data-flow model, as

opposed to coded explicit parallelism by expert

programmers of HPC. In order to address the challenges,

MTC needs scalable storage systems to achieve

asynchronous inter-process communication, and job

management systems to handle billions of jobs/tasks [3].

 With exascale computing, we expect that job

management systems (JMS) will have to be much more

scalable and flexible to handle both HPC and MTC

applications in order to achieve the highest job throughput,

system utilization and load balancing. Scalability of JMS

refers to the increasing of processing capacity (measured by

throughput) as the workload (number of tasks) and

computing resources scale. Research about real JMSs is

impossible at exascale, because not only we lack the

exascale computers, but the experimental results obtained

from the real-world platforms are often irreproducible due

to resource dynamics [7]. Therefore, we fall back to

simulations to study various JMS architectures and

algorithms. Simulations have been used extensively as an

efficient method to achieve reliable results in several areas

of computer science for decades, such as microprocessor

design, network protocol design, and scheduling. Discrete

event simulation (DES) [8] utilizes a mathematical model of

a physical system to portray state changes at precise

simulated time. In DES, the operations of a system are

represented as a chronological sequence of events. A

variation of DES is parallel DES (PDES) [9], which takes

advantage of the many-core architecture to access larger

amount of memory and processor capacities, and to be able

to handle even more complex systems in less end-to-end

time. However, PDES adds significant complexity to the

simulations, adds consistency challenges, requires more

expensive hardware, and often does not have linear

scalability as resources are increased.

 This paper proposes a light-weight and scalable discrete

event simulator, SimMatrix, which simulates job scheduling

system comprising of millions of nodes and billions of

cores/tasks (tasks and jobs are used interchangeably

throughout the paper). Careful consideration was given to

the SimMatrix architecture, to ensure that it would scale to

exascale levels on modest resources in a single node shared

memory system. We compare SimMatrix with two existing

simulators, SimGrid [10] and GridSim [11] in terms of

resource (time and memory) consumption with scales. We

design, architect and implement SimMatrix. It supports both

centralized (e.g. first-in-first-out or FIFO) and distributed

(e.g. work stealing) scheduling. The main contributions of

this paper are:
1. Design and implementation of the SimMatrix simulator

2. Performance evaluation between SimMatrix, SimGrid

and GridSim; evaluation done up to millions of nodes,

billions of cores, and tens of billions of tasks

3. Supports of homogenous/heterogeneous systems, various

programming models (HPC/MTC/HTC), and scheduling

strategies (centralized/distributed/hierarchical)

 The rest of the paper is organized as follows. Section 2

gives the related work. Section 3 presents the SimMatrix

architectures, the design and implementation details. Section

4 shows the evaluation and experimental results of

SimMatrix, and the comparison with SimGrid and GridSim.

Section 5 covers the conclusions and future work.

2. RELATED WORK

 A lot of real JMSs have been developed. Condor [12]

was developed as one of the earliest JMSs, to harness the

unused CPU cycles on workstations for long-running batch

jobs. Portable Batch System (PBS) [13] was originally

developed at NASA Ames to address the needs of HPC,

which is a highly configurable product that manages batch

and inter-active jobs, and adds the ability to signal, rerun

and alter jobs. LSF Batch [14] is the load-sharing and batch-

queuing component of a set of workload-management tools.

All of these systems are designed for either HPC or HTC

workloads, and generally have high scheduling overheads.

Other JMSs, such as Cobalt [15], typically used on

supercomputers (e.g. IBM Blue Gene systems [16]), lack the

granularity of scheduling jobs at node/core level. Falkon

[17], a light-weight task execution framework, was

developed specifically for MTC applications. Falkon also

has a centralized architecture, and although it scaled and

performed orders of magnitude better than the state-of-the-

art JMS, it did not even scale to petascale systems. A naïve

hierarchical implementation of Falkon was shown to scale

to a petascale system in [5], however, the approach taken by

Falkon suffered from poor load balancing under failures,

high variance and unpredictability of task execution times.

 Simulators for distributed systems have been developed

over past decades, such as SimGrid [10], GridSim [11],

SimJava [18]. SimGrid is a joint project staring from 1999,

which now uses PDES and claims to have 2M nodes’

scalability. However, it has consistency challenge and is

unpredictable. It is neither suitable to run exascale MTC

applications, due to the complex parallelism. GridSim is

developed based on SimJava, which use multi-threading

with one thread per simulated element (cluster), making

them impossible to reach extreme scales of millions nodes

or billions of cores on a single shared-memory system.

3. SIMMATRIX SIMULATOR

 This section describes the SimMatrix architectures

(Figure 1), and the design and implementation details. The

software is released as open source software [19]. For

simplicity, we assign consecutive integer numbers as the

node ids, ranging from 0 to the number of nodes N-1.

