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Many-task computing (MTC) aims to bridge the gap

between two computing paradigms, high :
throughput computing (HTC) and high-performance SC n ed U | er Arc n itecture
computing (HPC). MTC emphasizes using many NVIDIA Maturity
computing resources over short periods of time to Nemoy copy o ery copy. Host To Device  Kemel Execution  Device To Host Sscraine Kepler Raw Perf.
accomplish many computational tasks (i.e. IE ey e e e

including both dependent and independent tasks),
where the primary metrics are measured in
seconds. MTC denotes high-performance : .
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activities. Without a SCh@dUler, jObS run on Copy_compute_copy prOdUCGS Swift and GPU. Handles mU|t|p|e GPU
" the GPU following the pattern copy- inefficiencies. Some of which are  inputs from Swift and condenses
compute-copy. shown in the red area above. these into single GPU calls.
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Swift is a particular implementation of the MTC T Use of a scheduler allows for b1 Scheduler provides concurrent kernel

paradigm, and is a parallel programming gl S e I overlapping kernel execution. 2 | [ execution from built i library of CUDA kernels
system that has been successfully used in many Job 2 Our scheduler overlaps data 3b 3

Jba | ] Scheduler overlaps memory transfers for
large-scale computing applications across the | transfers from last solution and next .
TeraGrid and now XSEDE. It has been adopted by ~ . problem to increase efficiency. =2 Increased performance

o , , Concurrent kernels limited to up to 16 kernels
the scientific community as a great way to increase

T . it . Kernel execution overheads limit workloads to
productivity in running complex applications via a ReS L] ItS coarse granularity kernels
dataflow driven programming model, which

harnessed based on data access patterns and Slep Job Efciency, 3 Jos is a static batch FIFO
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Proposed Work ol - Sleep jobs demonstrate our

misoms  § s schedulers abillity to overlap
kernels.

This work aims to enable Swift to efficiently use : Future Work
accelerators (such as NVIDIA GPUs) to further : T ~
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accelerate a wide range of applications. This work Initial implementation of Dynamic
presents preliminary results in the costs associated scheduler approaches serialized

: Migrate scheduler into GPU (SuperKernel
due to race condition when threads . L g manages MicroKernels)

with managing and launching concurrent kernels synchronize with streams. e 1
on NVIDIA Kepler GPUs. We expect our results to m o
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be applicable to several XSEDE resources, such as - Sched
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currently Swift can only use the general processors | e
to execute workloads and the GPUs are left idle. / Finally, with PCl-e 2 we are able to

T wwaw o w o complete copies in just a few . .
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