
Opportunities and Challenges in Running Scientific Workflows on the Cloud

Yong Zhao

School of Computer Science and Engineering

Univ. of Electronic and Science Technology of China

Chengdu, China

yongzh04@gmail.com

Xubo Fei

Department of Computer Science

Wayne State University

Detroit, USA

xubo@wayne.edu

Ioan Raicu

Department of Computer Science

Illinois Institute of Technology

Chicago, USA

iraicu@iit.edu

Shiyong Lu

Department of Computer Science

Wayne State University

Detroit, USA

shiyong@wayne.edu

Abstract— Cloud computing is gaining tremendous momentum

in both academia and industry. The application of Cloud

computing, however, has mostly focused on Web applications

and business applications; while the recognition of using Cloud

computing to support large-scale workflows, especially data-

intensive scientific workflows on the Cloud is still largely

overlooked. We coin the term “Cloud Workflow”, to refer to

the specification, execution, provenance tracking of large-scale

scientific workflows, as well as the management of data and

computing resources to enable the execution of scientific

workflows on the Cloud. In this paper, we analyze why there

has been such a gap between the two technologies, and what it

means to bring Cloud and workflow together; we then present

the key challenges in running Cloud workflow, and discuss the

research opportunities in realizing workflows on the Cloud.

Cloud computing; Scientific Workflow; Cloud workflow;

Data Intensive Computing

I. INTRODUCTION

Governments, research institutes, and industry leaders are
rushing to adopt Cloud Computing to solve their ever-
increasing computing and storage problems arising in the
Internet age. There has been a burgeoning of Cloud
platforms and applications in both academia and industry.
Only in a few years after Amazon released its Elastic
Computing Cloud (EC2) and Simple Storage Service (S3) to
the public, Google released App Engine, IBM unveiled
“Blue Cloud” [1]; and Microsoft also rolled out the Azure
Services Platform [2]. There are also quite a few open source
Cloud computing platforms such as Hadoop, Eucalyptus
[19], and Nimbus [13].

We define Cloud computing as a large-scale distributed
computing paradigm that is driven by economies of scale, in
which a pool of abstracted, virtualized, dynamically-scalable,
managed computing power, storage, platforms, and services
are delivered on demand to external customers over the
Internet [4].

There are a couple of major benefits and advantages that
are driving the widespread adoption of the Cloud computing
paradigm:

1) Development based on an abstract computing model:
most Cloud computing platforms hide the complexity of the
Cloud by providing an abstract computing model; 2)
Scalability on demand: once an application is deployed onto
the Cloud, the application can be automatically made
scalable by provisioning the resources in the Cloud on
demand, and the Cloud takes care of scaling out and in, and
load balancing; 3) Better resource utilization: Cloud
platforms can coordinate resource utilization according to
resource demand of the applications hosted in the Cloud; and
4) Cost saving: Cloud users are charged based on their
resource usage in the Cloud, they only pay for what they use,
and if their applications get optimized, that will be reflected
into a lowered cost immediately.

Such Cloud platforms, however, have mostly been
applied to Web applications and business applications, there
is a missing link that is to manage and run workflow
applications, especially data-intensive scientific workflows
on the Cloud. The current state of workflow organization on
the Cloud has been either 1) static predefined pipelines based
on batch style scripts or graphs based on the MapReduce [9]
programming model; 2) ad hoc mash-up’s that are connected
together with, again, scripts that parse the output of one web
application and feed into another.

Although several scientific workflow management
systems (SWFMSs) have been successfully applied over a
number of execution environments (local hosts,
clusters/grids, and supercomputers), Cloud computing
provides a paradigm-shifting utility-oriented computing
model in terms of the unprecedented size of datacenter-level
resource pool and the on-demand resource provisioning
mechanism, enabling scientific workflow solutions capable
of addressing peta-scale scientific problems.

We coin the term “Cloud Workflow”, to refer to the
specification, execution, and provenance tracking of
scientific workflows, as well as the management of data and
computing resources to enable the running of scientific
workflows on the Cloud. In the rest of this paper, we discuss
what it means to bring Cloud and workflow together; present
the key challenges in supporting Cloud workflows, and

identify key research opportunities in realizing workflows on
the Cloud.

II. OPPORTUNITIES

We have seen the success of the Internet and Web largely
due to the incentive of being connected and the TCP/IP
protocol that makes such connectivity possible. While the
incentive of providing computing as a utility has long been
envisioned, the underlying technology that makes it possible
has finally come [5]. The illusion of infinite computing
resources that is provided by Cloud Computing on demand
to end users is fascinating to a wide range of science and
engineering applications, particularly to data and/or
compute-intensive scientific workflow applications.

First, the scale of scientific problems that can be
addressed by scientific workflows is now greatly increased,
which was previously upbounded by the size of a dedicated
resource pool with limited resource sharing extension in the
form of virtual organizations.