Figure 1: SimMatrix architectures for both centralized (left) and

distributed (right) scheduling
 SimMatrix supports the granularity of scheduling at the

node/core level at extreme scales. The system could be

centralized (Figure 1 left part), where a single dispatcher

maintains a task queue and manages the task submission,

task assignment, and task execution state updates. It could

also be distributed (Figure 1 right part), where each

computing node maintains a task execution framework, and

they cooperate with each other to achieve load balancing.

The centralized approach suffers scalability, due to its

limited processing capacity at a single node (typically called

the head node). We believe that distributed scheduling with

innovative load balancing techniques (e.g. work stealing) is

the approach to exascale. Another one is the hierarchical

architecture, where several dispatchers are organized in a

tree-based topology. SimMatrix could be easily extended to

support hierarchical scheduling.

3.1. Centralized Scheduler

 In centralized scheduler, a dispatcher maintains a task

queue and manages the task submission, task assignment,

and task execution state updates. All tasks are submitted to

the dispatcher, which then assigns tasks to the first available

node using FIFO policy [20]. None of the compute nodes

have task waiting queues. If all cores are occupied, the

dispatcher will wait until some tasks are finished. Then it

sends tasks again to the nodes that have idle cores. This

procedure continues until all the tasks have been finished.

3.1.1. Task Description

 Each task can be described with various attributes, such

as task length (the time taken to complete the task), task

cores (the number of cores required to execute the task),

task size (data size required by the task), and task

timestamps (submission time, start time, end time). We

expect that some other higher level system is managing all

the task dependencies, such as some parallel programming

system (e.g. Swift [5][21][37], Charm++ [22]). Future work

will also investigate the support of task dependency to

evaluate the feasibility of distributed workflow engine

approaches, as it applies to grids [34][36], clouds [40], and

supercomputers [5].

3.1.2. Global Event Queue

 Before settling on SimMatrix being a DES, we explored

how many threads could be supported under Java, and found

on our 48-core system with 256GB of memory, 32K threads

is the upper bound. Since it was not feasible for us to run

1M threads in Java (or C/C++ which we also explored), we

decided on creating an object per simulated node. Any

behavior is converted to an event, and all events are put in a

global event queue, and sorted based on the occurrence time.

We advance the simulation time to the occurrence time of

the first event removed from the queue. The events are:

 a) TaskEnd: Signals a task completion event (frees a

processing core). The scheduler advances to the next task to

schedule. The compute node (with the available core) will

wait for the dispatcher to assign more tasks.

 b) Submission: Client submits tasks to the dispatcher,

triggered when the waiting queue length in the dispatcher is

below the threshold.

 c) Log: Signals the record writing to a summary log

file, including the information such as the simulation time,

number of all cores, number of executing cores, waiting

queue length, instant throughput, etc.

 The performance of the event queue is central to that of

the simulator. It has to be scalable to many events (billions),

and be subjected to frequent updates, which re-order the

queue. We use the TreeSet [23] data structure in Java. It is a

set of elements ordered using their natural ordering, or by a

comparator provided at set creation time. In SimMatrix, it is

ordered by a comparator based on the event occurrence time,

along with the event Id (if events have the same occurrence

time). The TreeSet is implemented based on Red-Black tree

[24], which guarantees Θ(log n) time for removing and

inserting, and Θ(1) time for getting the first event.

3.1.3. Node Load Information

 The load of a node is the number of busy cores ranging

from 0 to the number of cores. The dispatcher can access the

load information continuously as long as there are waiting

tasks. If we were to naively go through all the nodes to get

the load information, the simulator would be inefficient

when the number of nodes is large (e.g. 1 million).

 We implement the load information using a Hash Map

[25]. The “Keys” are the node loads (from 0 to number of

cores), while the “Value” is a hash set, which contains the

node ids whose loads are all equal to the “Key”. This means

that nodes in the simulator are grouped together in

containers that have similar load. Each time when the

dispatcher wants to assign some tasks to a node, it goes

through all the node load containers sequentially, finds the

first set of nodes, which have idle cores (load is less than the

number of cores), and then assigns tasks to all the nodes in a

FIFO pattern. As the number of cores per node is relatively

small (e.g. 1000 cores), we consider this lookup operation

taking Θ(c) time, where c is the number of cores of a node,

and c<=1000. Once the right load level is identified,

inserting, getting or removing an element in the nested hash

set only takes Θ(1) time. This nested data-structure helped

reduce the time complexity by orders of magnitude, from a

Θ(n) (n is the number of nodes) to Θ(c*1) for one

dispatching, and allowed the simulator to run orders of

magnitude faster at exascale.

3.1.4. Dynamic Task Submission

 Although SimMatrix supports the submission of a static

set of tasks (predefined in some workload file, or by some

workload generator), SimMatrix also supports dynamic task

submission which allows task submission throttling to limit

the memory foot print of the simulator to only the active

tasks. Essentially, the simulator can limit the number of

submitted tasks based on the number of waiting tasks and

some predefined threshold.

