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Middleware Support for Many-Task Computing
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Abstract Many-task computing aims to bridgedistinct activities, coupled via file system opé&as.

the gap between two computing paradigms, higi'¢ aggregate number of tasks, quantity of
throughput computing and high performancgomputing, _a_nd volumes_ of data may be extremely
computing. Many-task computing denotes higharge. Traditional techniques found in production
performance computations comprising multipléyStems in the scientific community to support
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many-task computing do not scale to today’s largest
systems, due to issues in local resource manager
scalability and granularity, efficient utilizatiaf the

raw hardware, long wait queue times, and
shared/parallel file system contention and
scalability. To address these limitations, we addpt

a “top-down” approach to building a middleware
called Falkon, to support the most demanding many-
task computing applications at the largest scales.
Falkon (Fast and Light-weight tasK executiON
framework) integrates (1) multi-level scheduling to
enable dynamic resource provisioning and minimize
wait queue times, (2) a streamlined task dispatcher
able to achieve orders-of-magnitude higher task
dispatch rates than conventional schedulers, and (3
data diffusion which performs data caching and uses
a data-aware scheduler to co-locate computational
and storage resources. Micro-benchmarks have
shown Falkon to achieve over 15K+ tasks/sec
throughputs, scale to hundreds of thousands of
processors and to millions of queued tasks, and
execute billions of tasks per day. Data diffusi@s h
also shown to improve applications scalability and
performance, with its ability to achieve hundredis o
Gb/s I/O rates on modest sized clusters, with Tbh/s
I/O rates on the horizon. Falkon has shown ordgrs o
magnitude improvements in performance and
scalability than traditional approaches to resource
management across many diverse workloads and
applications at scales of billions of tasks on
hundreds of thousands of processors across clusters
specialized systems, Grids, and supercomputers.
Falkon’s performance and scalability have enabled a
new class of applications -called Many-Task
Computing to operate at previously so-believed
impossible scales with high efficiency.

1. Introduction

We want to enable the use of large-scale distribute
systems for task-parallel applications, which are
linked into useful workflows through the looser
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taskecoupling model of passing data via fi
between dependent tasks. This potentially la
class of taslparallel applications precluded from
leveraging the increasing power of modern par.
systems such as supercomputers (e.g. IBM
Gene/L [] and Blue Gene/F2]) due to the lack of
efficient support in those systems for the “scrigfi
programming model [3With advances in-Science
and the growing complexity of scientific analys
more scientists and researchers rely on val
forms of scripting to automate eto-end
application proesses involving task coordinatic
provenance tracking, and bookkeeping. T
approaches are typically based on a model of lgc
coupled computation, in which data is exchan
among tasks via files, databases or XML docum

throughput computing [J3can beclassified as a
subset of the categoenoted by the yellow ar.

Many-Task Computing [Ocan beclassified in the
categories denoteby the yellow and green ar.

This paper focuses on techniques to enable
support of manyask computin, including data-
intensive manyask computing

Clusters and Grids [14, 1Bhawe been the preferred
platform for loosely coupled applications that h.
been traditionally part of the high through
computing class of applications, which are mane
and executed through workflow systems or par:
programming systems. Various prcties of a new
emerging applications, such as large number ol
(i.e. millions or more), relatively short per te
execution times (i.e. seconds to minutes long),

or a combination of the. Vast increases in datagats intensive tasks (i.e. tens of MB of /0 pel

volume combined with the growing complexity
data analysis procedures and algorithms |
rendered traditional manual exploration unfavor:
as compared with modern high performa
computing processes automated by scier
workflow systems. [4]

The problem space can be partitioned into four r

second of compute) have led tce definition of a
new class of applications called MeTask
Computing p]. MTC emphasizes on using lar
numberof computing resources over short peri
of time to accomplish many computational ta:
where the primary metrics are in second.g.,
FLOPS, tasks/sec, 10/9eevhile HTC requires larg

categories (see Figure 10)) At the low end of the amounts of computing for long periods of time w
spectrum (low number of tasks and small input s the primary meics being operations per mon13].
we have tightly coupled Message Passing Inter MTC applications are composed of many tasks (
(MPI) applications (white 2) As the data size independent and dependent) that can be individ
increases, we move into the analyticsegory, such scheduled onmany computing resources acr
as data mining and analysis (blue); MapRed5] multiple administrative boundaries to achieve st
is an example for this categc 3) Keeping data size larger application goal.

modest, but increasing the nper.of ta_sks MOVEeS US\MTC  denotes  higlperformance  computatiol
into the loosely coupled applications involving ¢ comprising multiple distinct activities, coupleda
tasks  (yellow); ~Swift/Falkon 6, 7] and fje system operations. Tasks may be smalarge,
Pegasus/DAGMan |&re examples of this categc yniprocessor or multiprocessor, comp-intensive
4) Finally, the combinatic of both many tasks andgy gataintensive. The set of tasks may be stati
large datasets moves us into the -intensive dynamic, homogeneous or heterogeneous, lot
Many-Task Computing 9] category (green); coupled or tightly coupled. The aggregate numbe
examples are Swift/Falkon and data csion [10], t4gks, quantity of computing, and volumes ota
Dryad [11], and Sawzalllp]. may be extremely large. The new term MTC dr:
attention to the many computations that
Hi heterogeneous but not “happily” para

Within the science domain, the data that needs
processed generally grows faster than computat
resources and their speddhe scientific communit
is facing an imminent flood of data expected fr
the next generation of experiments, simulati
sensors and satellites. Scientists are now attam
calculations requiring orders of magnitude m
computing and comuomication than was possik
only a few years ago. Moreover, in many curre
> planned and future experiments, they are
planning to generate several orders of magni
more data than has been collected in the e
human history [1p Many applications in th
scientific computing generally use a sha
infrastructure such as TeraGricl7] and Open
Science Grid [1B where data movement relies
High-performance computing can Iclassified in shared or parallel file systems. The rate of ines
the categorydenoted by the white area. H- in the number of processorser system is