The scale of scientific problems is reflected not only on
the data sizes that scientific applications need to handle, but
also on the complexities of the applications themselves. For
data sizes, the scientific community is facing a “data deluge”
coming from experiments, simulations, sensors, and
satellites. For example, the archival data from the National
Virtual Observatory for sky- and ground-based observatory
is estimated to cover 40,000 square degrees of the sky and to
be a few petabytes. The rate of growth of DNA databases
such as GenBank [4] has been following an exponential
trend, with a doubling time estimated to be 9-12 months.
Data volumes are also increasing dramatically in physics,
earth science, medicine, and many other disciplines. As for
application complexity, a protein simulation problem [27]
involves running many instances of a structure prediction
simulation, each with different random initial conditions.
The simulation uses an “iterative fixing” algorithm that
performs multiple rounds, each involving many parallel
Monte Carlo simulated annealing models of molecular
moves with energy minimization. Given a couple of proteins
and parameter options, the simulation can easily scale up to
100,000 rounds. Similar analyses in other disciplines also
need to explore a large parameter space, and expect a fast
turn-around time. Cloud platforms can offer vast amount of
storage space as well as computing resources for such
applications, allowing scientific discoveries to be carried out
in an unprecedented scale.

Second, the on-demand resource allocation mechanism in
Cloud has a number of advantages over the traditional
cluster/Grid environments for scientific workflows:

a) It will improve resource utilization. Workflows
usually have multiple stages, where the number of resources
required for the stages may vary a lot (for instance, scatter
and gather is a common pattern observed in scientific
workflows where nodes tend to expand at the scatter stage,
and then merge at the gather stage). Cloud-based workflow
applications can get resources allocated accordingly with the
number of nodes at each stage, instead of reserving a fixed
number of resources.

b) It can change the experience of end users for
improved responsiveness. Cloud workflows can scale out
and in dynamically, resulting a fast turn-around time for end
users.

c) It could also enable a new generation of scientific
workflows - collaborative scientific workflows [18], in
which user interaction and collaboration patterns are first-
class entities for scientific workflow management. User
interaction and collaboration intensive scientific workflows
have been difficult to implement in a Grid environment as it
is more suitable for batch-based scientific workflows.

Third, Cloud computing provides a much larger room for
the trade-off between performance and cost. The spectrum of
resource investment now ranges from dedicated private
resources, a hybrid resource pool combining local resource
and remote clouds, and a full outsourcing of computing and
storage to public Clouds. Cloud Computing not only
provides the potential of solving larger-scale scientific
problems, but also brings the opportunity to improve the
performance/cost ratio. Although the optimization of this
ratio and a flexible (semi-)automatic trade-off mechanism
still remain as challenging problems; see a recent case study
in this direction [15].

III. CHALLENGES

Despite the advantages and opportunities we can seek in
Cloud computing for scientific workflows, there are many
major obstacles to the adaptation and running of scientific
workflows on the Cloud, we identify a few of them below:

Architectural challenges: in our scientific workflow
system reference architecture, we define an SWFMS to have
four layers – operational layer, task management layer,
workflow management layer, and presentation layer. To
engineer an SWFMS into Clouds, it may not be as simple as
to replace the operational layer with a Cloud infrastructure
and that is the end of the integration story. We may need to
take a bottom-up approach and evaluate the requirements,
looking at integration problems at the other three layers as
well, to address compatibility and impedance problems that
may be introduced by different Cloud providers and
implementations.

Integration challenges: many of the immediate challenges
of running scientific workflows on the Cloud are to integrate
scientific workflow systems with Cloud infrastructure and
resources. In most cases, we will need to change the way an
SWFMS acquires resources, dispatches tasks, monitors the
progress of those tasks, tracks provenance information, and
how it deals with errors and exceptions in the Cloud.

Computing challenges: for scientific workflows to
leverage large scale computing resources in the Cloud, there
are challenges such as resource requirements and
provisioning, virtualization, fault tolerance, and smart-
reruns.

Data management challenges: running workflows in the
Cloud has to deal with data moving in and out of the Cloud,
large scale data storage within the Cloud, and the exploration
of data locality, data and computation co-location issues for
efficiency purpose, and the tracking of data provenance in
order to understand and reuse workflows.

 Language challenges: so far in the Cloud, MapReduce
has been the “only” widely adopted computing model, and
there are a number of variations of languages based on this
model for task specification in the Cloud. Examples are
Sawzall [20], DryadLINQ [29], etc. However, a workflow
specification requires far more functionality and flexibility
than MapReduce can provide, and the implicit semantics
incurred by a workflow specification goes far more than just
the “map” and “reduce” operations, for instance, the
mapping of computation to compute node and data
partitions, runtime optimization, retry on error, smart re-run,
etc. The specification and the corresponding implementation
of the specification would carry about all the computing, data
management challenges associated with interpreting and
executing the specification.

Last but not the least, is service management challenges,
as Clouds are mostly built on top of service oriented
architecture, and SWFMSs are also shifting from
conventional applications to service invocations. We need to
deal with service discovery, large input and output handling,
data services, and all the other challenges that we are facing
in migrating applications into a service world.

A. Architectural challenge

Based on a comprehensive study of the workflow
literature from an architectural perspective and our own
experience from the development of the VIEW system
[10][16][17] and Swift [31], we identify the following seven
key architectural requirements for an SWFMS: (R1) User
interface customizability and user interaction support; (R2)
Reproducibility support; (R3) Heterogeneous and distributed
services and software tools integration; (R4) Heterogeneous
and distributed data product management; (R5) High-end
computing support; (R6) Workflow monitoring and failure
handling; and (R7) Interoperability.

