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Abstract

Exascale computers are predicted to emerge by the end of
this decade with millions of nodes and billions of concurrent
cores/threads. One of the most critical challenges for exas-
cale computing is how to effectively and efficiently main-
tain the system reliability. Checkpointing is the state-of-the-
art technique for high-end computing system reliability that
has proved to work well for current petascale scales. This pa-
per investigates the suitability of checkpointing mechanism
for exascale computers, across both parallel filesystems and
distributed filesystems. We built a model to emulate exascale
systems, and developed a simulator, RXSim, to study its reli-
ability and efficiency. Experiments show that the overall sys-
tem efficiency and availability would go towards zero as sys-
tem scales approach exascale with checkpointing mechanism
on parallel filesystems. However, the simulations suggest that
a distributed filesystem with local persistent storage would
offer excellent scalability and aggregate bandwidth, enabling
efficient checkpointing at exascale.

1. INTRODUCTION

Exascale computing [1, 2], i.e. 10'® FLOPS, is predicted
to emerge by the end of 2018 with current trend. Millions of
nodes and billions of concurrent data access are expected with
the exascale. This degree of computing capability is similar to
that of a human brain and will enable the unraveling of signif-
icant scientific mysteries and present new challenges and op-
portunities. The US President made the building of exascale
systems a top national priority, stating that it will “dramat-
ically increasing our ability to understand the world around
us through simulation and slashing the time needed to design
complex products such as therapeutics, advanced materials,
and highly-efficient autos and aircraft” [3].

One of most critical challenges for exascale computing is
how to maintain the exascale computer reliable. Failures are
unavoidable in high end computing (HEC) systems, making
the partially-done work useless if no recovery mechanism ex-
ists. The reliability of a system is how strong the system is to
prevent failures and/or recover after a failure. With millions
of nodes and billions of cores and concurrent requests, keep-
ing the entire exascale system reliable is extremely hard.

In order to bring the system back into the last correct state,
checkpointing records system’s (correct) states periodically.
These states need to be stored on the persistent storage, be-
cause otherwise they are gone permanently if the system en-
counters a failure. Checkpointing is a general mechanism to
maintain system’s reliability, which is independent of any par-
ticular system. The fact of dealing with persistent storage im-
plies potentially huge overhead. Therefore, besides other fac-
tors like how frequently to save the states, the question of
improving the checkpointing degenerates to the question of
how to elevate the storage I/O bandwidth.

In general, there are two major approaches to checkpoint-
ing in distributed systems. The first one is called coordinated
checkpointing, where all nodes work together to establish a
coherent checkpoint. The second one, called Communication
Induced Checkpointing (CIC), allows nodes to make inde-
pendent checkpoints on their local storage. Current HEC sys-
tems, e.g. IBM BlueGene/P supercomputer, adopt the first ap-
proach to write states to the parallel filesystem on the network
attached storage (NAS). Applying CIC is not a viable option
in this case, since no local storage is available on the work
node of BlueGene/P.

To answer the question how the current checkpointing
mechanism would work for exascale systems among other
HEC systems, we built a model to emulate exascale systems,
designed and implemented a simulator RXSim (Reliability of
eXascale computers by Simulation) to study its reliability and
efficiency. Results show that, unfortunately, current check-
pointing mechanism on parallel filesystems is incapable to
effectively recover the system from failures. However, it sug-
gests that a distributed filesystem with local persistent stor-
age, e.g. [4], would offer an excellent scalability and aggre-
gate bandwidth, which in turn enables efficient checkpointing
at exascale.

The contributions of this paper are:

1. Proposed a simple and effective model to simulate large-
scale high end computing system, particularly at exas-
cale levels.

2. Designed and implemented a simulator to simulate
checkpointing performance with different filesystem ar-
chitectures (parallel and distributed).

3. Extensive evaluation of both synthetic workload and real
IBM BlueGene/P logs demonstrates that state-of-the-art



parallel filesystems would not be able to support ex-
ascale checkpointing, and distributed filesystems would
scale well and delivers high application efficiency and
system reliability.