Data
Analysis,
Mining

Big Data and
Many Tasks

Med

Many Loosely Coupled Tasks

Low

1 1K M

Number of Tasks

Figure 1: Problem types with respect to data siz
and number of task:
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outgrowing the rate of performance increase ehortcomings in traditional resource management
parallel file systems, which requires rethinkingystems that support high-throughput and high-
existing data management techniqueperformance computing that are not efficient in
Unfortunately, this trend will continue, as advashcesupporting many-task computing. Falkon was
multi-core and many-core processors will increaskesigned to enable the rapid and efficient exenutio
the number of processor cores one to two ordersaffmany tasks on large scale systems, and integrate
magnitude over the next decade. [4] We believe thaivel data management capabilities to extend data
data locality is critical to the successful andoééht intensive applications scalability beyond that of
use of large distributed systems for data-intensiuaditional parallel file systems.

applications [19, 20] in the face of a growing ga

bgf\)/veen corr[lpute p]ower and storagegperforgr]ngn . Related Work

Lalrge.scale data management needg to be a PIIM&Yhigh throughput computing (HTC) is a subset of
objective for any MTC-enabled middleware, §,1¢ "jt is worth mentioning the various efforts in
ensure data movement is minimized by intelligeqt,pjing HTC on large scale systems. Some of these
data-aware scheduling. systems are Condor [29, 30], Portable Batch System
Over the past year and a half, Falkon [21, 7] h@BS) [31], Load Sharing Facility (LSF) [32], SGE
seen wide deployment and usage across a variety3d, MapReduce [5], Hadoop [34], and BOINC
systems, from the TeraGrid [17], the SiCortex [22]35]. Full-featured local resource managers (LRMs)
the IBM Blue Gene/P [23], and the Surmsuch as Condor, PBS, LSF, and SGE support client
Constellation [17]. Figure 2 shows plot of Falkospecification of resource requirements, data stagin
across these various systems from December 200@recess migration, check-pointing, accounting, and
April 2009. Each blue dot represents a 60 secoddemon fault recovery. Condor and glide-ins [36]
average of allocated processors, and the black le@ the original tools to enable HTC, but their
denotes the number of completed tasks. In summagyphasis on robustness and recoverability limits
there were 166,305 peak concurrent processors, wlikir efficiency for MTC applications in large-seal

2 million CPU hours consumed and 173 milliogystems. We found that relaxing some constraints
tasks for an average task execution time of d.g. recoverability) from the middleware and
seconds and a standard deviation of 486 secongiscouraging the end applications to implement these
Many of the results presented here are represémtedonstraints has enabled significant improvements in
Figure 2, although some applications were run priptiddleware performance and efficiency at large
to the history log repository being instantiatedsite scale, between two to four orders of magnitude

2007. better performance.

1000000 RS Allocated CPUSs | 200 Multi-level scheduling has been applied at the OS
n Ao Took Ene. S4u488 snc —Delvered Tasks. | Jevel [37, 38] to provide faster scheduling for gps
§ 100000 = 1 160 of tasks for a specific user or purpose by emplpyin
: " wog o an overlay that does lightweight scheduling within
E [ t1202  heavier-weight container of resources: e.g., thsead
S 1000 4 0§ within a process or pre-allocated thread groupy Fre
& _ 80 g‘f and his colleagues pioneered the application of
H 1004 60 ©  resource provisioning to clusters via their work on
8 o i " 40 Condor “glide-ins” [36]. Requests to a batch
- b 20 scheduler (submitted, for example, via Globus

1 0 GRAM) create Condor “startd” processes, which

then register with a Condor resource manager that
runs independently of the batch scheduler. Others
have also used this technique. For example, Méhta e
al. [39] embed a Condgool in a batch-scheduled
cluster, while MyCluster [40] creates “personal
clusters” running Condor or SGE. Such “virtual
clusters” can be dedicated to a single workload;
This paper is a culmination of a collection of p@pethus, Singh et al. find, in a simulation study [44]

[7, 9, 10, 19, 24, 25, 21, 26, 27, 28] dating baxk reduction of about 50% in completion time.
2006, and includes a deeper analysis of previoH®wever, because they rely on heavyweight
results as well as some new results. This paphedulers to dispatch work to the virtual clustiee,
explores the issues in building the middleware fger-task dispatch time remains high, and hence the
support the many-task computing paradigm on larggit queue times remain significantly higher than i
scale distributed systems. We have designed ahd ideal case due to the schedulers’ inabilitgush
implemented this middleware — Falkon — to enablgork out faster.

the support of many-task computing on clusters,

grids and supercomputers. Falkon addresses

o
&

Figure 2: December 2007 — April 2009 plot of
Falkon across various systems (ANL/UC TG 316
processor cluster, SiCortex 5832 processor machine,
IBM Blue Gene/P 4K and 160K processor machines,
and the Sun Constellation with 62K processors)
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The BOINC “volunteer computing” system [35, 42Histributed resources. Once the capability of Hght

is known to scale well to large number of computgeight task dispatching and scalable data
resources, but lacks support for data intensimeanagement was available, new applications
applications due to the nature of the wide aresmerged that needed to run at ever increasingsscale
network deployment BOINC typically has, as welWe have achieved these improvements by narrowing
as lack of support for “black box” applicationsthe focus of the resource management by not
Although the performance of BOINC is significantlysupporting various expensive features, and by
better than traditional resource managers, itils stelaxing other constraints from the resource
one to two orders of magnitude slower than oumanagement framework effectively pushing them to
proposed solution, running at about 100 jobs/s#te application or the clients.

compared to up to 3000 jobs/sec in our proposed
solution. % The Falkon Framework

On the IBM Blue Gene supercomputer, variouso address the limitations of existing resource
works [43, 44] have leveraged the HTC-mode [4phanagement systems in supporting many-task
support in Cobalt [46] scheduling system. Thesgmputing, we adopted a “top-down” approach to
works have aimed at integrating their solution asuilding the middleware — Falkon — to support the
much as possible in Cobalt; however, it is not clemost demanding many-task computing applications
that the current implementations will be able tat the largest scales. Falkon integrates (1) nhed
support the largest MTC applications at the largestheduling to enable dynamic resource provisioning
scales, as their performance is still one to twders and minimize wait queue times, (2) a streamlined
of magnitude slower than our proposed solutiotask dispatcher able to achieve order-of-magnitude
Furthermore, these works only focus on compukggher task dispatch rates than conventional
resource management, and ignore data managemhiedulers, and (3) data diffusion which performs
altogether. data caching and uses a data-aware scheduler to co-