A reference architecture for SWFMSs is proposed in [16]
and an SOA-based instantiation is first implemented in the
VIEW system. As shown in Figure 2, the reference
architecture consists of four logical layers, seven major
functional subsystems, and six interfaces. The first layer is
the Operational Layer, which consists of a wide range of
heterogeneous and distributed data sources, software tools,
services, and their operational environments, including high-
end computing environments. The second layer is called the
Task Management Layer. This layer consists of three
subsystems: Data Product Management, Provenance
Management, and Task Management. The third layer, called
the Workflow Management Layer, consists of Workflow
Engine and Workflow Monitoring. Finally, the fourth layer –
the Presentation Layer, consists of the Workflow Design
subsystem and the Presentation and Visualization subsystem.
A detailed description of the architecture is available in [20].

We argue that the above reference architecture is still
valid for a Cloud-enabled SWFMS. Such validity has been
achieved by the layered approach of the reference
architecture and the main design principle behind the
architecture: with the fast advancement of underlying
computing technology, upper layers of the reference
architecture should not be disturbed. The reference

architecture provides the guidance for designing a concrete
solution for a particular SWFMS. Here, we consider four
possible solutions for deploying the proposed reference
architecture in a Cloud computing environment:

• Operational-Layer-in-the-Cloud. In this solution,

only the Operational Layer lies in the Cloud with an
SWFMS running out of the Cloud. An SWFMS can now
leverage Cloud applications as another type of task
components. Cloud-based applications can take advantage of
high scalability provided by the Cloud and large resource
capacity provisioned by data centers. This solution also
relieves a user from the concern of vendor lock-in due to the
relative ease of using alternative Cloud platforms for running
Cloud applications. However, the SWFMS itself cannot
benefit from the scalability offered by the Cloud.

• Task-Management-Layer-in-the-Cloud. In this

solution, both the Operational Layer and the Task
Management Layer will be deployed in the Cloud. In
contrast to traditional deployment strategies, Data Product
Management, Provenance Management, and Task
Management can now leverage the high scalability provided
by the Cloud. For Task Management, rather than
accommodating the user’s request based on a batch-based
scheduling system, all or most ready tasks can now be
immediately deployed over Cloud computing nodes and
executed instead of waiting in a job queue for the availability
of resources. One limitation of this solution is that the
economic cost associated with the storage of provenance and
data products in the Cloud. Moreover, although task
scheduling and management can benefit from the scalability
offered by the Cloud, workflow scheduling and management
do not since the workflow engine runs outside of the Cloud.

Figure 2 A reference architecture for SWFMSs [16].

• Workflow-Management-Layer-in-the-Cloud. In this

solution, the Operational Layer, the Task Management
Layer, and the Workflow Management Layer are deployed in
the Cloud with the Presentation Layer deployed at a client
machine. This solution provides a good balance between
system performance and usability: the management of
computation, data, and storage and other resources are all
encapsulated in the Cloud, while the Presentation Layer
remains at the Client to support the key architectural

requirement of user interface customizability and user
interaction support [20]. Such a solution is also most suitable
for a scientific workflow application system in which ad hoc
domain-specific requirements are constantly evolving,
demanding frequent changes to the Presentation Layer for
that domain. In this solution, both workflow and task
management can benefit from the scalability offered by the
Cloud, but the downside is that they become more dependent
on the Cloud platform over which they run.

• All-in-the-Cloud. In this solution, a whole SWFMS

is deployed inside the Cloud and accessible via a Web
browser. A distinct feature of this solution is that no software
installation is needed for a scientist and the SWFMS can
fully take advantage of all the services provided in a Cloud
infrastructure. Moreover, the cloud-based SWFMS can
provide highly scalable scientific workflows and task
management as services, providing one kind of Software-as-
a-Service (SaaS). One concern the user might have is the
economic cost associated with the necessity of using Cloud
on a daily basis, the dependency on the availability and
reliability of the Cloud, as well as the risk associated with
vendor lock-in.

As we described, each of the above solutions has its cons
and pros. In practice, a hybrid approach might also be
desirable, in which for each layer, one subsystem or a piece
of the subsystem is deployed in the Cloud, while the rest is
deployed outside of the Cloud. For each solution, a refined
microarchitecture for each layer and subsystem desires
further research. We are currently experimenting with the
last two solutions in the context of the VIEW system. Our
research results will be presented in a future publication.

B. Integration challenge

Many of the immediate challenges to running scientific
workflows on the Cloud are to integrate scientific workflow
systems with Cloud infrastructure and resources. As we have
discussed in the previous section, the degree of integration
also depends on how we choose to deploy an SWFMS into
Clouds. While we certainly cannot cover all aspects of the
integration problems that we could encounter in the “all-in-
the-cloud” approach, we strive to identify some practical
ones and discuss possible solutions to them.