The remainder of this paper is structured as follows. Sec-
tion 2 describes the assumptions and empirical specifications
we use to build the model of a million-node exascale system.
We present the design and implementation of RXSim in Sec-
tion 3. Section 4 presents the evaluation results. We review
some related work in Section 5. Section 6 concludes the pa-
per and discusses future work.

2. MODELING THE HEC SYSTEMS

Application Efficiency is defined as the ratio of applica-

tion up time over the total running time:
= _upame 00%,
running_time

where running_time is the summation of up time, checkpoint-
ing time, lost time and rebooting time. Up time is when
the job is correctly running on the computer. Checkpointing
time is when the system stores the correct states on persistent
storage periodically. Lost time measures the time when a fail-
ure occurred, the work since the last checkpointing would be
lost and needs to be recalculated. Rebooting time is simply
the time for the system to reboot the node.

Optimal Checkpointing Interval is the optimal check-
pointing interval as modeled in [5]:

OPT = \/25(M +R) -,

where 0 is the checkpointing time, M is the system mean-
time-to-failure (MTTF) and R is the rebooting time of a job.
Memory Per Node is modeled as the following based on
the specifications of IBM BlueGene/P. When the system has
fewer than 64K nodes, each node has 2GB memory. For larger
systems, the per-node memory is calculated (in GB) as

#nodes
64K

We have two different models of Storage Bandwidth for
parallel filesystems (PFS) and distributed filesystems (DFS),
respectively, since they have completely different architec-
tures. We assume PFS is the state-of-the-art parallel filesys-
tem used in production today, e.g. GPFS [6], whose band-
width (in GB/sec) is modeled as

#nodes

BWers = <000 -

And for DFS, it is a hypothetical new storage architecture for
exascale. There are no real implementations of a DFS that

can scale to exascale, but this study should be a good mo-
tivator towards investing resources to the realization of DFS
at exascale. The bandwidth of DFS in our simulation has the
following bandwidth

BWprs = #nodes - (log#nodes)z.

These equations are based on our empirical observations on
the IBM BlueGene/P supercomputer.

For rebooting time, DFS has a constant time of 85 seconds
because each node is independent to other nodes. For PFS,
the rebooting time (in seconds) is calculated as the following:

[0.0254 - #nodes + 55.296],

which is also based on the empirical data of the IBM Blue-
Gene/P supercomputer. The above formulae indicate that
DFS has a linear scalability of checkpointing bandwidth,
whereas PES only scales sub-linearly. The sub-linearity of
PFS checkpoint bandwidth would prevent it from working ef-
fectively for exascale systems.

3. DESIGN AND IMPLEMENTATION

For any job running on an HEC system, RXSim has three
states: running, repairing, restarting, as shown in Figure 1.
This transmission works as follows: 1) when a job is running,
repairing or restarting, if a failure occurs then the job will be
hanged and enters repairing state; 2) after repaired, the job
will restart, i.e. reboot nodes occupied by this job; 3) after the
job completes, it restarts its nodes; 4) after restarting, if job
is just repaired from a failure then the job continues its work;
otherwise the job has completed its work.

Running Job

Repairing
Node

Restarting
Nodes

Figure 1. State transmission of RXSim.

RXSim is implemented in Java with only less than 2K lines
of code, and will be released as an open source project. Some
key modules include job management, node management,
and time stamping. We will discuss each of them respectively
in the following subsections.



3.1. Job Management

The job management module is used to keep tracks of any
job-related information during the run time. Every job in the
workload is an instance of the Job class. A job has common
attributes like jobID, walltime, size, endTime, and some state
variables, like state_up, state_repair, etc.

We do not keep the entire workload globally. Rather, each
time the generator generates a new job, it is inserted into the
running queue. Once a job is completed, the allocated nodes
are restarted and released.

3.2. Node Management

Because the workload is randomly assigned work nodes,
and there may be many jobs running on the HEC system at the
same time, nodes need to have the information on which jobs
are running on them. This is implemented by adding a jobID
attribute to the Node class. Nodes management is analogous
to traditional memory management.

