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Abstract—This work aims to enable Swift to efficiently use
accelerators (such as NVIDIA GPUs) to further accelerate a wide
range of applications. This work presents preliminary results in
the costs associated with managing and launching concurrent
kernels on NVIDIA Kepler GPUs. We expect our results to be
applicable to several XSEDE resources, such as Forge, Keeneland,
and Lonestar, where currently Swift can only use the general
processors to execute workloads and the GPUs are left idle.
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I. INTRODUCTION

Many-task computing (MTC) [1] aims to bridge the gap
between two computing paradigms, high throughput comput-
ing (HTC) and high-performance computing (HPC). MTC
emphasizes using many computing resources over short pe-
riods of time to accomplish many computational tasks (i.e.
including both dependent and independent tasks), where the
primary metrics are measured in seconds. MTC denotes high-
performance computations comprising multiple distinct activ-
ities, coupled via file system operations. Swift is a particular
implementation of the MTC paradigm, and is a parallel
programming system that has been successfully used in many
large-scale computing applications across the TeraGrid and
now XSEDE. [2] Swift has been adopted by the scientific
community as a great way to increase productivity in run-
ning complex applications via a dataflow driven programming
model, which intrinsically allows implicit parallelism to be
harnessed based on data access patterns and dependencies.
Swift has been shown to run well on tens of thousands of
nodes with task graphs in the range of hundreds of thousands
of tasks. This work aims to enable Swift to efficiently use
accelerators (such as NVIDIA GPUs and Intel Xeon Phi [3])
to further accelerate a wide range of applications. This work
evaluates a real biochemistry application, namely the Open
Protein Simulator (OOPS) [4], which builds on the Protein
Library (PL). OOPS is multipurpose and allows extensions
to perform various simulation tasks relevant for life scientists,
such as protein folding or protein structure prediction. We have
taken parts of this application and ported to NVIDIA GPUs
via the CUDA programming language, in order to accelerate
OOPS computations via Swift. This work presents preliminary
results in the costs associated with managing and launching
concurrent kernels on NVIDIA FERMI GPUs, through the
Swift system. We expect that our results to be applicable
to several XSEDE resources, such as Forge, Keeneland, and

Lonestar, where currently Swift can only use the general
processors to execute workloads and the GPUs are left idle.

II. MANY-TASK COMPUTING AND SWIFT

Many-task computing (MTC) aims to bridge the gap be-
tween two computing paradigms, high throughput comput-
ing (HTC) and high-performance computing (HPC). MTC
emphasizes using many computing resources over short pe-
riods of time to accomplish many computational tasks (i.e.
including both dependent and independent tasks), where the
primary metrics are measured in seconds. MTC denotes high-
performance computations comprising multiple distinct ac-
tivities. Swift is a particular implementation of the MTC
paradigm, and is a parallel programming system that has been
successfully used in many large-scale computing applications
across the TeraGrid and now XSEDE. It has been adopted
by the scientific community as a great way to increase
productivity in running complex applications via a dataflow
driven programming model, which intrinsically allows implicit
parallelism to be harnessed based on data access patterns and
dependencies.

III. ACCELERATORS AND COPROCESSORS

There are currently three major players in the hardware
accelerator market including NVIDIA GPUs, AMD GPUs
[5], and the Intel Xeon Phi. Running CUDA on NVIDIA
GPUs is one of the most mature GPGPU solutions and
provides high raw computational performance, however this
does require code ported to the CUDA platform. The Intel
Xeon Phi suffers from a lack of availability, but once this
device is highly available it should bring large improvements
in regards to accelerator programmability due to the familiar
x86 environment. Finally, AMD GPUs provide a high level of
openness in regards to programmability. AMD supports open
standards such as OpenCL but may see difficulty in adoption
within the HPC markets due to performance.[6]

IV. ARCHITECTURE AND EVALUATION

Without a scheduler, jobs run on the GPU following the
pattern copy-compute-copy as shown in Figure 1. In addition,
copy-compute-copy produces inefficiencies some of which are
shown in the red area of Figure 2. Our scheduler sits in-
between Swift and GPU. Handles multiple inputs from Swift
and condenses these into single GPU calls. Use of a scheduler
allows for overlapping kernel execution. Finally, our scheduler



overlaps data transfers from the last solution and next problem
to increase efficiency.
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Fig. 1. By default jobs on the GPU run pattern copy-compute-copy.
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Fig. 2. Inefficiencies of copy-compute-copy highlighted in red.

Our current implementation is a static batch FIFO sched-
uler. Sleep jobs demonstrate our schedulers ability to overlap
kernels as shown in Figure 3. Finally, with PCl-e 2 we are
able to complete copies in just a few microseconds as shown
in Figure 4. This leads us to believe a SuperKernel managed
MTC scheduler will not bottleneck on mem copies.
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Fig. 3. Inefficiencies of copy-compute-copy highlighted in red.
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Fig. 4. Inefficiencies of copy-compute-copy highlighted in red.

V. CONCLUSION AND FUTURE WORK

Future work aims to migrate our scheduler into the GPU,
allowing a daemon SuperKernel to manage the MicroKernels,
through the use of CUDA concurrent kernels. We also expect
our performance to increase on the latest NVIDIA Kepler
Architecture. [7] By integrating our GPGPU MTC Scheduler
into Swift we will be able to provide GPU support for MTC
applications that utilize Swift. In addition this will apply the
dataflow model to GPUs and provide implicit parallelism at
the task level. Finally, we believe that the Intel Xeon Phi
will provide an array of added benefits for running MTC
workloads. Future work will examine how Intel Xeon Phi
performs for MTC workflows.

In conclusion this work presented a scheduler which pro-
vides concurrent kernel execution from built in library of
CUDA kernels. This scheduler overlaps memory transfers
for increased performance. The scheduler supports concurrent
kernels limited only by CUDA constraints up to 16 kernels.
Finally, our scheduler eliminates Kernel execution overheads
and enables workloads with coarse granular kernels.
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