Applications, services, and tools integration: In the
operational-layer-in-the-Cloud approach, we treat
applications, services, and tools hosted in the Cloud as task
units in a workflow, the scheduling and management of a
workflow are mostly outside the Cloud, where these task
units are invoked as they are scheduled to execute. A
majority of the mashup sites (such as those that leverage
Google’s map service) take this approach, and they use ad
hoc scripts and programs to glue the services together. An
early exploration of the Taverna [14] workflow engine and
gRAVI services in the caBIG project [25] can also be
thought as an example of integrating an off-the-shelf
workflow engine with Cloud/Grid services.

Once we decide to get task dispatching and scheduling
into the Cloud, resource provisioning becomes the next issue
to resolve. Although conceptually Cloud offers uncapped
resources, and a workflow can request as much resource as it

requires, these all come with a cost, and presume that the
workflow engine can talk directly with the allocated resource
s(which is usually not true without tweaking the
configuration of the workflow engine). Taking these two
factors into consideration, some existing solutions such as
Nimbus would acquire a certain number of virtual machines,
and assemble them as a virtual cluster, onto which existing
cluster management systems such as PBS can be deployed
and used as job submission/execution service that a
workflow engine can directly interact with.

Debugging, monitoring, and provenance tracking for a
workflow can be even more difficult in the Cloud, since
compute resources are usually dynamically assigned and
based on virtual machine instances, the environment that a
task is executed on could be destroyed right after the task is
finished, and assigned to a complete different user and task.
Some Clouds also support task migration where tasks can be
migrated to another virtual machine if there is problem with
the node that the task is running on.

Porting an SWFMS into the Cloud can also be a concern,
which would usually involve wrapping up an SWFMS as a
Cloud service. To fully explore the capability and scalability
of the Cloud, a workflow engine may need to be re-
engineered to interact directly with various Cloud services
such as storage, resource allocation, task scheduling,
monitoring, etc. At the client side, either a complete Web-
based user interface needs to be developed to allow users to
specify and interact with the SWFMS, or a thin off-the-
Cloud client needs to be developed to interact with the
SWFMS Cloud service.

C. Language challenge

So far in the Cloud, MapReduce has been the “only”
widely adopted computing model, and there are a number of
variations of languages based on this model for task
specification in the Cloud. MapReduce provides a very
simple programming model and powerful runtime system for
the processing of large datasets. The programming model is
based on just two key functions: “map” and “reduce,”
borrowed from functional languages. The runtime system
automatically partitions input data and schedules the
execution of programs in a large cluster of commodity
machines. Sawzall [20] further simplifies the program
specification and task parallelization. It is an interpreted
language that builds on MapReduce and separates the
filtering and aggregation phases. Microsoft has developed
the Cosmos distributed storage system and dryad processing
framework, and offers DryadLINQ [29] and SCOPE [7] as
declarative programming model on top of the storage and
computing infrastructure. DryadLINQ uses the object
oriented LINQ query syntax where SCOPE provides basic
operators similar to those of SQL such as Select, Join,
Aggregation, etc., both translate the abstract specification
into a detailed execution plan.

While MapReduce and its variations provide certain data
flow support, they all require application logic to be re-
written to follow the map-reduce-merge programming
model. We call this kind of workflow organization the
“White-Box” approach, as users need to fully understand the

applications and port the applications before they can
leverage the parallel computing infrastructure. Moreover, the
data being processed also need to be stored in partitioned
fashion, such as in GFS, or HDFS, so that the partitions can
be operated in parallel.

SwiftScript [30][31], on the other hand, serves as a
general purpose coordination language, where existing
applications can be invoked without modification. We call
this the “Black-Box” approach, in which we focus more on
the input data and output data of each computing node, and
the flow of the data. Of course, some approaches will cross
the edge of being white or black, as some form of
modification or adaptation to the applications will be needed.

SwiftScript provides foreach and iterate operators that
correspond to the Map function in MapReduce, which
basically iterates over an array of data and performs a certain
operation on each of the data element in the array. For
functionalities similar to the Reduce and Combine operations
introduced above, it will have to rely on specific applications
that perform such operations. SwiftScript also uses implicit
parallelism: iterations are mapped into parallel operations
automatically, and independent tasks are scheduled to run in
parallel. The advantage to SwiftScript style workflows is that
the organization of applications and data can be more
flexible, and the execution of workflows can be scheduled to
run on a single box, or onto Grids and Clouds, as it does not
need to port existing applications, and does not rely on
specific data partitioning.

Mash-up’s and ad hoc scripts (Java Script, PHP, Python
etc.) have become key technologies for developing Web
applications that dynamically integrate multiple data or
service sources. They are essentially data integration
approaches, because they take the outputs from one
service/application, transform them and feed into another.
Google App Engine uses a modified Python runtime and
chooses Python scripting language for Web application
development. Clouds such as Amazon Web Services and
Microsoft’s Azure Services Platform have generally adopted
Web Services APIs where users access, configure and
program Cloud services using pre-defined APIs, and HTTP,
SOAP are the common protocols chosen for such services.

For Cloud workflow coordination, no matter what forms
of language we adopt, such as APIs and scripts provided by
the MapReduce computing model, or scripting languages
like SwiftScript, or service based business workflow like
BPEL, they all need to address the following challenges:

•Handle the mapping from input and output data into

logical structures to facilitate data integration and logical
operations on data.

