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ABSTRACT 

Exascale systems will bring significant challenges. This work 

attempts to addresses them through the Many-Task Computing 

(MTC) paradigm, by delivering data-aware job scheduling 

systems and fully asynchronous distributed architectures. MTC 

applications are structured as DAG graphs of tasks, with 

dependencies forming the edges. The asynchronous nature of 

MTC makes it more resilient than traditional HPC approaches as 

the system MTTF decreases. Future highly parallelized hardware 

is well suited for achieving high throughput with large-scale MTC 

applications. This work proposes a distributed MTC execution 

fabric for exascale, MATRIX, which adopts work stealing to 

achieve load balance. Work stealing was studied through 

SimMatrix, a scalable simulator, up to exascale with millions of 

nodes, billions of cores, and trillions of tasks.   

1. INTRODUCTION 
Predictions are that 2019 will be the year of exascale with 

millions of nodes and billions of threads of execution [1]. With 

billions of threads of concurrency, we expect that the applications 

running on an Exascale machine would be decomposed with large 

number of tasks with very finer granularity in both size and 

duration, along with large volume of data.  

Driven by the embarrassingly parallel tasks and the quantity of 

data, Many-Task Computing (MTC) was proposed [2] to bridge 

the gap between HPC and HTC. Many MTC applications are 

structured as graphs of discrete tasks, with input and output 

dependencies forming the graph edges. MTC applications often 

demand a short time to solution, may be communication intensive 

or data intensive [3]. For many applications, a graph of distinct 

tasks is a natural way to conceptualize the computation. Examples 

of MTC systems are various workflow systems, such as Swift [4], 

MapReduce systems, such as MapReduce [5], distributed run-

time systems such as Charm++ [6], and light-weight task 

execution frameworks , such as Falkon [7], Sparrow [8]). We 

believe that the task execution framework of MTC would be 

distributed. However, with distributed architecture, issues can 

arise in balancing loads across all servers.  

Load balancing refers to distribute workloads evenly across nodes 

of a supercomputer. This work adopts work stealing [9] to achieve 

distributed load balancing, where the idle processors steal tasks 

from the heavily-loaded ones. We explore the performance of 

work stealing in SimMatrix and MATRIX, which are simulator 

and real system of task execution framework, respectively.   

2. RELATED WORK 
The earliest batch job schedulers are Condor [10], Slurm [11]. All 

these systems target as the HPC or HTC applications, and lack the 

granularity of scheduling jobs at node/core level, making them 

hard to be applied to the MTC applications. What’s more, the 

centralized dispatcher in these systems suffers scalability and 

reliability issues. Falkon [7] is a light-weight task execution 

framework with both centralized and hierarchical architectures for 

MTC workload, and although it scaled and performed several 

orders magnitude better than the traditional batch schedulers, it 

even cannot scale to petascale systems [12]. Sparrow [8] is 

another hierarchical task execution framework targeting at sub-

second tasks. However the Java-based framework is very hard to 

be deployed on supercomputers. 

3. TASK EXECUTION FRAMEWORK 

3.1 SimMatrix 
SimMatrix [13] is a simulator for MTC execution fabric at 

exascale. The architectures of SimMatrix are shown in Figure 1.  

 

 

For simplicity, we assign consecutive integer numbers as the node 

ids, ranging from 0 to the number of node N-1. SimMatrix 

supports the granularity of scheduling at the node/core level at 

extreme scales. The system could be centralized (Figure 1 left 

part), where a single dispatcher maintains a task queue and 

manages the task submission, task assignment, and task execution 

state updates. It could also be distributed (Figure 1 right part), 

where each computing node maintains a task execution framework, 

and they cooperate with each other to achieve load balancing 

through work stealing technique. 

Figure 1: SimMATRIX architectures 



3.2 MATRIX 
MATRIX is a distributed MTC execution framework that 

implements work stealing technique. MATRIX uses ZHT [14], a 

distributed zero hop key-value store, to manage job metadata, to 

submit tasks, and to monitor the task execution progress. The 

components of MATRIX and the communication signals among 

them are shown in Figure 2. The client is a benchmarking tool that 

issues request to generate a set of tasks to be executed. The client 

has a task dispatcher that helps submit workload to the compute 

nodes. A compute node can also be referred as worker node that 

has a task execution unit along with a ZHT server for managing 

the metadata of every task. 
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Figure 2: MATRIX components and communication signals 

Upon request from the client, with the help of ZHT, the task 

dispatcher initializes the workload of given type and submits tasks 

to one arbitrary node, or to all the nodes in a balanced distribution. 