MapReduce (including Hadoop) is typically applietPcate computational and storage resources. This
to a data model Consisting of namel/value pai@#ctlon will describe each of these in detail.

processed at the programming language level. 81 Architecture Overview

strengths are in its ability to spread the processt Fajkon consists of a dispatcher, a provisioner, and
a large dataset to thousands of processors Wiy or more executors. The dispatcher accepts task
minim_al expertise in distributed systems; hover(_erﬂ'rom clients and implements the dispatch policy.
often involves the development of custom filteringhe provisioner implements the resource acquisition
scripts and does not support “black box” appligatigyolicy. Executors run tasks received from the
execution as is commonly found in MTC or HTGyispatcher. Components communicate via Web
applications. Services (WS) messages, except that notifications
Swift [6, 47, 48] and Falkon [7] have been used &re performed via a custom TCP-based protocol.
execute MTC applications on clusters, multi-sit€he notification mechanism is implemented over
Grids (e.g., Open Science Grid [18], TeraGrid [17]YCP because when we first implemented the core
specialized large machines (SiCortex [22]), arféalkon components using GT3.9.5, the Globus
supercomputers (e.g., Blue Gene/P [2]). Swiftoolkit did not support brokered WS notifications.
enables scientific workflows through a data-flowStarting with GT4.0.5, there is support for brokkere
based functional parallel programming model. k isnaotifications.

parallel  scripting tool for rapid and reliablerne dispatcher implements the factory/instance
specificat?on, execution, a_nd management of |ar9§attern, providing acreate instance operation to
scale science and engineering workflows. Thgiow a clean separation among different clients. T
runtime system in Swift relies on the CoG Karajagccess the dispatcher, a client first requestdiorea
[49] workflow engine for efficient scheduling andsf a new instance, for which is returned a unique
load balancing, and it integrates with the Falkoghgpoint reference (EPR). The client then uses that
light-weight task execution dispatcher. In this @ap EpR to submit tasks, monitor progress (or wait for

we will focus on Falkon, the middleware we havgtifications), retrieve results, and (finally) trey
designed and implemented to enable MTC on a wigks instance.

range of systems from the average cluster to tRe

. . client “submit” request takes an array of tasks,
largest supercomputers, and will also provide SOT&ch with working directory, command to execute
details of the Swift system. 9 Y '

arguments, and environment variables. It returns an
In summary, our proposed work in light-weight taskrray of outputs, each with the task that was itsn,
dispatching and data management offers maptum code, and optional output strings (STDOUT
orders of magnitude better performance anghg STDERR contents). A shared notification
scalability than traditional resource managemeghgine among all the different queues is used to
techniques, and it is changing the types @ftify executors that work is available for pick.up
applications that can efficiently execute on largghis engine maintains a queue, on which a pool of
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threads operate to send out notifications. The GEtbrage. Subsequent accesses to the same data resul
container also has a pool of threads that handle WSexecutors fetching data from other peer exesutor
messages. Profiling shows that most dispatcher tifiehe data is already cached elsewhere. The curren
is spent communicating (WS calls, notificationsjmplementation runs a GridFTP server [54] at each
Increasing the number of threads allows the servierecutor, which allows other executors to read data
to scale effectively on newer multicore androm its cache. This scheduling information areyonl
multiprocessor systems. hints, as remote cache state can change frequently

The dispatcher runs within a Globus Toolkit 4 (GT4Nd is not guaranteed to be 100% in sync with the
[50] WS container, which provides authenticatior}lobal index. In the event that a data item is not
message integrity, and message encryptiPnd at any of the known cached locations, it

mechanisms, via transport-level, conversation-levéittempts to retrieve the item from persistent gtera
or message-level security [51]. if this also fails, the respective task fails. igite 3,

he black dotted lines represent the scheduler
X L ending the task to the compute nodes, along with
destroying executors. It is initialized by th he necessary information about where to find input

dispz_atcher with information ab(.)Ut the state to b ata. The red thick solid lines represent the tgbili
mo.nltored and hoyv.to access it; the rule(s) undi%rr each executor to get data from remote perdisten
which the provisioner should create/destrog

executors; the location of the executor code; beunéf[?rage' The blue thin solid lines represent the
' ’ ility for each storage resource to obtain cached

on the number of executors to be created; boundsoo a from another peer executor. We assume data
the time for which executors should be created; aﬂéllows the normal pattern fouﬁd in scientific

Epr? aIIowe.d.|dIe time pe(jprellexecutqtrs aerestttor)]/ omputing, which is to write-once/read-many (the
€ provisioner periodically monitors dispalchely .,q assumption as HDFS makes in the Hadoop

state and determines whether to create additio% tem [34]). Thus, we avoid complicated and

executors, _and if so, how many, an_d for how Iong)(pensive cache coherence schemes other parallel
The provisioner supports both static and dyna e systems enforce

provisioning. Dynamic provisioning is supporte ) )
through GRAM4 [52]. Static provisioning isTo support _data—avv_arg sched_ullng, we implement a
supported by directly interfacing with LRMs; Falkorfentralized index within the dispatcher that resord

currently supports PBS, SGE and Cobal. the location of every cached data object; this is

A new executor registers with the dispatcher. Worlis_;g::lgr t[% 4t]h € .I.Cﬁigtr?rl:éig I\Ilsa mn(?z’;liﬂ?;nlend H%%ZZ%S

is then supplied as fOHOWS: the. dlspfatcher n(mf'ecoherent with the contents of the executor’s caches
the executor when work is available; the executor