• Support large-scale parallelism via either implicit

parallelism, or explicit declaratives such as Parallel Foreach.

• Support data partitioning and task partitioning.

Considering the scale of computation and data processing,
data and tasks need to be efficiently partitioned and
scheduled onto a large number of compute/storage nodes;
and processed in parallel to improve system throughput and
efficiency.

• Require a scalable, reliable, and efficient runtime

system that can support Cloud-scale task scheduling and
dispatching, provide error recovery and fault tolerance under
all kinds of hardware and service failures, and utilize a large
pool of Cloud resources efficiently.

D. Computing challenge

Although Clouds can potentially offer unlimited
resources to SWFMSs, managing large-scale of computing
resources is not a trivial task. As we have mentioned in the
integration challenge section, workflow systems may not be
able to talk to Cloud resources directly, they may still need to
go through middleware services such as Nimbus and Falkon
that handle resource provisioning and task dispatching.
Things can be even more complicated if we take into
consideration issues such as workflow resource
requirements, data dependencies, Cloud virtualization, etc.
Before we dive into details, let’s take a look at how
Amazon’s Elastic MapReduce service [3] handles a
workflow (well, to be more precise, a data flow):

Amazon Elastic MapReduce creates data processing job
flows that are executed in the Hadoop platform on the web-
scale infrastructure of Amazon EC2. The service
automatically launches and configures the number and type
of Amazon EC2 instances specified by customers. It then
kicks off a Hadoop implementation of the MapReduce
programming model, which loads large amounts of user
input data from Amazon S3 and then subdivides the data for
parallel processing on Amazon EC2 instances. As processing
completes, data are re-combined and reduced into a final
solution, and the results deposited back into Amazon S3.
Users can configure, manipulate, and monitor job flows
through web service APIs or via the AWS Management
Console.

Essentially, it is the user’s responsibility to specify the
type of resources (chosen out of a few pre-configured EC2
instance types), and the number of resources. Data is copied
in and out of the S3 storage service, and the user is able to
monitor the status of the job flow. Different stages of a
workflow may require different types of resources, and
Cloud virtualization can configure Virtual Machines
differently to meet such requirements, but to what extent (i.e.
how much granularity) and how flexible it can be would be
hard to decide. Amazon only offers a few EC2 instance types
coarsely categorized as small, medium, and large, and they
are charged differently according to the computing power
they provide.

Traditional SWFMSs also place special emphasis on fault
tolerance and smart reruns. A workflow may involve a large
number of computations and the whole process can be
lengthy, so typically a SWFMS will try to automatically
recover when non-fatal errors happen (by using mechanisms
such as retry on error, re-schedule computation to a different
resource, etc.). Also, in the case the workflow has to be
stopped, detailed execution information will be logged, and
the next time the workflow is re-started, it will be able to
pick up from where it was stopped, this is called smart-rerun.
In a Cloud environment, the scale of a workflow can be
much larger, and more components (such as VMs) can be

involved, some extra measures need to be taken to support
such features.

E. Data management challenge

As scientific applications become more data intensive,
the management of data resources and dataflow between the
storage and compute resources is becoming the main
bottleneck. Analyzing, visualizing, and disseminating these
large data sets have become a major challenge and data
intensive computing is now considered as the “fourth
paradigm” [12] in scientific discovery after theoretical,
experimental, and computational science. Within a Cloud,
data management is as important as, and sometimes, even
more critical than compute resource management. As we
have mentioned before, in some Clouds, the nodes
responsible for data storage are separated from computation
nodes, while some others may require them to be collocated.
From a workflow perspective, we care more about the
following aspects of data management within a Cloud: data
locality, where computation can be scheduled to leverage
data dependencies among tasks; collective data management,
where we can get high aggregated data throughput; and
provenance and metadata management.

Data Locality: As CPU cycles become cheaper and data
sets double in size every year, the main challenge for
efficient scaling of applications is the location of the data
relative to the available computational resources – moving
data repeatedly to distant CPUs is expensive and inefficient.
There are large differences in IO speeds from local disk
storage to wide area networks, which can drastically affect
application performance. To achieve good scalability at
Internet scales for Clouds, Grids, and their applications, data
need to be distributed over many computers, and
computations should be steered towards the best place to
execute in order to minimize communication costs. Google’s
MapReduce system runs on top of the Google File System,
within which data is loaded, partitioned into chunks, and
each chunk replicated. Thus data processing is collocated
with data storage: when a file needs to be processed, the job
scheduler consults a storage metadata service to get the host
node for each chunk, and then schedules a “map” process on
that node, so that data locality is exploited efficiently.

Combining compute and data management: What is even
more critical is the combination of the compute and data
resource management, which leverages data locality in
access patterns to minimize the amount of data movement
and improve end-application performance and scalability
[24]. Attempting to address storage and computational
problems separately forces much data movement between
computational and storage resources, which will not scale to
tomorrow’s exascale datasets and millions of nodes, and will
yield significant underutilization of the raw resources.

