
Paving the Road to Exascale with Many-Task Computing
Ke Wang

Department of Computer Science
Illinois Institute of Technology

Chicago, IL, USA

kwang22@hawk.iit.edu

Anupam Rajendran
Department of Computer Science

Illinois Institute of Technology
Chicago, IL, USA

arajend5@hawk.iit.edu

Kevin Brandstatter
Department of Computer Science

Illinois Institute of Technology
Chicago, IL, USA

kbrandst@hawk.iit.edu

Zhao Zhang
Department of Computer Science

University of Chicago
Chicago, IL, USA

zhaozhang@uchicago.edu

Ioan Raicu
Department of Computer Science

Illinois Institute of Technology
Chicago, IL, USA

iraicu@cs.iit.edu

ABSTRACT

Exascale systems will bring significant challenges. This work

attempts to addresses them through the Many-Task Computing

(MTC) paradigm, by delivering data-aware job scheduling

systems and fully asynchronous distributed architectures. MTC

applications are structured as DAG graphs of tasks, with

dependencies forming the edges. The asynchronous nature of

MTC makes it more resilient than traditional HPC approaches as

the system MTTF decreases. Future highly parallelized hardware

is well suited for achieving high throughput with large-scale MTC

applications. This work proposes a distributed MTC execution

fabric for exascale, MATRIX, which adopts work stealing to

achieve load balance. Work stealing was studied through

SimMatrix, a scalable simulator, up to exascale with millions of

nodes, billions of cores, and trillions of tasks.

1. INTRODUCTION
Predictions are that 2019 will be the year of exascale with

millions of nodes and billions of threads of execution [1]. With

billions of threads of concurrency, we expect that the applications

running on an Exascale machine would be decomposed with large

number of tasks with very finer granularity in both size and

duration, along with large volume of data.

Driven by the embarrassingly parallel tasks and the quantity of

data, Many-Task Computing (MTC) was proposed [2] to bridge

the gap between HPC and HTC. Many MTC applications are

structured as graphs of discrete tasks, with input and output

dependencies forming the graph edges. MTC applications often

demand a short time to solution, may be communication intensive

or data intensive [3]. For many applications, a graph of distinct

tasks is a natural way to conceptualize the computation. Examples

of MTC systems are various workflow systems, such as Swift [4],

MapReduce systems, such as MapReduce [5], distributed run-

time systems such as Charm++ [6], and light-weight task

execution frameworks , such as Falkon [7], Sparrow [8]). We

believe that the task execution framework of MTC would be

distributed. However, with distributed architecture, issues can

arise in balancing loads across all servers.

Load balancing refers to distribute workloads evenly across nodes

of a supercomputer. This work adopts work stealing [9] to achieve

distributed load balancing, where the idle processors steal tasks

from the heavily-loaded ones. We explore the performance of

work stealing in SimMatrix and MATRIX, which are simulator

and real system of task execution framework, respectively.

2. RELATED WORK
The earliest batch job schedulers are Condor [10], Slurm [11]. All

these systems target as the HPC or HTC applications, and lack the

granularity of scheduling jobs at node/core level, making them

hard to be applied to the MTC applications. What’s more, the

centralized dispatcher in these systems suffers scalability and

reliability issues. Falkon [7] is a light-weight task execution

framework with both centralized and hierarchical architectures for

MTC workload, and although it scaled and performed several

orders magnitude better than the traditional batch schedulers, it

even cannot scale to petascale systems [12]. Sparrow [8] is

another hierarchical task execution framework targeting at sub-

second tasks. However the Java-based framework is very hard to

be deployed on supercomputers.

3. TASK EXECUTION FRAMEWORK

3.1 SimMatrix
SimMatrix [13] is a simulator for MTC execution fabric at

exascale. The architectures of SimMatrix are shown in Figure 1.

For simplicity, we assign consecutive integer numbers as the node

ids, ranging from 0 to the number of node N-1. SimMatrix

supports the granularity of scheduling at the node/core level at

extreme scales. The system could be centralized (Figure 1 left

part), where a single dispatcher maintains a task queue and

manages the task submission, task assignment, and task execution

state updates. It could also be distributed (Figure 1 right part),

where each computing node maintains a task execution framework,

and they cooperate with each other to achieve load balancing

through work stealing technique.

Figure 1: SimMATRIX architectures

3.2 MATRIX
MATRIX is a distributed MTC execution framework that

implements work stealing technique. MATRIX uses ZHT [14], a

distributed zero hop key-value store, to manage job metadata, to

submit tasks, and to monitor the task execution progress. The

components of MATRIX and the communication signals among

them are shown in Figure 2. The client is a benchmarking tool that

issues request to generate a set of tasks to be executed. The client

has a task dispatcher that helps submit workload to the compute

nodes. A compute node can also be referred as worker node that

has a task execution unit along with a ZHT server for managing

the metadata of every task.

