Published at IEEE/ACM Supercomputing *12, Doctoral Showcase

D. Zhao and I. Raicu

Distributed File Systems for Exascale Computing

Dongfang Zhao* and Ioan Raicu*'
*Department of Computer Science, Illinois Institute of Technology
TMathematics and Computer Science Division, Argonne National Laboratory
dzhao8 @hawk.iit.edu, iraicu@cs.iit.edu

I. INTRODUCTION

Exascale computing, i.e. 10'® FLOPS, is predicted to
emerge by 2019 with current trends. Millions of nodes and
billions of threads of execution, producing similarly large
concurrent data accesses, are expected with the exascale. This
degree of computing capability is similar to that of a human
brain and will enable the unraveling of significant scientific
mysteries and present new challenges and opportunities.

Unfortunately, current state-of-the-art yet decades long stor-
age architecture of high-performance computing (HPC) sys-
tems would unlikely provide the support for the expected
level of concurrent data access. The main critique comes from
the topological allocation of compute and storage resources
that are interconnected as two cliques, as shown in Figure 1.
Even though the network between compute and storage has
high bandwidth and works well for current compute intensive
petascale applications, it would not be adequate for data-
intensive petascale computing or exascale computing. Future
storage systems need to be re-architected to co-locate storage
and compute resources in order to be able to better support the
extreme level of concurrency expected with future computing
systems.

NAS

coocg -
' etwork Link(s,
{&&{i Network Link(s)

Fig. 1. The architecture of modern HPC systems: compute and storage
resources are segregated and interconnected by high-bandwidth network.

We introduce FusionFS, a distributed filesystem particularly
crafted for extreme scale HPC systems. FusionFS leverages
FUSE [1] to work in user space and provides a POSIX
interface, so that neither the OS kernel nor applications need
any changes. FusionFS has a completely distributed metadata
management based on an implementation of distributed hash
table (i.e. ZHT [4]) to achieve a scalable metadata throughput.

II. DESIGN AND IMPLEMENTATION

In our previous work [5], we propose that the next gener-
ation of HPC systems would be equipped with local NVM
(e.g. SSD), coexisting on the compute nodes to allow the
system to leverage the data locality, as shown in Figure 2.
NVM would be an excellent candidate for the local persistent
storage, that can be observed from two aspects: (1) NVM
delivers a much higher bandwidth and lower latency than the
traditional spinning hard disk drive (HDD); (2) NVM can be
accessed concurrently, which is a especially preferable feature
with recent significant improvement on multi-core and many-
core technology. The local high throughput and low latency
persistent storage would alleviate the traffic congestion on the
network between compute nodes and the NAS. The distributed
filesystem mounted on the local persistent storage could (or
should) coexist with the parallel filesystem on NAS.

Network Fabric
AT
N ENNEEEEENAENEEEEEEEE AR
& & St R :
ompute orage Resource: H
SERES RS
NIFN=NIENIENIENISN
NAS } =
by RARPIRPRIIRPRR
gL I Network Link(s) B) s s TH R TR
Fie O L
(e SENINIRE SRR
,,,,,,% < l;‘a“\r‘“‘_ <) ‘1]"
N \‘%\V S F H
1“\ NI NS N NS e NS E N i}
Nt ‘r: H
I
T

£
=)
H
I
i

o —

Fig. 2. The architecture of HPC systems with local persistent storage:
distributed filesystem deployed on the local persistent storage coexists with
remote parallel filesystem on NAS.

The FusionFS metadata management relies on a distributed
hash table, namely Zero-Hop Distributed Hash Table (ZHT)
[4]. FusionFS has different data structures for managing
regular files and directories, although both regular files and
directories do share some common fields. Conventional i-node
information like permissions can be found in both file types.
For a regular file, a field called addr records the node address
of its primary copy. Replicas are stored in the k (default is 1)
nearest neighbors, so the replica address does not need to be
stored. For a directory, there is a field called filelist to record
all the files under this directory. This field is particularly useful
for providing an in-memory speed for directory read, e.g. “Is
/dev/FusionFS”. This list also plays the key role to maintain
the tree-like hierarchy of FusionFS.