An array is fulfilled with instances of Node class, to keep
all information e.g. node ID, working state, etc. A free list is
to keep and track all idle parts of the HEC system, so that
each time a job requests some computing resources (nodes),
RXSim will first check if there are enough idle nodes left.
If so, RXSim retrieves the first idle part of the HEC system
and keeps doing so till the job gets enough nodes. After a
job is completed, the nodes occupied by this job will not be
released immediately. These nodes would be occupied by the
completed job until they are successfully rebooted.

3.3. Time Stamping

TimeStamp class is the event class where each timeStamp
instance is an event with some information related to time
stamping. For example, if simulator encounters a failure at
some point, it creates a timeStamp instance including the in-
cident’s time, type, node ID, job ID.

There are four types of TimeStamp:

e Job ends successfully: with time and job ID.

e Job recovers: with time and job ID.

e Node reboots successfully: with time and job ID.
e Node failure: with time and node ID.

The TimeStamp queue is implemented as a TreeSet. The
benefit of TreeSet is that it will automatically sort the data,
so it is easy to retrieve the latest event from this queue. An
obvious drawback of TreeSet is that its elements are hard to
be modified. Unfortunately modification is a frequent oper-
ation since the simulator needs to update events in a regu-
lar basis. To fix the problem, we maintain another list called
uselessEventList, which keeps tracks of all idle TimeStamp.
The simulator would simply skip such an idle TimeStamp and
try to retrieve the next available one.

4. EVALUATION

Experiments can be categorized into three major types. We
first compare RXSim results to existing valid results with the
same parameters and workload to verify RXSim. Then vari-
ant workloads are dispatched on RXSim to study the effec-
tiveness and efficiency of checkpointing at different scales of
HEC systems. Lastly, we apply RXSim on a 8-month log of
an IBM BlueGene/P supercomputer, and emulate the check-
pointing at exascale. Metrics Uptime, Check, Boot and Lost
refer to the definitions of up time, checkpointing time, re-
booting time and lost time, respectively, defined in Section 2.

4.1. Experiment Setup

The single-node MTTF is set to 1000 years, optimistically,
as claimed by IBM. We assume it takes O second (again, very
optimistically) to repair a single node. Simulation time is set
to 5 years, where each time step is 1 second.

4.2. Validation

[7] shows how the applications look like for 3 cases:
No-Checkpointing, PFS with checkpointing, and DFS with
checkpointing, as shown in Figure 2.
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Figure 2. Comparison between checkpointings on different
filesystems [7].
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The result of RXSim with the same workload of Figure 2
is shown in Figure 3. RXSim result is quite close to the pub-
lished results: two lines have negligible difference, which is
only due to the random variables used in the simulator.

Figure 4 shows the system reliability with checkpointing
disabled. As we can see, the system is basically not function-
ing beyond 400K nodes.

Figure 5 shows the system reliability when enabling check-
pointing on a PFS. We observe that the system up time is
much longer than Figure 4. This is expected, since check-
pointing proves to be an effective mechanism to improve sys-
tem reliability. However, the efficiency is quite low (< 10%)
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Figure 3. Comparison between RXSim and [7]
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Figure 4. A no-checkpointing system stops functioning
when having more than 400K nodes.

at exascale (1 million nodes), meaning that PFS is not a good
choice for checkpointing.

In Figure 6, we show the trends of system MTTF, the
overhead of doing a checkpoint, and the checkpointing cir-
cle (summation of checkpoint time and optimal checkpoint-
ing interval) in PFS. When system MTTF becomes less than
the checkpointing circle time (which is the case for 1 million
nodes), it basically means the system does not have enough
time to complete one round of checkpointing. In other words,
the system cannot recover from failures: checkpointing helps
nothing but adding more overhead.