3.2. Distributed Scheduler

 One of the major motivations to architect and

implement SimMatrix was to study different distributed

scheduling algorithms and techniques at extremely large

scales, assuming that centralized schedulers would not scale

to exascale levels. This section describes the distributed

scheduler, which uses a distributed load balancing approach

called Work Stealing [26] (in which, processors needing

work steal computational tasks from other processors).

Work stealing is a distributed load balancing technique that

has been used successfully in parallel languages such as

Cilk [27], to load balance threads on shared memory parallel

machines. With work stealing, each node has task waiting

queue and could steal/dispatch tasks from/to its neighbors.

The work stealing algorithm and how to choose the

optimized work stealing parameters are out of the scope of

this paper and the subject of future work. This paper focuses

on the design and implementation of the simulator

SimMatrix. The distributed scheduler share common

features with the centralized one, such as task description

and dynamic task submission.

 Tasks are submitted to any arbitrary node. For

simplicity, we let the clients submit tasks to the first node

(id = 0). This is the worst scenario from a load balancing

perspective. The best case would be if the original clients

submitted tasks randomly over all compute nodes in a load

balancing fashion (e.g. uniform random, modular). Every

node has a global knowledge of all other nodes in the

system (membership list), a dedicated task waiting queue,

and several neighbors to communicate with. Figure 1 (right

part) shows a fully connected homogeneous topology. All

nodes have the same amount of neighbors and cores; in this

example, the neighbors of a node are just its several left and

right nodes with consecutive ids, we call this schema as the

static neighbor selection. Also, our simulator allows

dynamic random neighbor selection, which means every

time when doing work stealing, a node selects several

neighbors randomly from the membership list.

 When a node has no waiting tasks, it will ask the load

information (the number of waiting tasks minus the number

of idle cores) of all the neighbors in turn, and try to steal

tasks from the heaviest loaded one. When a node receives a

load information request, it will send its load information to

the calling neighbor. If a node receives work stealing

request, it then checks its task waiting queue, if which is not

empty, the node will send some tasks to the neighbor, or it

will send information to signal a steal failure. When a node

fails to steal tasks, it will wait some time, referred to as the

poll interval, and then try again. The termination condition

is that all the tasks submitted by client are finished. We do

this by setting a global counter, which can be read by all

simulated nodes to signal the termination of the simulation.

3.2.1. Global Event Queue

 Our distributed scheduler also has a global event queue,

which has the same implementation as that of the

centralized one. This global event queue allows the

simulator to be implemented in a relatively straightforward

manner, easing the implementation, tuning, and debugging.

The trade-off is perhaps the limited concurrency. However,

as we will show in section 4, even with this design

architecture, we have been able to significantly outperform

several other simulators. The events are:

 a) TaskEnd: Signals a task completion event. The

compute node starts to execute another task (if its task

waiting queue isn’t empty) by inserting another ‘TaskEnd’

event, or steal tasks from its neighbors. Or, if it is the first

node and its waiting queue length is below the threshold, a

‘TaskReception’ event will be triggered on the client’s side.

 b) Log: The same as the centralized scheduler.

 c) Steal: Signals the work stealing algorithm to

invoke the steal operation. First, the node asks for the load

information of its neighbors in turn, and then selects the

most loaded one to steal tasks by inserting a ‘TaskReception’

event. If all neighbors have no tasks, the node will wait for

some time to ‘Steal’ again.

 d) TaskDispatch: Dispatch tasks to a neighbor. If at

the current time, the node happens to have no tasks, it will

inform the neighbor to steal tasks again, by inserting a ‘Steal’

event from the neighbor. Else, the node dispatches a part

(e.g. half) of its waiting tasks to the neighbor by inserting a

‘TaskReception’ event from that neighbor.

 e) TaskReception: Signals the receiving node to

increase the length of task waiting queue. The task received

could be from the client, or from a neighbor.

 f) Visualization: It is used as an event to visualize

the load information of all nodes.

Log
Visual

Steal

Available

cores

H
as

 ta
sk

s

First node needs

m
ore tasks

Global Event Queue

S
o

rte
d

 b
y
 tim

e

Insert Event(time:t)

No waiting tasks

TaskEnd

Has Waiting

Tasks and

available cores

Failed

N
o

Tas
ks

D
is

p
a
tc

h

ta
sk

s

TaskRec

TaskDispStart

First node

needs tasks

Figure 2: Event State Transition Digram

 The state transition diagram of all the events are shown

in Figure 2, where each state is an event that is executed, the

next state is the event to be inserted in the event queue

signaled after finishing the current event. For example, if the

current event is “TaskEnd”, meaning that a node finishes a

task and has one more available core. If the node has

waiting tasks, it will insert another “TaskEnd” event for the

available core; otherwise, it will steal tasks from neighbors.