Provenance: Provenance refers to the derivation history
of a data product, including all the data sources, intermediate
data products, and the procedures that were applied to
produce the data product. Provenance information is vital in
understanding, discovering, validating and sharing a certain
data product as well as the applications and programs used to
derive it [11]. In some disciplines such as finance and

medicine, it is also mandatory to provide what is called an
“audit trail” for auditing purpose. Provenance is still an
unexplored area in Cloud environments, in which we need to
deal with even more challenging issues such as tracking data
production across different service providers (with different
platform visibility and access policies) and across different
software and hardware abstraction layers within one
provider. In addition, the scalability of Clouds would require
much more scalable provenance systems that can handle the
storage and querying of potentially millions of tasks. Also
secure access of provenance information, which is largely
missing in existing provenance systems, would be much
needed in Clouds due to its multi-tenant nature.

F. Service management challenge

By talking about service management, we refer to both
the engineering of the components of an SWFMS as
services, and the orchestration and invocation of services
from an SWFMS. While the emergence of SOA as an
architectural paradigm provides many benefits for distributed
computing, where service abstraction, loose coupling,
discoverability and interoperability are some key advantages
specifically for the engineering and development of an
SWFMS. As a matter of fact, many disciplines (especially in
life science) have adopted service implementation, and the
Taverna and LEAD [21] workflow systems deal with service
workflows explicitly. There are thousands of services
developed and available for the myExperiment project, and
the LEAD system has developed a tool to wrap and convert
ordinary science applications into services.

Orchestrating and invoking services via an SWFMS
within the Cloud poses some unique challenges in addition to
commonly observed ones such as service description,
discovery, and composition: Firstly, managing the large
number of service instances would be an issue, each service
instance needs to be properly deployed and configured, and
for service invocations with state transitions, this would
become more tricky as to when and where to instantiate and
destroy the instances. Secondly, for services involving large
volume of input and output data, data movements across
different service instances (and ultimately, the underlying
compute and storage instances) will be critical for throughput
and performance considerations. In many cases, data services
may need to be involved to manage such data movements
and possibly data caching as out-of-band operations to the
service invocations, passing data references or data service
calls instead of embedding the actual data in the invocations.
For a workflow that needs to call out to public available
services (such as in the case of a mash-up application), the
SWFMS also needs to handle security, interoperability, and
data transformation issues.

IV. RESEARCH DIRECTIONS

 As have been identified in the previous section, there are

a variety of challenges in getting workflows to run in the

Cloud. However, those are also key areas to which we can

put our research efforts and make breakthroughs and

advancement towards Cloud based workflows. We want to

put our emphasis on the workflow reference architecture

and direct research interests towards implementing the key

components in the different layers of the architecture, and

also putting interoperability and reusability as top priority.

There are many existing SWFMS’s, but it is difficult to

make them interact with each other, due to the lack of clear

definition of responsibilities and interfaces. However,

transitioning into the Cloud gives the opportunity to

engineer and implement the various key components of an

SWFMS, preferably by different people with different

specialties, and make them work together. By implementing

the building blocks in the reference architecture, we can also

leverage existing Cloud technologies, such as monitoring,

data management, resource provisioning, etc.

 However, we are not advocating building a Cloud based

SWFMS from ground up. Middleware technologies that can

bridge existing workflow systems with the Cloud would

seem more cost effective. For instance, virtual cluster

technologies such as the ones provided by Nimbus and

Falkon, give workflow systems the familiar environment of

a cluster, to which they can dispatch tasks to, with minimal

adaptation. We believe that there will be a burgeoning of

middleware development in the areas of resource

management, monitoring, messaging for Clouds that can be

used as extensions to existing SWFMSs.

 Many task computing (MTC) [22] has been defined to

distinguish from traditional high performance computing

(HPC) and high throughput computing (HTC), in the

emphasis of using large number of computing resources

over short periods of time to accomplish many

computational tasks (i.e. including both dependent and

independent tasks), where primary metrics are measured in

seconds (e.g. FLOPS, tasks/sec, MB/s), as opposed to

operations (e.g. jobs) per month, while MTC has primarily

been applied in Grids and supercomputers, in the Cloud, it

would be equally or even more critical, since a large Cloud

workflow could involve the execution of millions of tasks,

each taking a short time to finish. Methods for improving

resource utilization, scheduling efficiency, and IO rates will

benefit both Cloud service providers and end users.

 Scripting can be an interesting and powerful direction too.

We have seen the applicability of simple shell scripts [26],

SCOPE and Swiftscript to large scale computing problems

on large scale computing resources. Scripting has the

advantage of being concise and flexible, yet powerful when

combined with parallel semantics and logical operations.

We expect to see scripting languages that have a mixture of

these semantics, combining the coordination of applications

and services (e.g. Swift), the general Map-Reduce-Merge

Cloud computing model, and its relational flavored

extensions (e.g. SCOPE), and things beyond.

 As the Cloud is usually associated with cost, and there are

many ways to configure, procure resources and execute

tasks, it is to our nature to analyze the cost for computation

and resource utilization, and to estimate and optimize the

return on investment. Such optimization will again be more

challenging in Clouds than in traditional cluster and Grid

environments, but it will be more rewarding too.