All compute nodes execute tasks, and distribute the workload 

among them adaptively to achieve load balancing via the work 

stealing algorithm. The client periodically monitors the status of 

workload until all the tasks are executed.  

4. PERFORMANCE EVALUATION 
SimMatrix runs on a single-node machine, and is validated 

against MATRIX. Through SimMatrix, we explore important 

parameters of work stealing that are important to the performance, 

such as the number of tasks to steal, the number of neighbors to 

steal tasks, static/dynamic neighbors and poll interval. We have 

scaled SimMatrix to exascale with millions of nodes, billions of 

cores, and hundreds of billions tasks. In Figure 3, we show that 

work stealing is the approach to exascale to achieve distributed 

load balancing. Each node is configured to have 1000 cores, and 

the number of tasks is ten times of the number of cores. We see 

that even at exascale with work stealing, SimMatrix can achieve 

about 90% efficiency.  

5. CONCLUSION & FUTURE WORK 
Distributed load balancing is critical for designing job schedulers. 

Work stealing is a potential technique to achieve distributed load 

balancing across many concurrent threads of execution. We will 

continue to develop the MATRIX system, and plan to test it on 

the newly built IBM Blue Gene/Q supercomputer at a full 768K-

core (3M hardware threads) scale. MATRIX will also be 

integrated with other projects, such as MapReduce and FusionFS 

file system to support data-aware scheduling, and large scale 

programming runtime systems, such as Charm++ to explore 

different load balancing techniques. 

0.00 

0.01 

0.02 

0.03 

0.04 

0.05 

0% 

20% 

40% 

60% 

80% 

100% 

1 4 16
 

64
 

25
6 

10
24

 

40
96

 

16
38

4 

65
53

6 

26
21

44
 

10
48

57
6 

C
o

-V
a
ri

a
n

c
e
 

E
ff

ic
ie

n
c
y

 

Scale (No. of Nodes) 

Efficiency 

Co-Variance 

 

Figure 3: Running SimMatrix at exascale 

6. REFERENCES 
[1] V. Sarkar, et al. “ExaScale Software Study: Software Challenges in 

Extreme Scale Systems”, ExaScale Computing Study, DARPA 

IPTO, 2009.  

[2] I. Raicu, Y. Zhao, I. Foster, “Many-Task Computing for Grids and 

Supercomputers,” 1st IEEE Workshop on Many-Task Computing on 

Grids and Supercomputers (MTAGS) 2008. 

[3] I. Raicu et. al. “Towards Data Intensive Many-Task Computing”, 

book chapter in Data Intensive Distributed Computing: Challenges 

and Solutions for Large-Scale Information Management, IGI Global 

Publishers, 2011. 

[4] Y. Zhao et. al. “Swift: Fast, Reliable, Loosely Coupled Parallel 

Computation,” IEEE Workshop on Scientific Workflows 2007. 

[5] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing 

on Large Clusters,” Comm. ACM, Jan. 2008, pp. 107-113.  

[6] G. Zhang, et. al, “Hierarchical Load Balancing for Charm++ 

Applications on Large Supercomputers,” In Proceedings of the 2010 

39th International Conference on Parallel Processing Workshops, 

ICPPW 10, pages 436-444, Washington, DC, USA, 2010. 

[7] I. Raicu, et. al. “Falkon: A Fast and Light-weight tasK executiON 

Framework,” IEEE/ACM SC 2007. 

[8] K. Ousterhout et. al. “Batch Sampling: Low Overhead Scheduling 

for Sub-Second Prallel Jobs.” University of California, Berkeley, 

2012. 

[9] R. D. Blumofe et. al. “Scheduling multithreaded computations by 

work stealing,” In Proc. 35th FOCS, pages 356–368, Nov. 1994. 

[10] J. Frey et. al. “Condor-G: A Computation Management Agent for 

Multi-Institutional Grids,” Cluster Computing, 2002 

[11] M. A. Jette et. al, Slurm: Simple linux utility for resource 

management. Proceedings of Job Scheduling Strategies for Prarallel 

Procesing (JSSPP) 2003 (2002), Springer-Verlag, pp. 44-60. 

[12] I. Raicu, et. al. “Toward Loosely Coupled Programming on Petascale 

Systems,” IEEE SC 2008. 

[13] K. Wang, K. Brandstatter, I. Raicu. “SimMatrix: Simulator for 

MAny-Task computing execution fabRIc at eXascales”, ACM HPC 

2013. 

[14] T. Li, et. al. “ZHT: A Light-weight Reliable Persistent Dynamic 

Scalable Zero-hop Distributed Hash Table”, 27th IEEE International 

Parallel & Distributed Processing Symposium (IPDPS), 2013.