Or if current node is the first node, and needs more tasks, it

will ask the clients to submit more tasks.

3.2.2. Work Stealing Poll Interval

 We implement a dynamic poll interval policy in order

to achieve reasonable simulation performance while still

keeping the work stealing algorithm responsive. Without

this policy, we observed that under idle conditions, many

nodes would poll neighbors to do work stealing, which

would ultimately fail leading to more work stealing requests.

If the polling interval was set large enough to limit the

number of work steal events, work stealing would not

respond quickly to change conditions. Therefore, we change

the poll interval of an idle node dynamically by doubling it

when all of the neighbors have no tasks, and setting it back

to the default small value whenever it steals some tasks

successfully. This algorithm is similar to the exponential

backoff approach in the TCP networking protocol [28]. We

set the default poll interval to be small value (e.g. 1 sec).

4. EVALUATION

 This section presents the validation of SimMatrix

against Falkon [17] (a centralized light-weight job

management system), and MATRIX [19] (a distributed

scheduler built on top of a distributed hash table ZHT [43]),

the experimental results showing the resource requirement

of SimMatrix with scales, plus the comparisons between

SimMatrix, SimGrid and GridSim. All experiments are

performed on fusion.cs.iit.edu, which boasts 48 AMD

Opteron cores at 800MHz, 256GB RAM, and a 64-bit Linux

kernel 2.6.31.5. SimMatrix is developed in JAVA and has

no other dependencies. The metrics we use to evaluate the

performance of SimMatrix are throughput (number of tasks

finished per second) and efficiency (the ratio between the

ideal simulation time of completing a given workload and

the real simulation time. The ideal simulation time is

calculated by taking the average task execution time

multiplied by the number of tasks per core). We have two

workloads used in this paper:

 a) AVE_5K: The average task length is 5000 seconds

(0 - 10000), with uniform distribution

 b) ALL_1: All tasks have 1-second length

4.1. Validation

 We validated SimMatrix against the state-of-the-art

MTC systems (e.g. Falkon [17] and MATRIX [19]). The

validation results are shown in Figure 3 (with Falkon), and

Figure 4 (with MATRIX).

 We set the number of cores per node to be 4, and the

network bandwidth and latency the same as the case of Blue

Gene/P machine. The number of tasks is 10 task/core and

100 task/core for Falkon and MATRIX respectively. We

measured SimMatrix (dotted lines) has an average 2.8%

higher efficiency than Falkon (solid lines) for several sleep

tasks (sleep 1, 2 and 4) in Figure 3. Figure 4 shows the

validation results comparing SimMatrix and MATRIX for

raw throughput on a “sleep 0” workload. The simulation

matched the real performance data with average 5.85%

normalized difference (abs(SimMatrix - MATRIX) /

SimMatrix), a relatively small amount of error.

Figure 3: Validation of SimMatrix against Falkon up to 2K cores

Figure 4: Validation of SimMatrix against MATRIX up to 4K cores

 The reasons for these differences are twofold. Falkon

and MATRIX are real complex systems deployed on a real

supercomputer. Our simulator makes simplifying

assumptions, such as the network; for example, we increase

the communication overhead linearly with the system scale.

It is also difficult to model communication congestion,

resource sharing and the effects on performance, and the

variability that comes with real systems. We believe the

relatively small differences (2.8% and 5.85%) demonstrate

that SimMatrix is accurate enough to produce convincible

results (at least at modest scales).

4.2. Resource Requirement of SimMatrix

 In this section, we show the resource requirement (time

and memory consumption) of SimMatrix with scales for

both centralized and distributed simulators in Figure 5. The

AVE_5K workload is used. We set the number of cores per

2.0% 3.6% 2.9% 2.7%

0%

20%

40%

60%

80%

100%

256 512 1024 2048

E
ff

ic
ie

n
c
y

Scale (No. of Cores)

1 sec (Falkon) 1 sec (SimMatrix)

2 sec (Falkon) 2 sec (SimMatrix)

4 sec (Falkon) 4 sec (SimMatrix)

Average Difference

3.96% 4.71%

3.70%
4.95%

11.93%

0%

10%

20%

30%

40%

50%

60%

70%

0

2000

4000

6000

8000

10000

12000

14000

256 512 1024 2048 4096

D
if

fe
re

n
c

e

T
h

ro
u

g
h

p
u

t
(t

a
s
k

/s
e
c

)

Scale (No. of Cores)

sleep 0 (Matrix)

sleep 0 (SimMatrix)

Normalized Difference

node to be 1000, and the network bandwidth and latency the

same as the case of Blue Gene/P machine. The number of

tasks is 10 tasks/core. From this point, all experiments have

the same configuration.