. a periodic update messages generated by the
requests work; the d'SpatCher. returns the task(e); eXECFL)JtOI’S. In ef)ddition, eachgexegutor maintaiﬁs a
execut.or executes the sqpplled task(s) and retum&al index to record the location of its cachedada
thg exit code and_ the optional standard outpuﬁierr@oject& We believe that this hybrid architecture
strings; and the dispatcher acknowledges dellvery.provides a good balance between latency to the data
Communication costs can be reduced tagk and good scalability. In previous work [10, 24], we
bundling between client and dispatcher and/aiffered a deeper analysis in the difference betveeen
dispatcher and executors. In the latter case, @nbl centralized index and a distributed one, and under

can arise if task sizes vary and one executor g@fRat conditions a distributed index is preferred.
assigned many large tasks, although that problem ..,

The provisioner is responsible for creating an

Task Dispatcher Persistent Storage
Py

can be addressed by having clients assign each tas Data-Aware Scheduler 2
an estimated runtime. Another technique that can gﬁ
reduce message exchanges ipitgy-back new task e Queve

dispatches when acknowledging result delivery. [7psamc
Using both task bundling and piggy-backing, we cafpisining
reduce the average number of message exchang
per task to be close to zero, by increasing thelleun

size. In practice, we find that performance degsade

for bundle sizes of greater than 300 tasks.
Figure 3 shows the Falkon architecture, including

both the data management and data-aware schedgigiire 3: Architecture overview of Falkon extended
components. Individual executors manage their ownwith data diffusion (data management and data-
caches, using local eviction policies (e.&U [53]), aware scheduler)

and communicate changes in cache content to the . . L :
dispatcher. The scheduler sends tasks to Comgg implement four dispatch policies: first-availabl
F

Available Resources >
(GRAM4)

& : .
nodes, along with the necessary information abdy’): max-cache-hit (MCH), ~max-compute-util
where to find related input data. Initially, eac MCU), and good-cache-compute (GCC).

executor fetches needed data from remote persistent
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The FA policy ignores data location informationand the executor. We implemented a new
when selecting an executor for a task; it simplgomponent called TCPCore to handle the TCP-based
chooses the first available executor, and provides communication protocol. TCPCore is a component
executor with no information concerning theo manage a pool of threads that lives in the same
location of data objects needed by the task. Ttmes, JVM as the Falkon dispatcher, and uses in-memory
executor must fetch all data needed by a task framtifications and shared objects for communication.
persistent storage on every access. This policy Her performance reasons, we implemented persistent
used for all experiments that do not use dal&P sockets so connections can be reused across
diffusion. tasks.

The MCH policy uses information about dataTable 1: Feature comparison between the Java and
location to dispatch each task to the executor with C Executor implementations
the largest amount of data needed by that task. If

that executor is busy, task dispatch is delayed unt Description J‘T’Wa C
the executor becomes available. This strategy is Robustness high Medium
expected to reduce data movement operations . GSITransport, None
compared to first-cache-available and max-compute- Security  [GSIConversatiof  could
. ; GSIMessagelLevplupport SSL

util, but may lead to load imbalances where Communication
processor utilization will be sub optimal, if nodes Protocol WS-based TCP-based
frequently join and leave.

Error Recovery yes Yes
The MCU policy leverages data location Lifetime
information, attempting to maximize resource | Management yes No
utilization even at the potential higher cost ofada Concurrent
movement. It sends a task to an available executor, Tasks yes No
preferring executors with the most needed data[~ pysh/Pull PUSH
locally. Model notification basefl Ut
The GCC policy is a hybrid MCH/MCU policy. The Firewall no yes
GCC policy sets a threshold on the minimum NAT / Private | 1° in general
processor utilization to decide when to use MCH or Networks yes in certain yes
MCU. We define processor utilization to be the cases
number of processors with active tasks divided by | Persistent no - GT4.0 yes
the total number of processors allocated. MCU used| __Sockets yes - GT4.2
a threshold of 100%, as it tried to keep all alteda Medium-~High High
processors utilized. We find that relaxing this | Performance | 0o 2500 105 cfd 700~3200
threshold even slightly (e.g., 90%) works well in tasks/s
practice as it keeps processor utilization high &nd Scalability |High ~ 54K CPUsMedium =
gives the scheduler flexibility to improve caché hi 10K CPUs
rates significantly when compared to MCU alone. N . high
3.2 Distributing the Falkon Architecture Portabllty medium reg%enfgﬁe)
Significant engineering efforts were needed to get oz Caching ves e

Falkon to work on systems such as the Blue Gene/P
efficiently at large scale. In order to improveDistributed Falkon Architecture: The original

Falkon's performance and scalability, we developdehlkon architecture [7] use a single dispatcher
alternate implementation and distributed the Falkdrunning on one login node) to manage many
architecture. executors (running on compute nodes). The

Alternative | mplementations: Performance depends@rchitecture of the Blue Gene/P is hierarchical, in
critically on the behavior of our task dispatci/hich there are 10 login nodes, 640 I/O nodes, and
mechanisms. The initial Falkon implementation w#K compute nodes. This led us to the offloading of
100% Java, and made use of GT4 Java WS-Cordl§ _dispatcher from one login node (quad-core

handle Web Services communications. [50] The>GHz PPC) _t° the many /O nodes (quad-core
Java-only implementation works well in typicap-85GHZ PPC); Figure 4 shows the distribution of

Linux clusters and Grids, but the lack of Java s t COMPoNenNts on different parts of the Blue Gene/P.
Blue GenelL, Blue Gene/P, and SiCortex promptdtkperiments show that a single dispatcher, when
us to re-implement some functionality in C. Table dunning on modern node with 4 to 8 cores at 2GHz+
has a summary of the differences between the tand 2GB+ of memory, can handle thousands of
implementations. tasks/sec and tens of thousands of executors.
In order to keep the implementation simple th&{OWeVer, as we ramped up our experiments to 160K
would work on these specialized systems, we use@'QCessors  (each executor running on one
simple TCP-based protocol (to replace the prior WLOCeSSON), the centralized design began to show it
based protocol), internally between the dispatchipitations. One limitation (for scalability) wa$i¢
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fact that our implementation maintained persisteRtilkon has mechanisms to identify specific errors,
sockets to all executors (two sockets per executahd act upon them with specific actions. Most error
With the current implementation, we had troublare generally passed back up to the application
scaling a single dispatcher to 160K executors (32qBwift) to deal with them, but other (known) errors
sockets). Another motivation for distributing thean be handled by Falkon directly by rescheduling
dispatcher was to reduce the load on login nodése tasks. Falkon can suspend offending node®if to
The system administrators of the Blue Gene/P didany tasks fail in a short period of time. Swift
not approve of the high system utilization (botmaintains persistent state that allows it to reéstar
memory and processors) of a login node fquarallel application script from the point of faiuy
extended periods of time when we were runninmg-executing only uncompleted tasks. There is no

