
Early Experiences in running

Many-Task Computing workloads

on GPGPUs
Scott J. Krieder

Dept. of Computer Science

Illinois Institute of Technology

skrieder@iit.edu

Proposed Work

This work aims to enable Swift to efficiently use
accelerators (such as NVIDIA GPUs) to further
accelerate a wide range of applications. This work
presents preliminary results in the costs associated
with managing and launching concurrent kernels
on NVIDIA Kepler GPUs. We expect our results to
be applicable to several XSEDE resources, such as
Forge, Keeneland, and Lonestar, where
currently Swift can only use the general processors
to execute workloads and the GPUs are left idle.

Swift Parallel Programming

Accelerators & Coprocessors

• Migrate scheduler into GPU (SuperKernel
manages MicroKernels)

• Integrate GPGPU MTC Scheduler into Swift
• Explore Intel MIC as a co-processor to run MTC

workloads

Dr. Ioan Raicu

Dept. of Computer Science

Illinois Institute of Technology

iraicu@cs.iit.edu

Scheduler Architecture

Conclusions

Future Work

References
Swift - http://www.ci.uchicago.edu/swift/main/

NVIDIA - nvidia.com/object/cuda_home_new.html

Device Pro Con

NVIDIA
Kepler

Maturity
Raw Perf.

Programming

Intel MIC Programming Availability

AMD
GPU

Openness Adoption

Swift is a particular implementation of the MTC
paradigm, and is a parallel programming
system that has been successfully used in many
large-scale computing applications across the
TeraGrid and now XSEDE. It has been adopted by
the scientific community as a great way to increase
productivity in running complex applications via a
dataflow driven programming model, which
intrinsically allows implicit parallelism to be
harnessed based on data access patterns and
dependencies.

• Scheduler provides concurrent kernel
execution from built in library of CUDA kernels

• Scheduler overlaps memory transfers for
increased performance

• Concurrent kernels limited to up to 16 kernels
• Kernel execution overheads limit workloads to

coarse granularity kernels

Benjamin Grimmer

Dept. of Computer Science

Illinois Institute of Technology

bgrimmer@hawk.iit.edu
Many-Task Computing

Many-task computing (MTC) aims to bridge the gap
between two computing paradigms, high
throughput computing (HTC) and high-performance
computing (HPC). MTC emphasizes using many
computing resources over short periods of time to
accomplish many computational tasks (i.e.
including both dependent and independent tasks),
where the primary metrics are measured in
seconds. MTC denotes high-performance
computations comprising multiple distinct
activities. Copy-compute-copy produces

inefficiencies. Some of which are

shown in the red area above.

Our scheduler overlaps data

transfers from last solution and next

problem to increase efficiency.

Our current implementation

is a static batch FIFO

scheduler.

Sleep jobs demonstrate our

schedulers ability to overlap

kernels.

Matrix Multiplication

demonstrates our ability to

overlap data transfers for

increased efficiency.

A closer look at the most

improved portion of the curve

highlighting benefit gained from

overlapping data transfers.

Without a scheduler, jobs run on

the GPU following the pattern copy-

compute-copy.

Use of a scheduler allows for

overlapping kernel execution.

Our scheduler sits in-between

Swift and GPU. Handles multiple

inputs from Swift and condenses

these into single GPU calls.

Initial implementation of Dynamic

scheduler approaches serialized

due to race condition when threads

synchronize with streams.

Finally, with PCI-e 2 we are able to

complete copies in just a few

microseconds. This leads us to

believe a SuperKernel managed

MTC scheduler will not bottleneck

in regards to the number of copies.

Results