 Figure 5 shows that both the time and memory

consumptions increase slowly than the system scale (less

than double when the system scale doubles), which means

that our simulations are resource efficient. At exascale with

1M nodes, 1 billion cores and 10 billion tasks, the

centralized simulator consumes just 14.1GB memory, 17.4

hours, and the distributed simulator needs about 142.1GB

memory, 162.8 hours (still moderate considering the

extreme scale). These relatively low costs at exascale levels

of concurrency will lead to innovative studies in scheduling

algorithms at unprecedented scales.

Figure 5: Time and memory of SimMatrix up to 1M nodes

4.3. Centralized vs. Distributed Scheduling

 We compare the centralized and distributed schedulers,

in terms of system efficiency and throughput. We do two

groups of experiments. The first uses the AVE_5K

workload, and the second uses ALL_1, for both schedulers.

The results are shown in Figure 6 and Figure 7.

 We see that for AVE_5K, before 8K nodes, both the

centralized and distributed schedulers have the efficiency

higher than 95%. However, after that, the centralized

scheduler drops its efficiency by half until almost 0 up to

1M nodes, and saturates the throughput of about 1000

task/sec (due to 1ms process time of the dispatcher derived

from Falkon) as the system scale doubles. On the other hand,

the distributed scheduler has efficiency of 90%+ with nearly

perfect scale-up to 1M nodes, where the throughput doubles

as the system scale doubles, up to 174K tasks/sec.

 For ALL_1, the centralized scheduling saturates at

about 8 nodes with upper bound throughput of about 1000

tasks/sec, while the distributed one slows down the

increasing speed after 128K nodes with throughput of about

60M tasks/sec; it finally reaches 1M nodes with a

throughput of 75M tasks/sec. The reason that the distributed

scheduler begins to saturate at 128K nodes is because at the

final stage when there is not much tasks, work stealing

requires too many messages (because almost all nodes are

out of tasks leading to more work staling events) as the

system scales up, to the point where the number of messages

is saturating either the network and/or processing capacity.

After 128K nodes, the number of messages per task

increases exponentially. One way to address this message

chocking at large scales is to set an upper bound of the poll

interval. When a node reaches the upper bound, it would not

do work stealing anymore. In addition, we believe that

having sufficiently long tasks to amortize the cost of this

many messages would be critical to achieve good efficiency

at exascale. With an upper bound of 75M tasks/sec, the

distributed scheduler could handle workloads that have an

average length of at least 14 seconds with 90%+ efficiency.

It is worth noting that the largest trace of MTC workloads

[29][30] has shown MTC tasks to be on average 64 sec

average length.

Figure 6: Efficiency of centralized and distributed scheduling (AV_5K)

Figure 7: Throughput of centralized and distributed scheduling

4.4. SimMatrix vs. SimGrid and GridSim

 We compare SimMatrix with SimGrid and GridSim, in

terms of resource requirement per task with scales. As

0.1

1

10

100

1000

0.0001

0.001

0.01

0.1

1

10

100

1000

1 4 16

64

25
6

10
24

40
96

16
38

4

65
53

6

26
21

44

10
48

57
6

M
o

m
o

ry
 (

G
B

)

T
im

e
 (

H
o

u
r)

Scale (No. of Nodes)

Time (Centralized) Time (Distributed)

Memory (Centralized) Memory (Distributed)

0%

20%

40%

60%

80%

100%

1 4 16

64

25
6

10
24

40
96

16
38

4

65
53

6

26
21

44

10
48

57
6

E
ff

ic
ie

n
c
y

Scale (No. of Nodes)

AVE_5K (Centralized)

AVE_5K (Distributed)

0.125

8

512

32768

2097152

134217728

1 4 16

64

25
6

10
24

40
96

16
38

4

65
53

6

26
21

44

10
48

57
6

T
h

ro
u

g
h

p
u

t(
ta

s
k

s
/s

e
c
)

Scale (No. of Nodes)

Distributed(ALL_1) Centralized(ALL_1)

Distributed(AVE_5K) Centralized(AVE_5K)

neither SimGrid nor GridSim supports explicit distributed

scheduling, we compare them using centralized scheduling.

 SimGrid provides functionalities for the simulation of

distributed applications in heterogeneous distributed

environments. It is a PDES, being claimed the scalability of

2 million nodes [31]. We examined SimGrid, went for the

MSG interface, and used the basic Master/Slaves

application. We used the AVE_5K workload, and converted

the task length to the value of million instructions (MI), as

the computing power is represented as MIPS. Each slave

has 1000 cores, with each core 4000MIPS (about 1GFlops

as 1 CPU cycle usually has 4 instructions), so the computing

power of 1 million nodes is 1GFlops×1M×1K=1EFlop,

achieving the exascale computing.

 GridSim allows simulation of entities in parallel and

distributed computing systems, such as users, resources, and

resource brokers (schedulers). A resource can be a single

processor or multi-processor with shared or distributed

memory and managed by time or space shared schedulers. It

is a multi-threaded simulator, where each entity is a thread.