intense workloads. need for explicit check-pointing as is the casehwit
70 Nodes compute Noges] MPI1 applications; check-pointing occurs inherently
Linux ZeptOS with every task that completes and is communicated
back to Swift.
{}ﬁ 1 Ik | 33 M . .
— Dispatcher| T . On|t0r|ng
= 'N._/ ‘ tmmemoy | In order to make visualizing the state of Falkon
) i easier, we have formatted various Falkon logs to be
printed in a specific format that can be read by th
GKrellm [55] monitoring GUI to display real time
| Qg state information. Figure 5 shows 1 million tasks
I | ral (sleep 60) executed on 160K processors on the IBM
Falkon —— Dispatcher] Gcalized
Provisioner [ = ‘ ié"h;mri?éﬁ Iil_uia Gene/P supercomputer.
Systems T ~ S e —— ]
=< e
Global Parallel File System (GPFS)
- Do
DR AR —

Figure 4: 3-Tier Architecture Overview Figure 5: Monitoring via GKrellm while running
1M tasks on 160K processors

Our change in architecture from a centralized @ne

a distributed one allowed each dispatcher to manai
a disjoint set of 256 executors, without requiramy !
inter-dispatcher communication. We did howev
had to implement additional client-side functiotali
to load balance task submission across ma
dispatchers, and to ensure that it did not overcibm
tasks that could cause some dispatchers to
underutilized while others queued up tasks. Our n%
architecture allowed Falkon to scale to 160

erall, it took 453 seconds to complete 1M tasks,
h an ideal time being 420 seconds, achieving
e9r3% efficiency. To place this benchmark in context,
of what an achievement it is to be able to run 1
illion tasks in 7.5 minutes, othersd have
anaged to run 1 million jobs in 6 months. Grant it
gt the 1 million jobs they referred to iB6[ were

| computations with real data, and not justéfgle

" tasks, due to the large overheads of scheduling
processors while minimizing the load on the Iogi}?bs through Condorp) apd other prot_:iuctlon local

resource managers, running 1 million jobs, no matte

noo.les.. . . how short they are, will likely still take on theder
Reliability Issues at Large Scale: We discuss gy days.

reliability only briefly here, to explain how our

approach addresses this critical requirement. TRe* Ease of Use _

Blue Gene/L has a mean-time-to-failure (MTBF) of "€ Swift parallel programming system already
10 days [1], which can pose challenges for |on§upported a wide variety of resource managers, such
running applications. When running loosely coupled® GRAM, PBS, Condor, and others, through a
applications via Swift and Falkon, the failure of §oncept called providers. Implementing a new
single node only affects the task(s) that were geiRrovider specific for Falkon was a simple one day
executed by the failed node at the time of theufeil €ffort, consuming 840 lines of code. This is
/O node failures only affect their respective psefomparable to GRAM2 provider (850 lines),
(256 processors); these failures are identified 3RAM4 provider (517 lines), and the Condor
heartbeat messages or communication failurd$ovider (575 lines). For applications that are
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already batch-scheduler aware, interfacing witivo different configurations: 1) 1 dispatcher up to
Falkon does not pose a significant challenge. The2K processors, and 2) N/256 dispatchers on up to
is also a wide array of command line clients arld=160K processors, with 1 dispatcher managing
scripts that can allow an application to interfaglh 256 processors. We varied the task lengths from 1
Falkon through loosely coupled scripts, rather tharsecond to 256 seconds (using sleep tasks with no
JAVA API using web services. I/0), and ran weak scaling workloads ranging from
2K tasks to 1M tasks (7 tasks per core).

4. Performance Evaluation Figure 7 investigates the effects of efficiencylof
We use micro-benchmarks to  determindispatcher running on a faster login node (quae cor
performance  characteristics  and potentidl5GHz PPC) at relatively small scales. With 4
bottlenecks on systems with many cores. Thi#gcond tasks, we can get high efficiency (95%-+)
section explores the dispatch performance, howaigross the board (up to the measured 2K processors)
compares with other traditional LRMs, efficiencyFigure 8 shows the efficiency with the distributed
and data diffusion effectiveness. dispatchers on the slower I/O nodes (quad core 850

. MHz PPC) at larger scales. It is interesting tdaeot
4.1 Falkon Task Dispatch Performance that the same 4 second tasks that offered high

One key component to ach_iev_ing h?gh utilizati_on ¥ ficiency in the single dispatcher configuratioman
large-scale systems is achieving high task d|spatg ieves relatively poor efficiency, starting ab®5

and execution rates. In previous work [7] wi . 0 e
reported that Falkon with a Java Executor and W. nd dropping o 7% at 160K processors. This is due

S . both the extra costs associated with running the
based communication protocol achieves 48/ . .
. : . ispatcher on slower hardware, and the increasing
tasks/sec in a Linux cluster (Argonne/Univ. o

Chicago) with 256 CPUs, where each task wasn§Ed. for high throughputs at large scales. If we
. a ; nsider the 160K processor case, based on our
sleep 0" task with no I/O. We repeated the pe

throuahput experiment on a variety of svste Xperiments, we need tasks to be at least 64 sscond
(Ar ogrl\nF()a/Univ IOof Chicago Linux clusi/er Sic)értewgng to get 90%+ efficiency. Adding I/O to each
9 ) 9 ' task will further increase the minimum task length

and Blue Gene/P) for both versions of the executorr er to achieve hiah efficienc
(Java and C, WS-based and TCP-based respectivglﬁ 9 Y

at significantly larger scales (see Figure 6). We 100% - . ————
achieved 604 tasks/sec and 2534 tasks/sec for thepo% | 32 seconds \.
Java and C Executors respectively (Linux cluster, 1 80% 17 =8 seconds \
dispatcher, 200 CPUs), 3186 tasks/sec (SiCortex, 1 7° | = 2seconds

dispatcher, 5760 CPUs), 1758 tasks/sec (Blug ®*
Gene/P, 1 dispatcher, 4096 CPUs), and 3073 >
tasks/sec (Blue Gene/P, 640 dispatchers, 1638&’0:2;;
CPUs). Note that the SiCortex and Blue Gene/P only ,,, |
support the C Executors. The throughput numbers ;g |
that indicate “1 dispatcher” are tests done with th o —
original centralized dispatcher running on a login AT I P
node. The last throughput of 3071 tasks/sec was Number of Processors

achieved with the dispgtchers distributed over Gdﬁgure 7: Efficiency graph for the Blue Gene/P forl

