
An Empirical Evaluation of MapReduce under
Interruptions

Hui Jin, Xi Yang, Xian-He Sun, Ioan Raicu
Department of Computer Science
Illinois Institute of Technology

Chicago, IL 60616
{hjin6, xyang34}@iit.edu,{sun, iraicu}@cs.iit.edu

Abstract—The presence of interruptions is an unwanted but
inevitable fact that all large-scale distributed computing systems
have to face. The interruptions are more prevailed for MapRe-
duce applications, as often MapReduce runs on the top of the
commodity hardware based clusters, which are more vulnerable
than traditional HEC systems. The problem is further exagger-
ated when running MapReduce applications in distributed non-
dedicated computing environment, where the host applications
have the privilege to take back the computing power at random
and interrupt MapReduce applications. This study intends to
evaluate the resilience of MapReduce applications through an
empirical evaluation. In particular, we set up a MapReduce
system, inject interruptions with different patterns, and study
their impact on the performance of the TeraSort benchmark. We
simulate both cluster and distributed non-dedicated computing
environment to observe the impact of these interruptions. Both
the data locality and benchmark execution time have been mea-
sured. We also vary the number of replicas to observe its impact
on the application performance. The experimental results show
that interruptions have a significant impact on the performance of
MapReduce applications. MapReduce in distributed computing
environment is more vulnerable to interruptions due to the high
data migration cost. Finally, we show that extra data replicas
help to mitigate the impact of interruptions.

I. I NTRODUCTION

The presence of interruptions is inevitable for large-scale
parallel applications. The performance analysis and optimiza-
tion under failures of traditional HPC applications such as
MPI is currently an active research area and has been well
studied in the literature. However, little work has been done
to investigate the impact of interruptions on MapReduce appli-
cations. Interruptions are more prevailed for MapReduce appli-
cations since they typically operate on commodity hardware
based clusters. The problem will be exaggerated when run-
ning distributed MapReduce applications under non-dedicated
distributed computing environment, where the interruptions
from the host applications occur arbitrarily to suspend the
MapReduce applications [1].

The performance of MapReduce is a coordinated impact of
multiple factors. From the perspective of hardware, computing
power directly decides the duration of each map/reduce task
and has a substantial impact on the MapReduce performance.
In addition, extra data migration is triggered during the job
execution to balance the workloads of different nodes, which
depends on the network bandwidth. From the perspective of

MapReduce framework, data placement decides the locality of
the tasks and affects the data migration during job execution.
The job scheduler is also a key factor in deciding the MapRe-
duce performance. The MapReduce application performance
is also impacted by other parameters, such as the number of
replicas and the failure pattern, among many other parameters.

In this study, we aim at building an experimental framework
to evaluate the resilience of MapReduce applications. In par-
ticular, we set up Hadoop [2], an open-source MapReduce
framework in a cluster, inject interruptions to the Hadoop
benchmark, and observe the impact. The experimental study
differentiates the impact of interruption patterns, the number
of interrupted nodes, and the number of replicas. We also
modify the Hadoop source code to emulate distributed non-
dedicated computing environment and observe its performance
under interruptions.

The rest of this paper is organized as follows. We introduce
the experimental frame work in section II. Section III presents
the experimental results and the observations. Section IV
concludes this work.

II. EXPERIMENTAL FRAMEWORK

Our experiments were conducted on a cluster of 17 Sun
Fire Linux-based compute nodes. Each node is equipped with
dual 2.7 GHz Opteron quad-core processors, 8 GB memory
and 250GB SATA hard drive.

Hadoop 0.20.2 has been installed on the cluster to evaluate
the MapReduce performance. One node works as the dedicated
namenode and job tracker and other 16 nodes are configured as
the datanodes and task trackers. Each node is able to run one
map task at a time. The Hadoop filesystem (HDFS) directory
of each datanode resides in the local disk.

We use TeraSort benchmark for the performance evaluation.
We first use TeraGen to generate 400M rows of data, which
is used as the input of TeraSort. The input of the TeraSort is
a set of 596 blocks, organized in two files. The size of each
block is 64MB.