Page 1 of 2

Published at IEEE/ACM Supercomputing *12, Doctoral Showcase

D. Zhao and I. Raicu

The high-level modules of FusionFS implementation is
shown in Figure 3. Each compute node behaves the same
role in FusionFS and nothing is centralized at all. These
compute nodes are normally interconnected by some high
performance network (e.g. 3-D torus in IBM BlueGene/P).
The high bandwidth of the node-to-node communication is
crucial to the success of FusionFS.

A HPC system of #n compute nodes with FusionFS

Compute Node #1 Compute Node #2

Metadata Service
Data Transfer Service

Local
Storag

Is - ./FusionFS_Mount/

(el
il

Fig. 3. Overview of FusionFS architecture

Components of each compute node are briefly explained in
the following:

1) FUSE: FUSE is the Linux kernel module that monitors
any I/O requests made to FusionFS.

2) libfuse: libfuse is a user-level library that interprets the
incoming POSIX-compliant file requests into FusionFS
implementation.

3) FusionFS Core: This module implements all the FUSE
interfaces to manipulate POSIX file operations.

4) FusionFS Utilities: This module provides miscellaneous
utilities supporting local FusionFS Core module and
local services, as well as communication to remote
compute nodes.

5) Metadata Service: It is a daemon service dedicated for
metadata manipulations.

6) Data Transfer Service: It is a daecmon service that
handles data transfer.

7) Local Storage: We assume there is a high performance
persistent storage (e.g. SSD) attached to each compute
node.

FusionFS is implemented with C/C++ and Shell scripts,
consisting of about 20K lines of code in total, excluding
2 third-party libraries: the Google Protocol Buffers [2] and
UDT [3]. Protocol Buffers is used to serialize C/C++ structures
into strings and deserialize strings back to structures. UDT
provides the underlying infrastructure and APIs to transfer data
in FusionFS.

III. EVALUATION

We deployed FusionFS on the IBM BlueGene/P supercom-
puter (i.e. Intrepid) at Argonne National Laboratory. Each
node has one 850MHz quad-core processor and 2GB RAM.
Figure 4 shows that when each node creates 10K files at
1024-node scale, FusionFS has nearly two orders of magnitude
higher performance over GPFS. The gap between GPFS and
FusionFS metadata access cost will continue to grow as 8
nodes seem to be enough to saturate the metadata servers of
GPFS.

—+—FusionFS
1000000
~8-GPFS

100000 //
10000 /
1000 /

~——
100

OPs/ Sec (many directories)

10

1 2 4 8 16 32 64 128 256 512 1024
Number of Nodes

Fig. 4. Comparison of metadata performance between FusionFS and GPFS
on IBM BlueGene/P (many directories)

IV. CONCLUSION

We believe the radical storage architecture changes pro-
posed by FusionFS will make exascale computing more
tractable. Our main message is that by combining lessons
learned from parallel file systems and distributed file systems,
along with new advances in hardware (e.g. SSD), we can
define a new storage architecture that is optimized for future
high-end computing at extreme scales.

REFERENCES
[1] FUSE Project. http://fuse.sourceforge.net/.
[2] Google protocol buffers.

http://code.google.com/p/protobuf/.

[3] Y. Gu and R. L. Grossman. Supporting configurable con-
gestion control in data transport services. In Proceedings
of the 2005 ACM/IEEE conference on Supercomputing,
SC ’0s.

[4] T. Li, X. Zhou, K. Brandstatter, D. Zhao, K. Wang,
A. Rajendran, Z. Zhang, and I. Raicu. Zht: A light-weight
reliable persistent dynamic scalable zero-hop distributed
hash table. In Proceedings of the 2013 IEEE 27th Interna-
tional Symposium on Parallel and Distributed Processing,
IPDPS ’13.

[5] L Raicu, I. T. Foster, and P. Beckman. Making a case for
distributed file systems at exascale. In Proceedings of the
third international workshop on Large-scale system and
application performance, LSAP 11.

Page 2 of 2