Client

Compute node
Compute node

Compute node

submit tasks (1)

lookup task status (2)

send task status (3)

request load (4)

request load (4)

se
nd

 lo
ad

 (
5)

send load (5)

request tasks (6)

send tasks (7)

Figure 2: MATRIX components and communication signals

Upon request from the client, with the help of ZHT, the task

dispatcher initializes the workload of given type and submits tasks

to one arbitrary node, or to all the nodes in a balanced distribution.

All compute nodes execute tasks, and distribute the workload

among them adaptively to achieve load balancing via the work

stealing algorithm. The client periodically monitors the status of

workload until all the tasks are executed.

4. PERFORMANCE EVALUATION
SimMatrix runs on a single-node machine, and is validated

against MATRIX. Through SimMatrix, we explore important

parameters of work stealing that are important to the performance,

such as the number of tasks to steal, the number of neighbors to

steal tasks, static/dynamic neighbors and poll interval. We have

scaled SimMatrix to exascale with millions of nodes, billions of

cores, and hundreds of billions tasks. In Figure 3, we show that

work stealing is the approach to exascale to achieve distributed

load balancing. Each node is configured to have 1000 cores, and

the number of tasks is ten times of the number of cores. We see

that even at exascale with work stealing, SimMatrix can achieve

about 90% efficiency.

5. CONCLUSION & FUTURE WORK
Distributed load balancing is critical for designing job schedulers.

Work stealing is a potential technique to achieve distributed load

balancing across many concurrent threads of execution. We will

continue to develop the MATRIX system, and plan to test it on

the newly built IBM Blue Gene/Q supercomputer at a full 768K-

core (3M hardware threads) scale. MATRIX will also be

integrated with other projects, such as MapReduce and FusionFS

file system to support data-aware scheduling, and large scale

programming runtime systems, such as Charm++ to explore

different load balancing techniques.

0.00

0.01

0.02

0.03

0.04

0.05

0%

20%

40%

60%

80%

100%

1 4 16

64

25
6

10
24

40
96

16
38

4

65
53

6

26
21

44

10
48

57
6

C
o

-V
a
ri

a
n

c
e

E
ff

ic
ie

n
c
y

Scale (No. of Nodes)

Efficiency

Co-Variance

Figure 3: Running SimMatrix at exascale

6. REFERENCES
[1] V. Sarkar, et al. “ExaScale Software Study: Software Challenges in

Extreme Scale Systems”, ExaScale Computing Study, DARPA

IPTO, 2009.

[2] I. Raicu, Y. Zhao, I. Foster, “Many-Task Computing for Grids and

Supercomputers,” 1st IEEE Workshop on Many-Task Computing on

Grids and Supercomputers (MTAGS) 2008.

[3] I. Raicu et. al. “Towards Data Intensive Many-Task Computing”,

book chapter in Data Intensive Distributed Computing: Challenges

and Solutions for Large-Scale Information Management, IGI Global

Publishers, 2011.

[4] Y. Zhao et. al. “Swift: Fast, Reliable, Loosely Coupled Parallel

Computation,” IEEE Workshop on Scientific Workflows 2007.

[5] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing

on Large Clusters,” Comm. ACM, Jan. 2008, pp. 107-113.

[6] G. Zhang, et. al, “Hierarchical Load Balancing for Charm++

Applications on Large Supercomputers,” In Proceedings of the 2010

39th International Conference on Parallel Processing Workshops,

ICPPW 10, pages 436-444, Washington, DC, USA, 2010.

[7] I. Raicu, et. al. “Falkon: A Fast and Light-weight tasK executiON

Framework,” IEEE/ACM SC 2007.

[8] K. Ousterhout et. al. “Batch Sampling: Low Overhead Scheduling

for Sub-Second Prallel Jobs.” University of California, Berkeley,

2012.

[9] R. D. Blumofe et. al. “Scheduling multithreaded computations by

work stealing,” In Proc. 35th FOCS, pages 356–368, Nov. 1994.

[10] J. Frey et. al. “Condor-G: A Computation Management Agent for

Multi-Institutional Grids,” Cluster Computing, 2002

[11] M. A. Jette et. al, Slurm: Simple linux utility for resource

management. Proceedings of Job Scheduling Strategies for Prarallel

Procesing (JSSPP) 2003 (2002), Springer-Verlag, pp. 44-60.

[12] I. Raicu, et. al. “Toward Loosely Coupled Programming on Petascale

Systems,” IEEE SC 2008.

[13] K. Wang, K. Brandstatter, I. Raicu. “SimMatrix: Simulator for

MAny-Task computing execution fabRIc at eXascales”, ACM HPC

2013.

[14] T. Li, et. al. “ZHT: A Light-weight Reliable Persistent Dynamic

Scalable Zero-hop Distributed Hash Table”, 27th IEEE International

Parallel & Distributed Processing Symposium (IPDPS), 2013.