 Provenance in Cloud can adopt the SOA model as this

would make provenance less coupled with an SWFWS than

it currently does. The development of a standard, open and

universal representation and query provenance model is

underway by the Open Provenance Model initiative

(http://openprovenance.org). Scalability would be top

concern for implementation of such a model.

 Security has been identified as one of the main concerns

for the adoption and success of the Cloud [4] and is the first

major service that needs to be provided by a Cloud provider.

For example, Microsoft Azure Cloud Platform offers access

control as a primary service of the .NET Services. Although

much research has been done on workflow security, security

for Cloud-based SWFMSs is still preliminary, of which we

shed some lights on the following three aspects:

Access control. Access control concerns about which

principals have the privileges to access which resources

[8][28]. In a Cloud-based SWFMS, the resources include

Cloud services, SWFMS services and products such as

scientific workflows, tasks, provenance, data products, and

other artifacts. Due to the dynamic nature (artifacts can be

produced constantly) and the large-scale data, metadata, and

service sharing nature of the Cloud, access control is a

challenging but important research problem.

Information flow control. Information flow control concerns

about to whom a piece of information can be passed on.

Since a scientific workflow might orchestrate a large

number of distributed services, data, and applications,

particularly in a large-scale Cloud environment, the

mechanism that controls mission-critical information and

intellectual property (e.g., secrete parameters used to run a

scientific workflow) not being propagated to an

unauthorized user is worth looking into.

Secure electronic transaction protocol. Cloud Computing is

one kind of utility computing based on the pay-as-you-go

pricing model. A secure electronic transaction protocol is to

ensure goods atomicity – a user is charged if and only if a

service or resource is used by a user and the charge should

be no more and no less. To prevent the abuse of Cloud

accounts and double or wrong charges by a Cloud provider,

further research might be needed to ensure the security of

Cloud-based transaction protocols.

V. CONCLUSIONS

As more and more customers and applications migrate
into Cloud, the requirement to have workflow systems to
manage the ever more complex task dependencies, and to
handle issues such as large parameter space exploration,
smart reruns, and provenance tracking will become more
urgent. As it stands now, mash-up’s and MapReduce style
task management have been acting in place of a workflow
system in the Cloud. Cloud needs the more structured and
mature workflow technologies, and vice versa, as Cloud
offers unprecedented scalability to workflow systems, and

could potentially change the way we perceive and conduct
scientific experiments. The scale and complexity of the
science problems that can be handled can be greatly
increased on the Cloud, and the on-demand nature of
resource allocation on the Cloud will also help improve
resource utilization and user experience. In this paper, we
discuss the opportunities and challenges in bringing
workflow systems into the Cloud, with a focus on scientific
workflow management systems; we also identify key
research directions in realizing scientific workflows in Cloud
environments. The key challenges span from fundamental
challenges such as architecture challenge, integration
challenge, to computing and data management challenges in
the middle, and upper layer language challenges.
Nevertheless, the challenges are also great opportunities for
us to look into and tackle the problems and issues in the way,
towards running scientific workflows on the Cloud.

REFERENCES

[1] http://www-03.ibm.com/press/us/en/pressrelease/22613.wss

[2] http://www.microsoft.com/azure/default.mspx

[3] “Introduction to Amazon elastic MapReduce,” available from
http://awsmedia.s3.amazonaws.com/pdf/introduction-to-amazon-
elastic-mapreduce.pdf.

[4] I. Foster, Y. Zhao, I. Raicu, S. Lu. "Cloud Computing and Grid
Computing 360-Degree Compared", IEEE Grid Computing
Environments (GCE08) 2008, co-located with IEEE/ACM
Supercomputing 2008.

[5] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A.
Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica and M.
Zaharia, Above the Clouds: A Berkeley View of Cloud Computing,
EECS Department, University of California, Berkeley, Technical
Report No. UCB/EECS-2009-28, February 10, 2009.

[6] http://www.psc.edu/general/software/packages/genbank/,2010

[7] R. Chaiken, B. Jenkins, P.-Å. Larson, B. Ramsey, D. Shakib, S.
Weaver, and J. Zhou, SCOPE: Easy and Efficient Parallel Processing
of Massive Data Sets. in Proc. of the 2008 VDLB Conference
(VLDB’08).

[8] A. Chebotko, S. Lu, S. Chang, F. Fotouhi, and P. Yang, "Secure
Abstraction Views for Scientific Workflow Provenance Querying",
IEEE Transactions on Services Computing, 3(4), pp.322-337, 2010.

[9] Jeffrey Dean, Sanjay Ghemawat: MapReduce: simplified data
processing on large clusters. OSDI 2004: 137-149.

[10] Xubo Fei, Shiyong Lu, and Cui Lin: A MapReduce-Enabled
Scientific Workflow Composition Framework, ICWS 2009: 663-670.

[11] Foster, I., Voeckler, J., Wilde, M. and Zhao, Y., Chimera: A Virtual
Data System for Representing, Querying, and Automating Data
Derivation, In 14th Conference on Scientific and Statistical Database
Management, 2002.

[12] The Fourth Paradigm: Data-Intensive Scientific Discovery, Edited by
Tony Hey, Stewart Tansley, and Kristin Tolle. Microsoft Research.