We developed an application on top of GridSim, which

consists of one user (has tasks) and one broker (centralized

scheduler) and several resources (computing nodes). Each

resource is configured having just one node (Machine),

which then has 1000 cores (PEs).

 As the saturated throughput of SimGrid is about 2000,

in order to make fair comparison, we configured SimMatrix

having exactly the same throughput upper bound by setting

the processing time per task to be 0.0005 sec (which is

0.001 sec before and achieved the 1000 upper bound). The

comparison results are shown in Figure 8 and Figure 9.

Figure 8: Comparison of time per task

 Notice that for GridSim, we just scaled up to 256 nodes,

as it took significant time to run larger scales. The time per

task of GridSim is significantly worse than other two. It is

increasing as the system scales up, while SimMatrix and

SimGrid experienced decreasing or constant time per task.

This shows the inefficiency and poor scalability of the

design of one thread per entity of GridSim. SimGrid could

scale up to 65K nodes, however, after which point it ran out

of memory (256GB). The memory per task of SimGrid

decreases two magnitudes from 1 node to 256 nodes and

keeps constant after that. However, the SimMatrix scales up

to 1M nodes without any problems (14.1GB memory, and

17.4 hours), and it is likely to simulate even greater scales

with moderate resource requirement. What’s more,

SimMatrix requires almost the same amount of memory as

SimGrid at the scale of less than 512 nodes, however, after

that SimMatrix is more memory efficient (memory per task

keeps decreasing with scales) than SimGrid. We also

noticed after 1 node, SimMatrix is more time efficient than

SimGrid; the time per task of SimMatrix is one magnitude

smaller than that of SimGrid. The conclusion is that

SimMatrix is light-weight and has less resource requirement

at larger scales.

Figure 9: Comparsion of memory per task

4.5. Application Domains of SimMatrix

 SimMatrix could be potentially used in several

application domains:

 Data Centers: large-scale data centers (e.g. Google,

Amazon) are composed of thousands of (10 to 100× in near

future) servers geographically distributed around the world.

Load balancing among all the servers with data-intensive

workloads is very important, yet non-trivial. SimMatrix is

able to study different network topologies connecting all the

servers and data-aware scheduling, which could be applied

in scheduling of data centers.

 Grid Environment: not only could SimMatrix be

configured as homogeneous scheduling system, it can also

be tuned into heterogeneous one. Different Grids could

configure SimMatrix and do scheduling individually

without interaction with each other.

 Workflow System: although SimMatrix relies on high

level workflow systems (Swift, Charm++) to manage the

data-flow and task dependency now, we could develop

SimMatrix to simulate workflow system with dependent

tasks. We have already run SimMatrix with MTC workload

achieved from Swift workflow system up to exascale, and

achieved ~87% efficiency [32] (Figure 10). We use

1

10

100

1000

10000

100000

1000000

1 4 16

64

25
6

10
24

40
96

16
38

4

65
53

6

26
21

44

10
48

57
6

T
im

e
 P

e
r

T
a
s

k
 (

u
s
)

Scale (No. of Nodes)

SimMatrix(Time/Task)

SimGrid(Time/Task)

GridSim(Time/Task)

1

10

100

1000

10000

100000

1000000

1 4 16

64

25
6

10
24

40
96

16
38

4

65
53

6

26
21

44

10
48

57
6

M
e

m
o

ry
 P

e
r

T
a
s

k
 (

B
y

te
)

Scale (No. of Nodes)

SimMatrx(Mem/Task)

SimGrid(Mem/Task)

GridSim(Mem/Task)

coefficient variance of the number of tasks finished by each

node as a measurement of the load balancing. The closer the

value is to 0, the better the load balancing would be.

Figure 10: Running SimMatrix with MTC workload

 Many-core Simulation: instead of configuring

SimMatrix as an exascale system, we also configured it as a

single many-core chip node up to thousands of cores with

2D/3D mesh topology. We applied work-stealing at the core

level within one many-core node, and found that up to

thousand cores level, 2D mesh topology needs at least 13

hops of neighbors, while 3D mesh needs at least 5 (Figure

11), in order to achieve high system efficiency.

Figure 11: simulate many-core processor with a 3D-mesh interconnect

5. CONCLUSION AND FUTURE WORK

 Exascale computing will bring several challenges,

which need to be solved by new programming models. We

believe that MTC could offer many advantages over HPC.

However, efficient JMSs are needed to manage the system

resource allocation and job submission, in order to

maximize the job throughput and system utilization. We

developed a light-weight and scalable DES of JMS,

SimMatrix, at exascale. We validated SimMatrix against

Falkon and MATRIX, and performed scalability evaluations

up to exascale. We also compared SimMatrix with SimGrid

and GridSim. The scalability and resource consumption of

SimMatrix are significantly better.

