Early Experiences In running Bé\ta SyS
LLINOIS INSTITUTE : : _
OF TECHNOLOG Many-TaSk COmpu“ng WOrkIOadS Data-Intensive Distrnibuted

On GPGPUS Systems Laboratory

Scott J. Krieder Benjamin Grimmer Dr. loan Raicu
Dept. of Computer Science Dept. of Computer Science Dept. of Computer Science

~ ' lllinois Insti f Technol lllinois Institute of Technol lllinois Institute of Technol
I\/Iany TaSk COmputlng Inois Institute of Technology Inois Institute of Technology Inois Institute of Technology =Acce|erat0rs & COprOCeSSOrS

skrieder@iit.edu bgrimmer@hawk.Iit.edu raicu@cs.lit.edu
Many-task computing (MTC) aims to bridge the gap

between two computing paradigms, high :
throughput computing (HTC) and high-performance SC n ed U | er Arc n itecture
computing (HPC). MTC emphasizes using many NVIDIA Maturity
computing resources over short periods of time to Nemoy copy o ery copy. Host To Device Kemel Execution Device To Host Sscraine Kepler Raw Perf.
accomplish many computational tasks (i.e. IE ey e e e

including both dependent and independent tasks),
where the primary metrics are measured in
seconds. MTC denotes high-performance : .

. e . . . Job 2 AIVID
computations comprising multiple distinct ‘ l m Our scheduler sits in-between Openness Adoption

Device Pro Con

Programming

=" ‘ Job 1

‘ Job 2 L\

lL_ Intel MIC | Programming | Availability

——

activities. Without a SCh@dUler, jObS run on Copy_compute_copy prOdUCGS Swift and GPU. Handles mU|t|p|e GPU
" the GPU following the pattern copy- inefficiencies. Some of which are inputs from Swift and condenses
compute-copy. shown in the red area above. these into single GPU calls.

Conclusions

Host To Device Kernel Execution Device To Host

Swift Parallel Programming

Memory copy Memory copy e
° ° [} [I Ob ‘ [] ‘
Swift is a particular implementation of the MTC T Use of a scheduler allows for b1 Scheduler provides concurrent kernel

paradigm, and is a parallel programming gl S e I overlapping kernel execution. 2 | [execution from built i library of CUDA kernels
system that has been successfully used in many Job 2 Our scheduler overlaps data 3b 3

Jba |] Scheduler overlaps memory transfers for
large-scale computing applications across the | transfers from last solution and next .
TeraGrid and now XSEDE. It has been adopted by ~ . problem to increase efficiency. =2 Increased performance

o , , Concurrent kernels limited to up to 16 kernels
the scientific community as a great way to increase

T . it . Kernel execution overheads limit workloads to
productivity in running complex applications via a ReS L] ItS coarse granularity kernels
dataflow driven programming model, which

harnessed based on data access patterns and Slep Job Efciency, 3 Jos is a static batch FIFO

B 100ms

dependencies.) m 200ms ~ scheduler.

400ms ——
B 200ms

Host To Device Kernel Execution Device To Host

B 1600ms

Proposed Work ol - Sleep jobs demonstrate our

misoms § s schedulers abillity to overlap
kernels.

This work aims to enable Swift to efficiently use : Future Work
accelerators (such as NVIDIA GPUs) to further : T ~

J hrottle

accelerate a wide range of applications. This work Initial implementation of Dynamic
presents preliminary results in the costs associated scheduler approaches serialized

: Migrate scheduler into GPU (SuperKernel
due to race condition when threads . L g manages MicroKernels)

with managing and launching concurrent kernels synchronize with streams. e 1
on NVIDIA Kepler GPUs. We expect our results to m o

240 B LowBar

; Host
B CPU O
: Lo omae £
be applicable to several XSEDE resources, such as - Sched

B 2 throttle B 4 throttle

Forge, Keeneland, and Lonestar, where - mowon g m s ot

B 16 throttle 70000 140000 210000 280000
B 16 throttle B 32 throttle

currently Swift can only use the general processors | e
to execute workloads and the GPUs are left idle. / Finally, with PCl-e 2 we are able to

T wwaw o w o complete copies in just a few . .
“_f Matrix Mu|t|pllcat|0n A Closel‘ Iog ”ﬂg‘?efﬁ?e most microseconc S. Th|S |eads us to Integrate GPGPU IVITC SChEdUler |nt0 SWlft
References demonstrates our ability to improved portion of the curve believe a SuperKernel managed Explore Intel MIC as a co-processor to run MTC
Swift - http://www.ci.uchicago.edu/swift/main/ overlap data transfers for highlighting benefit gained from MTC scheduler will not bottleneck workloads

NVIDIA - nvidia.com/object/cuda_home_new.html increased efficiency. overlapping data transfers. In regards to the number of copies.

Matrix Side Length