/O nodes, each managing 256 processors. to 2048 processors and task lengths from 1 to 32
seconds using a single dispatcher on a login node
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Executor Implementation and Various Systems 0%

. . . 256 1024 4096 16384 65536 163840
Figure 6: Task dispatch and execution throughput Number of Processors

for trivial tasks with no 1/O (sleep 0) Figure 8: Efficiency graph for the Blue Gene/P for

To better understand the performance achieved fof>6 to 160K processors and task lengths ranging
different workloads, we measured performance ad'@M 1 to 256 seconds using N dispatchers with each
function of task length. We made measurements in diSPatcher running on a separate /O node



Cluster Computing (2009)

To summarize: distributing the Falkon dispatchévlyCluster [40]) and PBS (v2.1.8) performance in a

from a single (fast) login node to many (slow) I/Qinux environment (the same environment where we

nodes has both advantages and disadvantages. fBlsé Falkon and achieved 2534 tasks/sec
advantage is that we achieve good scalability toroughputs). The throughputs we measured for PBS
160K processors, but at the cost of significantlyas 0.45 tasks/sec and for Condor was 0.49
worse efficiency at small scales (less than A4tasks/sec; other studies in the literature have
processors) and short tasks (1 to 8 seconds). Weasured Condor's performance as high as 22
believe both approaches are valid, depending on thsks/sec in a research prototype called Condor J2
application task execution distribution and scdle §30].

the application. We also tested the performance of Cobalt (the Blue
The experiments presented in Figure 6, Figure d, a@ene/P’'s LRM), which vyielded a throughput of
Figure 8 were conducted using one million tasks p@1037 tasks/sec; recall that Cobalt also lacks the
run. We thought it would be worthwhile to conduct aupport for single processor tasks, unless HTC-mode
larger scale experiment, with one billion tasks, §@5] is used. HTC-mode means that the termination
validate that the Falkon service can reliably ruof a process does not release the allocated resourc
under heavy stress for prolonged periods of timand initiates a node reboot, after which the laench
Figure 9 depicts the endurance test running opsogram is used to launch the next application.
billion tasks (sleep 0) on 128 processors in a xindhere is still some management (which we
cluster, which took 19.2 hours to complete. We ramplemented as part of Falkon) that needs to happen
the distributed version of the Falkon dispatchem the compute nodes, as exit codes from previous
using four instances on an 8-core server usimagplication invocations need to be persisted across
bundling of 100, which allowed the aggregateeboots (e.g. to shared file system), sent badkeo
throughput to be four times higher than that regmbrtclient, and have the ability to launch an arbitrary
in Figure 6. Over the course of the experiment, tla@plication from the launcher program. Running
throughput decreased from 17K+ tasks/sec to jUslkon on the BlueGene/L in conjunction with
over 15K+ tasks/sec, with an average throughput @bbalt's HTC-mode support yielded a 0.29 task/sec
15.6K tasks/sec. The loss in throughput is attebdutthroughput. The low throughput was attributed ® th
to a memory leak in the client, which was makintact that nodes had to be rebooted across jobs, and
the free heap size smaller and smaller, and hemmae bootup was serialized in the Cobalt scheduler.
invoking the garbage collection more frequently. Wé/e only investigated the performance of HTC-mode
estimated that 1.5 billion tasks would have beem the Blue Gene/L at small scales, as we realized
sufficient to exhaust the 1.5GB heap we hatiat it will not be sufficient for MTC applications
allocated the client, and the client would havelljk due to the high overhead of node reboots across
failed at that point. Nevertheless, 1.5 billionke$s tasks; we did not pursue it at larger scales, othen
larger than any application parameter space we h&lae Gene/P.

today, and is many orders of magnitude larger thaiype et al. [43] also explored a similar space as w
what other systems support. The following subyaye, leveraging HTC-mode [45] support in Cobalt
section attempts to compare and contrast B8 the Blue Gene/L. The authors had various
throughputs achieved between Falkon and otr@)(perimems’ which we tried to replicate for

local resource managers. comparison reasons. The authors measured an

22000 1 — Completed Tasks 11 overhead of 46.4+21.2 seconds for running 60

20000 | Tresanpul {fasksisec) - 6O sec aver 10 é second tasks on 1 pset of 64 processors on the Blue
Elzgﬁﬁ ‘g':‘“m Gene/L. In a similar experiment in running 64
ﬁmm 4 2 second tasks on 1 pset of 256 processors on thee Blu
£ 12000 los & Gene/P, we achieve an overhead of 1.2+2.8 seconds,
5 10000 os & more than an order of magnitude better. Another
S 8000 0.4 g‘ comparison is the task startup time, which they
g 6000 03 ©  measured to be on average about 25 seconds, but

02 sometimes as high as 45 seconds; the startup times
' ﬁ; for tasks in our system are 0.8+2.7 seconds. Amothe
e comparison is average task load time by number of

ST T T T PN R

Time (hours) simultaneously submitted tasks on a single pset and
Figure 9: Endurance test with 1B tasks on 128 CPUs executable image size of 8MB. The authors reported
in ANL/UC cluster an average of 40~80 seconds for 32 simultaneous

. tasks on 32 compute nodes on the Blue Gene/L (1
4.2 Comparing Falkon to Other LRMS ,qet 64 CPUs). We measured our overheads of
and Solutions executing an 8MB binary to be 9.5+3.1 seconds on