 In the future, we plan to explore more complex network

topologies for exascale systems, such as Fat Tree,

3D/4D/nD Torus, and InfiniBand. We believe SimMatrix

could also be developed to simulate workflow systems, and

it would allow us to study job dependency and data aware

scheduling with more realistic constraints. It is critical to

develop scalable simulators to explore challenges at

exascale now, so that by the time when exascale computer

comes, we thoroughly understand what techniques,

algorithms, and programming models would likely work

best to ensure the success of exascale computing.

REFERENCES
[1] V. Sarkar, et al. “ExaScale Software Study: Software Challenges in

Extreme Scale Systems”, ExaScale Computing Study, DARPA IPTO,
2009.

[2] M. Snir, S.W. Otto, et al. “MPI: The Complete Reference”, MIT
Press, 1995.

[3] I. Raicu, P. Beckman, I. Foster. “Making a Case for Distributed File
Systems at Exascale”, ACM Workshop on LSAP, 2011.

[4] I. Raicu, Y. Zhao, I. Foster. “Many-Task Computing for Grids and
Supercomputers”, 1st IEEE Workshop on Many-Task Computing on
Grids and Supercomputers (MTAGS) 2008.

[5] I. Raicu, Z. Zhang, et al. “Toward Loosely Coupled Programming on
Petascale Systems,” IEEE SC 2008.

[6] Y. Zhao, I. Raicu, et al. “Realizing Fast, Scalable and Reliable
Scientific Computations in Grid Environments”, book chapter in Grid
Computing Research Progress, ISBN: 978-1-60456-404-4, Nova
Publisher 2008.

[7] H. Casanova, A. Legrand, and M. Quinson. “SimGrid: a Generic
Framework for Large-Scale Distributed Experiments.” In 10th IEEE
International Conference on UKSIM/EUROSIM'08.

[8] J. Banks, J. Carson, B. Nelson and D. Nicol. Discrete-event system
simulation - fourth edition. Pearson 2005.

[9] J. Liu. Wiley Encyclopedia of Operations Research and Management
Science, chapter Parallel discrete-event simulation, 2009.

[10] M. Quinson, C. Rosa, and C. Thiéry. “Parallel Simulation of Peer-to-
Peer Systems.” In Proceedings of the 12th IEEE International
Symposium on Cluster Computing and the Grid (CCGrid'12), May
2012. IEEE Computer Society Press.

[11] R. Buyya and M. Murshed. “GridSim: A Toolkit for the Modeling
and Simulation of Distributed Resource Management and Scheduling
for Grid Computing,” The Journal of Concurrency and Computation:
Practice and Experience (CCPE), Volume 14, Issue 13-15, Wiley
Press, Nov.-Dec., 2002.

[12] T. Tannenbaum, D. Wright, et. al. “Condor - A Distributed Job
Scheduler”, in Thomas Sterling, editor, Beowulf Cluster Computing
with Linux, The MIT Press, 2002. ISBN: 0-262-69274-0.

[13] B. Bode, D.M. Halstead, et. al. “The Portable Batch Scheduler and
the Maui Scheduler on Linux Clusters,” Usenix, 4th Annual Linux
Showcase & Conference, 2000.

[14] LSF: http://www-
03.ibm.com/systems/technicalcomputing/platformcomputing/products
/lsf/index.html, 2013.

[15] Cobalt: http://trac.mcs.anl.gov/projects/cobalt, 2013.

[16] The Blue Gene/P Team. “Overview of the ibm blue gene/p project,”
IBM Journal of Research and Development, vol. 52, no. 1.2, pp. 199
–220, jan. 2008.

[17] I. Raicu, Y. Zhao, et al. “Falkon: A Fast and Light-weight tasK
executiON Framework,” IEEE/ACM SC 2007.

0.00

0.01

0.02

0.03

0.04

0.05

0%

20%

40%

60%

80%

100%

1 4 16

64

25
6

10
24

40
96

16
38

4

65
53

6

26
21

44

10
48

57
6

C
o

-V
a
ri

a
n

c
e

E
ff

ic
ie

n
c
y

Scale (No. of Nodes)

Efficiency

Co-Variance

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 100 200 300 400 500 600 700 800 900 1000

E
ff

ic
ie

n
c

y

No. of Cores

3D mesh many-core simulation

1 hop

2 hops

3 hops

4 hops

5 hops

6 hops

[18] Kreutzer, W., Hopkins, J. and Mierlo, M.v. “SimJAVA - A
Framework for Modeling Queueing Networks in Java.” Winter
Simulation Conference, Atlanta, GA, 7-10 December 1997. pp. 483-
488.

[19] MATRIX: MAny-Task computing execution fabRIc at eXascales.
http://datasys.cs.iit.edu/projects/MATRIX/index.html, 2013.