For DFS with checkpointing, we see an excellent appli-
cation efficiency and scalability, as shown in Figure 7. The
uptime portion is still as high as 90% for exascale.
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Figure 5. System reliability when enabling checkpointing
on a PFS: efficiency is quite low (< 10%) at exascale (1 mil-
lion nodes).
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Figure 6. Trends of System MTTF, the overhead of doing a
checkpoint, and the checkpointing circle: checkpointing fails
to recover the system for 1M nodes.

As shown in Figure 8, DFS is perfectly fine to allocate
enough time slice for checkpointing at exascale. This can be
best explained by the fact that DFS has less checkpointing
overhead when writing to the local storage as opposed to NAS
(networked attached storage).

4.3. Synthetic Workloads

We carried out two more workloads with different job size
and wall time on RXSim in this subsection.
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Figure 7. System reliability when enabling checkpointing
on a DFS: excellent uptime and scalable to beyond exascale
systems.
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Figure 8. System reliability when enabling checkpointing
on a DFS: excellent uptime and scalable to beyond exascale
systems.

4.3.1. 1/10 Job Size

In this workload, each job size is 1/10 of the full system
scale and wall time is set to 7 days. The efficiency is generally
better than full system scale (see Figure 3). In particular, PFS
with checkpointing on 1 million nodes is improved from 5%
to 70%. This fact demonstrates that the major bottleneck of
PFS is the shared storage between jobs. The more concurrent
jobs trying to access the shared storage, the less efficient PFS
becomes.

We will show more details of time breakdown for each
case. For no-checkpointing, not surprisingly, the major two
portion of costs are up time and lost time, as shown in Fig-
ure 10.
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Figure 9. Comparison of different checkpointings with 1/10
job size.
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Figure 10. Cost breakdown of a no-checkpointing filesys-
tem with 1/10 job size.

The cost breakdown for PFS with checkpointing is shown
in Figure 11. Now the up time and checkpointing overhead
are the top two portions, as expected.

We further examine how PFS with checkpointing would
behave for system recovery. As shown in Figure 12, there is
still a significant gap between MTTF and checkpointing time,
which suggests that PFS with checkpointing might work well
for 1/10 job size. In particular on 1 millions nodes, the MTTF
is about 10 hours and the checkpointing takes only 1 hour.



100%

S
° 80%
-1]
(3]
£t 60%
@
2
@ 40%
[
E 20%
0%
™ S © b s o) ™ )
VAN ) N Wb » o P
S S SN St L
AR
Scale (# of nodes)
B Uptime% M Check% MBoot% M Lost%

Figure 11. Cost breakdown of a PFS with checkpointing for
1/10 job size.
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Figure 12. Trends of MTTF and checkpointing time for
PFS: PES with checkpointing might work well for 1/10 job
size.

At last we show how DFS deals with 1/10 job size by plot-
ting the cost breakdown. The result is shown in Figure 13. The
up time is dominant, and keeps taking over 95% percentage
even for 2 million nodes.

4.3.2. One-Day Wall Time

This workload keeps the job size as the full system scale,
shortening the wall time from 7 days to 1 day. We compare
these relatively short jobs in 3 different filesystems as shown
in Figure 14. Again, DFS outperforms other two and keeps
high efficiency of 90% on 1 million nodes. However, PFS is
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Figure 13. Cost breakdown of the DFS with checkpointing
for 1/10 job size: up time is dominant.
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Figure 14. Efficiency of different checkpointing scenarios
for short jobs: DFS works fine, but PFS with checkpointing
does not help improve up time.

We show the cost breakdown of PFS and no-checkpointing
in Figure 15 and Figure 16 respectively, in order to investigate
why PFS has such poor performance. The cost distributions
of both cases are about the same, except for PFS has some
additional time spent on checkpointing which only takes a
small portion (< 10%). The reason is most likely that the wall
time of each job was much shorter, which implies less lost-
time during a failure. The checkpointing interval and check-
pointing overhead are quite sensitive to wall time, therefore
shortening jobs dramatically hurts the application efficiency
of PFS with checkpointing. The implication, in order, is that,
for short jobs no-checkpointing might do as equally well as



PFS with checkpointing enabled.
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Figure 15. Cost breakdown of no-checkpointing filesystem
for 1-day jobs.
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Figure 16. Cost breakdown of PFS with checkpointing for
1-day jobs.