It is instructive to compare with task executiotesa 64 compute nodes on the Blue Gene/P (1 pset, 256
achieved by other local resource managers. ¢PUs).

previous work [7], we measured Condor (v6.7.2, via
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Finally, Peter's et al. from IBM also recentiyWe see the throughput in terms of scheduling
published some performance numbers on the HT@ecisions per second range between 2981/sec (for
mode native support in Cobalt [44], which shows BA without I/O) to as low as 1322/sec (for MCH).
similar one order of magnitude difference betweewote that for the FA policy, the cost of
HTC-mode on Blue Gene/L and our Falkon suppozbmmunication is significantly larger than the reft
for MTC workloads on the Blue Gene/P. Fothe costs combined, including scheduling. The
example, the authors reported a workload of 32¢heduling is quite inexpensive for this policyits
tasks on 8K processors and 32 dispatchers taimply load balances across all workers. However,
182.85 seconds to complete (an overhead of 5.58ws see that with the data-aware policies, the
per task), but the same workload on the sarseheduling costs (red and light blue areas) are
number of processors using Falkon completed significant.

30.31 seconds with 32 dispatchers (an overhead of B Task Submit o
0.92ms per task). Note that a similar workload of 57| -$§éf'Cé‘i‘s'%%gc°ﬁ§§:§§.§‘v’f3'%bé“ﬁ‘¥§dIu|er) | 5000
1M tasks on 160K processors run by Falkon can be. Natiication for TFaci Recuis auen

. . 4 = WS Communication — 4000
completed in as little as 368 seconds (0.35ms pef = Throughput (tasks/sec)

e per Ta

task overheads). 2, H 5000
4.3 Data Diffusion Performance \\L___.

We measured the performance of the data-awarg” B s

scheduler on various workloads, both with statid an 51 — — |
dynamic resource provisioning, and ran experiments L._JH
on the ANL/UC TeraGrid [58] (up to 100 nodes, 200 °~ i

Throughput (tasks/sec)

=
o
o
o

o

. first- first- max- max-cache- good-
processors). The Falkon service ran on an 8-core available ~ available compute-uti  hit cache-
Xeon@2.33GHz, 2GB RAM, Java 1.5, 100Mb/s without /0 with /O compute

netvvprk, and 2 ms latency to the .executors. Thﬁigure 10: Data-aware scheduler performance and
persistent storage was GPFS [59] with <1ms latency.,ge profiling for the various scheduling policies

to executors. _ _
We investigate three diverse  workloadst-3-2 Monotonically Increasing Workload

Monotonically-Increasing (MI) and All-Pairs (AP).We investigated the performance of the FA, MCH,

We use the MI workload to explore the dynamiMCU' and GCC polic.ies, while also anallyzing cache
resource provisioning support in data diffusiond arc'2€ effects by varying node c_ache size (1GB to
the various scheduling policies and cache sizes. Vi&B)- The MI workload has a high I/O to compute

use the AP workload to compare data diffusion wif} tio (10MB:1(_)ms). The dataset is 100_GB large
active storage [60]. 10K x 10MB files). Each task reads one file chosen

at random (uniform distribution) from the dataset,
4.3.1 Data-Aware Scheduler Performance and computes for 10ms. The arrival rate is iniidll

In order to understand the performance of the dalgzy/sec and is increased by a factor of 1.3 e§@ry
aware scheduler, we developed several MiCi@aconds to a maximum of 1000 tasks/sec. The
benchmarks to test scheduler performance. We U§gfction varies arrival rate A from 1 to 1000 in 24
the FA policy that performed no 1/O as the baselingsiinct intervals makes up 250K tasks and spans
scheduler, and tested the various scheduling pslici{415 seconds: we chose a maximum arrival rate of
We measured overall achieved throughput in termgng tasks/sec as that was within the limits of the
of scheduling decisions per second and thgia aware scheduler, and offered large aggregate
breakdown of where time was spent inside thegy requirements at modest scales. This workload
Falkon service. We conducted our experimenigms to explore a varying arrival rate under a
using 32 nodes; our workload consisted of 250Kstematic increase in task arrival rate, to explor

tasks, where each task accessed a random f{i{g gata-aware scheduler's ability to optimize data
(uniform distribution) from a dataset of 10K file$ |cajity with an increasing demand.

1B in size each. We use files of 1 byte to meas ﬁ baseli . t (FA poli h task
the scheduling time and cache hit rates with mihim e baseline experiment (FA policy) ran each tas

impact from the actual /O performance of persiste |rec_tl_y _from EPFS’ tusm%h dynsmlf res?urr]ce
storage and local disk. We compare the FA poligowsmmng. ggregate roughput = matches

. . : emand for arrival rates up to 59 tasks/sec, but
Szllinc%lnol\l/{géslepeop”é);, an%oh%/g(s:lngpgizgs,%(é remains flat at an average of 4.4Gb/s beyond that.

'&pe workload execution time was 5011 seconds,

scheduling window size was set to 100X the numb . " ) X
of nodes,gor 3200. We also used 0.8 as the Cﬁ;@ldmg 28% efficiency (ideal being 1415 seconds).

utilization threshold in the GCC policy to determin\We ran the same workload with data diffusion with
when to switch between the MCH and McClyarying cache sizes per node (1GB to 4GB) using
policies. Figure 10 shows the scheduler performanie GCC policy, optimizing cache hits while keeping
under different scheduling policies. processor utilization high (90%). The working set
was 100GB, and with a per-node cache size of 1GB,
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1.5GB, 2GB, and 4GB caches, we get aggregatache, the load on GPFS became as low as 0.4Gb/s;
cache sizes of 64GB, 96GB, 128GB, and 256GBimilarly, the network load was considerably lower,
The 1GB and 1.5GB caches cannot fit the workingith the highest values of 1.5Gb/s for the MCU
set in cache, while the 2GB and 4GB cache can. policy, and less than 1Gb/s for the other policies.