[20] J. L. Stone, K. Beck, et al. New Jersey 07632: Prentice-Hall, Inc. div.
of Simon & Schuster. pp.150. ISBN 0-13-195884-4.

[21] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von Laszewski, I.
Raicu, T. Stef-Praun, M. Wilde. “Swift: Fast, Reliable, Loosely
Coupled Parallel Computation,” IEEE Workshop on Scientific
Workflows 2007.

[22] L. Kale, A. Arya, et al. “Charm++ for Productivity and Performance:
A Submission to the 2011 HPC Class II Challenge.” 2011 November.
11-49. Parallel Programming Laboratory.

[23] TreeSet:http://download.oracle.com/javase/6/docs/api/java/util/TreeS
et.html, 2013.

[24] T. H. Cormen, C. E. Leiserson, et. al. Introduction To Algorithms,
Third Edition, The MIT Press, 2009.

[25] HashMap:http://download.oracle.com/javase/1.4.2/docs/api/java/util/
HashMap.html, 2013.

[26] R. D. Blumofe and C. Leiserson. “Scheduling multithreaded
computations by work stealing”, In Proc. 35th Symposium on FOCS,
pages 356–368, Nov. 1994.

[27] M. Frigo, C. E. Leiserson, et al. “The implementation of the Cilk-5
multithreaded language”, In Proc. Conf. on PLDI, pages 212–223.
ACM SIGPLAN, 1998.

[28] V. G. Cerf, R. E. Kahn, (May 1974). "A Protocol for Packet Network
Intercommunication". IEEE Transactions on Communications 22 (5):
637–648.

[29] I. Raicu, I. Foster, et al. “Middleware Support for Many-Task
Computing”, Cluster Computing, The Journal of Networks, Software
Tools and Applications, 2010.

[30] I. Raicu, I. Foster, et. al. “The Quest for Scalable Support of Data
Intensive Workloads in Distributed Systems.” ACM HPDC 2009.

[31] M. Quinson, C. Rosa, et al. “Parallel Simulation of Peer-to-Peer
Systems, ” inria-00602216, version 2-6 Dec. 2011.

[32] K. Wang, I. Raicu. “Paving the Road to Exascale with Many-Task
Computing”, Doctoral Showcase, IEEE/ACM Supercomputing/SC
2012.

[33] A. Szalay, J. Bunn, J. Gray, I. Foster, I. Raicu. “The Importance of
Data Locality in Distributed Computing Applications”, NSF
Workflow Workshop 2006.

[34] C. Dumitrescu, I. Raicu, I. Foster. “Experiences in Running
Workloads over Grid3”, The 4th International Conference on Grid
and Cooperative Computing (GCC 2005).

[35] I. Raicu, I. Foster, A. Szalay, G. Turcu. “AstroPortal: A Science
Gateway for Large-scale Astronomy Data Analysis”, TeraGrid
Conference 2006, June 2006

[36] I. Raicu, C. Dumitrescu, M. Ripeanu, I. Foster. “The Design,
Performance, and Use of DiPerF: An automated DIstributed
PERformance testing Framework”, International Journal of Grid
Computing, Special Issue on Global and Peer-to-Peer Computing,
2006.

[37] M. Wilde, I. Raicu, A. Espinosa, Z. Zhang, B. Clifford, M. Hategan,
K. Iskra, P. Beckman, I. Foster. “Extreme-scale scripting:
Opportunities for large task-parallel applications on petascale
computers”, Scientific Discovery through Advanced Computing
Conference (SciDAC09), 2009.

[38] I. Raicu. "Many-Task Computing: Bridging the Gap between High
Throughput Computing and High Performance Computing",
University of Chicago, Doctorate Dissertation, March 2009.

[39] I. Raicu, et al. “Towards Data Intensive Many-Task Computing”,
book chapter in Data Intensive Distributed Computing: Challenges

and Solutions for Large-Scale Information Management, IGI Global
Publishers, 2011.

[40] Y. Zhao, I. Raicu, S. Lu, X. Fei. "Opportunities and Challenges in
Running Scientific Workflows on the Cloud", IEEE International
Conference on Network-based Distributed Computing and
Knowledge Discovery (CyberC) 2011.

[41] K. Wang, Z. Ma, I. Raicu. “Modelling Many-Task Computing
Workloads on a Petaflop IBM BlueGene/P Supercomputer”, IEEE
CloudFlow 2013.

[42] D. Zhao, D. Zhang, K. Wang, I. Raicu. “RXSim: Exploring
Reliability of Exascale Systems through Simulations”, ACM HPC
2013.

[43] T. Li, X. Zhou, K. Brandstatter, D. Zhao, K. Wang, A. Rajendran, Z.
Zhang, I. Raicu. “ZHT: A Light-weight Reliable Persistent Dynamic
Scalable Zero-hop Distributed Hash Table”, IEEE IPDPS 2013.