[13] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey, B.
Berriman, J. Good, “On the Use of Cloud Computing for Scientific
Workflows”, 3rd International Workshop on Scientific Workflows
and Business Workflow Standards in e-Science (SWBES), 10
December 2008 in Indianapolis, Indiana, USA

[14] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. Pocock, P. Li, and
T. Oinn, “Taverna: a tool for building and running workflows of
services.,” Nucleic Acids Research, vol. 34, iss. Web Server issue, pp.
729-732, 2006.

[15] Keahey K., T. Freeman. Science Clouds: Early Experiences in Cloud
Computing for Scientific Applications, Cloud Computing and Its
Applications 2008 (CCA-08), Chicago, IL. October 2008

[16] C. Lin, S. Lu, X. Fei, A. Chebotko, D. Pai, Z. Lai, F. Fotouhi, and J.
Hua, “A Reference Architecture for Scientific Workflow Management
Systems and the VIEW SOA Solution”, IEEE Transactions on
Services Computing (TSC), 2(1), pp.79-92, 2009.

[17] Cui Lin, Shiyong Lu, Zhaoqiang Lai, Artem Chebotko, Xubo Fei, Jing
Hua, and Farshad Fotouhi, “Service-Oriented Architecture for VIEW:
a Visual Scientific Workflow Management System”, In Proc. of the
IEEE 2008 International Conference on Services Computing (SCC),
Honolulu, Hawaii, USA, July 2008, pp.335-342.

[18] Shiyong Lu and Jia Zhang. “Collaborative Scientific Workflows”,
IEEE International Conference on Web Services (ICWS), pp.527-
534, Los Angeles, CA, 2009.

[19] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L.
Youseff, D. Zagorodnov, The Eucalyptus Open-source Cloud-
computing System, in Proceedings of 9th IEEE International
Symposium on Cluster Computing and the Grid, Shanghai, China.

[20] Rob Pike, Sean Dorward, Robert Griesemer, Sean Quinlan:
Interpreting the data: Parallel analysis with Sawzall. Scientific
Programming 13(4): 277-298 (2005).

[21] Plale, B., D. Gannon, J. Brotzge, K. Droegemeier, J. Kurose, D.
McLaughlin, R. Wilhelmson, S. Graves, M. Ramamurthy, R.D. Clark,
S. Yalda, D.A. Reed, E. Joseph, V. Chandrasekar, CASA and LEAD:
Adaptive Cyberinfrastructure for Real-Time Multiscale Weather
Forecasting, Computer special issue on System-Level Science, IEEE
Computer Science Press, Vol. 39, No. 11, pp. 56-63. Nov 2006.

[22] Ioan Raicu, Ian Foster, Yong Zhao. "Many-Task Computing for Grids
and Supercomputers", IEEE Workshop on Many-Task Computing on
Grids and Supercomputers (MTAGS08), 2008, co-located with
IEEE/ACM Supercomputing 2008.

[23] Ioan Raicu, Yong Zhao, Catalin Dumitrescu, Ian Foster, Mike
Wilde. "Falkon: a Fast and Light-weight tasK executiON framework,
IEEE/ACM SuperComputing 2007.

[24] Ioan Raicu, Yong Zhao, Ian Foster, Alex Szalay. "Accelerating
Large-scale Data Exploration through Data Diffusion", International
Workshop on Data-Aware Distributed Computing 2008, co-locate
with ACM/IEEE International Symposium High Performance
Distributed Computing (HPDC) 2008.

[25] W. Tan, K. Chard, D. Sulakhe, R. K. Madduri, I. T. Foster, S. S.-
Reyes, C. A. Goble: Scientific Workflows as Services in caGrid: A
Taverna and gRAVI Approach. ICWS 2009: 413-420.

[26] Edward Walker, Weijia Xu, Vinoth Chandar, Composing and
executing parallel data-flow graphs with shell pipes, Proceedings of
the 4th Workshop on Workflows in Support of Large-Scale Science
2009, Portland, Oregon, November 16 - 16, 2009.

[27] M. Wilde, I. Foster, K. Iskra, P. Beckman, Z. Zhang, Allan Espinosa,
Mihael Hategan, Ben Clifford, Ioan Raicu. "Parallel Scripting for
Applications at the Petascale and Beyond", IEEE Computer Nov.
2009 Special Issue on Extreme Scale Computing, 2009.

[28] Zijiang Yang, Shiyong Lu, Ping Yang: Itinerary-Based Access
Control for Mobile Tasks in Scientific Workflows. Ubisafe: 506-511

[29] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda,
and J. Currey, DryadLINQ: A System for General-Purpose
Distributed Data-Parallel Computing Using a High-Level Language,
Symposium on Operating System Design and Implementation
(OSDI), San Diego, CA, 2008.

[30] Y. Zhao, J. Dobson, I. Foster, L. Moreau, M. Wilde, A Notation and
System for Expressing and Executing Cleanly Typed Workflows on
Messy Scientific Data, SIGMOD Record, Volume 34, Number 3,
September 2005

[31] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. v. Laszewski, I. Raicu,
T. Stef-Praun, M. Wilde. "Swift: Fast, Reliable, Loosely Coupled
Parallel Computation", IEEE Workshop on Scientific Workflows
2007.