The experiments are conducted on both the cluster environ-
ment and the distributed computing environment. To simulate
the distributed computing environment, we have modified the
Hadoop source code such that the data transfer between two
distinct nodes are delayed based on a bandwidth of 1MB/s. We

0 20 40 80 160
Interruption Duration (Seconds)

1000

1500

2000

2500

3000

3200

Ap
pl

ic
at

io
n

Pe
rfo

rm
an

ce
 (S

ec
on

ds
)

Bandwidth=1MB/S, # of Repliacas=1
Cluster Envioronment, # of Repliacas=1
Bandwidth=1MB/S, # of Repliaca=2

(a) Interruption Duration

N/A 80 60 40 20 10 5
MTTI (Seconds)

500
600

800

1000

1400

1800

Ap
pl

ic
at

io
n

Pe
rfo

rm
an

ce
 (S

ec
on

ds
)

Bandwidth=1MB/S, # of Repliacas=1
Cluster Envioronment, # of Repliacas=1
Bandwidth=1MB/S, # of Repliaca=2

(b) MTTI

0 2 4 8 10 12
of Interrupted Nodes

500
600

800

1000

1400

1800

2000

Ap
pl

ic
at

io
n

Pe
rfo

rm
an

ce
 (S

ec
on

ds
)

Bandwidth=1MB/S, # of Repliacas=1
Cluster Envioronment, # of Repliacas=1
Bandwidth=1MB/S, # of Repliaca=2

(c) # of Interrupted Nodes

Fig. 1: MapReduce Application Performance

0 20 40 80 160
Interruption Duration (Seconds)

0.5
0.6
0.7
0.8
0.9
1.0

Lo
ca

ili
ty

 R
at

io

Bandwidth=1MB/S, # of Repliacas=1
Cluster Envioronment, # of Repliacas=1
Bandwidth=1MB/S, # of Repliaca=2

N/A 80 60 40 20 10 5
MTTI (Seconds)

0.6
0.7
0.8
0.9
1.0

Lo
ca

ili
ty

 R
at

io

Bandwidth=1MB/S, # of Repliacas=1
Cluster Envioronment, # of Repliacas=1
Bandwidth=1MB/S, # of Repliaca=2

0 2 4 8 10 12
of Interrupted Nodes

0.6
0.7
0.8
0.9
1.0

Lo
ca

ili
ty

 R
at

io

Bandwidth=1MB/S, # of Repliacas=1
Cluster Envioronment, # of Repliacas=1
Bandwidth=1MB/S, # of Repliaca=2

Fig. 2: Locality Ratio

have also varied the number of replica from 1 to 2 to observe
its impact on the MapReduce performance.

We stop and resume the task tracker process of a node to
simulate the arrival and termination of an interruption.

Currently we are interested in the reliability of the map
phase. We measure the map phase duration of each node
and use the one with maximum duration as the application
performance. We have also measured the locality ratio of the
map tasks to observe its relationship with interruptions and
the application performance.

III. PRELIMINARY EXPERIMENTAL RESULT

In Fig. 1a we plot the application performance with different
interruption durations. The application performance is more
vulnerable to interruptions for the first scenario, which simu-
lates the distributed environment and the number of replicas
is set as 1. Increasing the number of replicas helps to improve
the performance. When the number of replicas is 2, the
application performance under distributed environment has
a performance better than the cluster environment, due to
its high locality ratio, which can be observed from Fig. 2a.
Scenario 2 of cluster environment has more data migration
and the lowest locality ratio in Fig. 2a, but still leads to an
optimal performance in Fig. 1a. More data migration occurs
in this scenario due to its high network bandwidth, and helps
to improve the performance.

In Fig. 1b we vary the Mean-Time-To-Interruption (MTTI)
from 80 to 5 seconds. The first group of data with N/A reflects
the interruption-free performance. The third scenario is still
least sensitive to interruptions. From Fig. 2b we observe that

its locality ratio is close to 1. The extra replica reduces the
data migration while keeping the locality of the map tasks,
which helps to maintain its optimal performance.

Fig. 1c and 2c demonstrate the MapReduce performance
with different number of interrupted Nodes. An interesting
observation is that the locality of scenario 1 initially goes
down, and goes up when the number of interrupted noes is 8
or higher. Similar observation can be found for scenario 2. The
amount of migrations is essentially decided by the reliability
variance among different nodes. The reliability variance is at
its maximum when 8 nodes are interrupted.

IV. CONCLUSIONS ANDFUTURE WORK

In this study, we quantify the impact of interruptions on
the MapReduce applications by an experimental approach.
The experimental results show that MapReduce under dis-
tributed computing environment is significantly impacted by
interruptions. The extra replica helps to mitigate the impact
of interruptions. Data locality has a critical impact on the
application performance.

In the future, we plan to extend the experiments to large
computing environments (e.g. ANL Magellan [3], FutureGrid
[4]). We will also evaluate the performance by injecting inter-
ruptions into other MapReduce component such as datanode.

REFERENCES

[1] H. Lin, X. Ma, J. S. Archuleta, W. chun Feng, M. K. Gardner,and
Z. Zhang, “MOON: MapReduce On Opportunistic eNvironments,”in
HPDC 2010.

[2] “The Hadoop Project Website,”http://hadoop.apache.org/.
[3] “Magellan Website,”http://magellan.alcf.anl.gov/.
[4] “FutureGrid Website,”https://portal.futuregrid.org/.