4.4. Real Logs of IBM BlueGene/P

We carried out experiments on real workloads (8-month
log) from IBM BlueGene/P supercomputer (a.k.a. Intrepid)
at Argonne National Laboratory (ANL). Intrepid has a peak
of 557TFlops, has 40 racks, and comprises 40960 quad-core

nodes (163840 cores in total), associated I/O nodes, storage
servers (NAS), and high bandwidth torus network intercon-
necting compute nodes. It debuted as No.3 in the top 500 su-
percomputer list released in June 2008.

The log in the experiment contains 8§ months of accounting
records of Intrepid. The log data is in swf (standard work-
load format). We scaled the job size on the log in proportion
to scale RXSim from 1024 to 2 million nodes. Note that the
data beyond 160K nodes are predicted by RXSim, since the
BlueGene/P only has 160K cores.
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Figure 17. Application efficiency for BlueGene/P jobs.

Figure 17 shows that a no-checkpointing filesystem outper-
forms PFS with checkpointing, which is counter intuitive at
the first glance. The reason is that the BlueGene/P jobs have
an average wall time of 5k seconds, which is less than 2 hours
and far shorter than 1 day in Figure 14. So this result in fact
justifies our previous conclusion that short jobs would badly
hurt the application efficiency by enabling checkpointing.

We show the cost breakdown of different filesystems in
Figure 18. PFS has a significant portion of checkpointing
overhead, booting time and lost-time in exascale (> 1 million
nodes), as shown in Figure 18(b). DFS, on the other hand,
introduces negligible overhead (< 5%) in Figure 18(c).

5. RELATED WORK

Tikotekar et al. [8] developed a simulation framework
to evaluate different fault tolerance mechanisms (check-
point/restart for reactive fault tolerance, and migration for
pro-active fault tolerance). The framework uses system fail-
ure logs for the simulation with a default behavior based on
logs taken from the ASC White at LLNL. A non-blocking
checkpointing mode is proposed in [9] to support optimal par-
allel discrete event simulation. This model allows real con-
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Figure 18. Cost breakdown of BlueGene/P: DFS delivers an excellent efficiency from 1024 to 2 million nodes; PFS performs

poorly, even worse than disabling checkpointing.

currency in the execution of state saving and other simulation
specific operations (e.g. event list update, event execution),
with the aim at removing the cost of recording state infor-
mation from the parallel application. An incremental check-
pointing/restart model is built in [10], which is applied to the
HPC environment. The model aims at reducing full check-
pointing overhead by performing a set of incremental updates
between two consecutive full checkpoints. Some recent re-
search was focused on XOR-based methods, for example,
[11] proposed reliable and fast in-memory checkpointing for
MPI programs and [12] presented a distributed checkpointing
manner using XOR operations. None of these related works
explored exascale systems, and none addressed the check-
pointing challenges through a different storage architecture
(e.g. distributed file systems).

6. CONCLUSION AND FUTURE WORK

In this paper we simulated exascale systems with different
filesystem architectures to study the reliability. We developed
RXSim to simulate checkpointing performance for exascale
computing. RXSim suggests distributed filesystems are more
optimistic than state-of-the-art parallel filesystems for reli-
able exascale computers. In particular, we found that local
persistent storage would be dramatically helpful to leverage
data locality in the context of traditional distributed filesys-
tems. Our study shows that local storage would be one of the
key points to succeed in maintaining the reliability for exas-
cale computers. The results are coincident with the findings
in [13], where a hybrid of local/global checkpointing mech-
anism was proposed for the projected exascale system.

The next step of this work is to apply the RXSim-suggested
architecture to the checkpointing module of a scalable dis-
tributed filesystem called FusionFS [4]. FusionFS is a FUSE-
based distributed filesystem, deployed on the local non-

volatile memory (NVM) of each work node in a supercom-
puter. FusionFS+RXSim will bring a new understanding on
reliable exascale computers.
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