For the GCC policy with 1GB caches, throughput 20 80
keeps up with demand better than the FA policy, up. 12
to 101 tasks/sec arrival rates (up from 59), atcthi @ 14 |
point the throughput reached an average of 5.2Gb/s 12 1
Once the working set caching reaches a steady staté 12 |
the throughput reaches 6.9Gb/s. The overall cachg |

®

73 1 81

ES

2

=

hit rate was 31%, resulting in a 57% higher'_ 4

throughput than GPFS. The workload execution 3

time is reduced to 3762 seconds (from 5011 ldeal FA GCC GCC GCC GCC MCH MCU
seconds), with 38% efficiency. 16B 15GB 2GB 4GB 4GB 4GB
Increasing the cache size to 2GB (128GB EZ?,‘LYZ%?L?EZ?EQSZ?/S)
aggregate), the aggregate throughput is closeeto th = GPFS Throughput (Gbfs)

demand (up to the peak of 80Gb/s) for the entire Figure 11: Ml workload average and peak (99
experiment. We attribute this good performance to percentile) throughput

the ability to cache the entire working set and1the|.

. he response time (see Figure 12) is probably éne o
schedule tasks to the nodes that have required : Lo ; -
to achieve cache hit rates approaching 98%. Withqﬂ? most important metrics interactive applications

) . o erage Response Time (AR) is the end-to-end time
S)éeé:(;:mn time of 1436 seconds, efficiency Wa&Fom task submission to task completion notificatio

o for taski; AR; = WQ+TK;+D;, where WQ is the
Both the MCH and MCU policies performedyaijt queue time, TKis the task execution time, and

significantly worse than GCC, due to them being tqo, js the delivery time to deliver the result.

rigid and causing either unnecessary transfers over
the network, or leaving processors idle. Howeverg 1600
both MCH and MCU still managed to outperformg

the baseline FA policy. £ 14007

Figure 11 summarizes the aggregate 1/O throughp@t EZ
measured in each of the experiments conducted. e 400 |
present in each case first, as the solid bars, tﬁ;—:-
average throughput achieved from start to finishg °* |
partitioned among local cache, remote cache, arid %
GPFS, and second, as a black line, the “peak” %]

(actually 99" percentile) throughput achieved during 0

1569

0 7 1084
0 1

. . . . . FA GCC GCC GCC GCC MCH MCU
the execution. The second metric is interesting 1GB 15GB 2GB 4GB 4GB 4GB

because of the progressive increase in job
submission rate: it may be viewed as a measure ofFigure 12: Ml workload average response time

how far a particular method can go in keeping URe see a significant different between the besi dat

with user demands. diffusion response time (3.1 seconds per taskieo t
We see that the FA policy had the lowest averaggrst data diffusion (1084 seconds) and the worst
throughput of 4Gb/s, compared to between 5.3Gl#$FS (1870 seconds). That is over 500X difference
and 13.9Gb/s for data diffusion (GCC, MCH, angetween the data diffusion GCC policy and the FA
MCU with various cache sizes), and 14.1Gb/s f@plicy response time. A principal factor influengin
the ideal case. In addition to having higher averaghe average response time is the time tasks spend i
throughputs, data diffusion also achievethe Falkon wait queue. In the worst (FA) case, the
significantly throughputs towards the end of thgueue length grew to over 200K tasks as the
experiment (the black bar) when the arrival rates aallocated resources could not keep up with the
highest, as high as 81Gb/s as opposed to 6Gb/sdaiival rate. In contrast, the best (GCC with 4GB
the FA policy. caches) case only queued up 7K tasks at its peak.
Note also that GPFS file system load (the rethe ability to keep the wait queue short allowethda
portion of the bars) is significantly lower withtda diffusion to keep average response times low (3.1
diffusion than for the GPFS-only experiments (FAseconds), making it a better for interactive
in the worst case, with 1GB caches where thorkloads.

working set did not fit in cache, the load on GR§S 4.3.3 All-Pairs Workload Evaluation

still high with 3.6Gb/s due to all the cache missef order to compare data diffusion with other redht
while FA tests had 4Gb/s load. However, as thgork, we implemented a common workload called
cache sizes increased and the working set fit A)-Pairs (AP) [60]. This related work is part dfet
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Chirp [61] project. We call the All-Pairs use oftase would not perform significantly better thaa th
Chirp active storage. Chirp has several 80% efficiency of data diffusion. Running the same
contributions, such as delivering an implementatiomorkload through Falkon directly against a parallel
that behaves like a file system and maintains mbstfile system achieves only 26% of the ideal
the semantics of a shared filesystem, and offdétgoughput.

efficient distribution of datasets via a spannirget |, order to push data diffusion harder, we made the
making Chirp ideal in scenarios with a slow angsrkioad 10X more data-intensive by reducing the
high latency data source. However, Chirp does no§mpuyte time from 1 second to 0.1 seconds, yielding
address data-aware scheduling, so when used by Ally;0 to compute ratio of 24MB:100ms. For this
Pairs, it typically distributes an entire applicati \yorkioad, the throughput steadily increased to &bou
working data set to each compute node local digkGp/s as more local cache hits occurred. We found
prior to the application running. This requiremendyiremely few cache misses, which indicates the
hinders active storage from scaling as well as d"ﬁ@h data locality of the AP workload. Data
diffusion, making large working sets that do nat fiyitfusion achieved 75% efficiency. Active storage
on each compute node local disk difficult to handlgng gata diffusion transferred similar amounts of
and producing potentially unnecessary transfers @fi5 gver the network (1536GB for active storage
data. Data d_iffusion only transfers the minimumadat g 1528GB for data diffusion with 0.1 sec compute
needed per job. time and 1698GB with the 1 sec compute time
Variations of the AP problem occur in manworkload) and to/from the parallel file system
applications. For example when we want t{l2GB for active storage and 62GB and 34GB for
understand the behavior of a new function F on selata diffusion for the 0.1 sec and 1 sec compute ti

A and B, or to learn the covariance of sets A andorkloads respectively). The similarities in
on a standard inner product F. [60] The AP problebandwidth usage manifested themselves in similar
is easy to express in terms of two nested for loopHiciencies, 75% for data diffusion and 91% foe th
over some parameter space. This regular structbest case active storage.

also enables the optimization of its data accegs grder to explore larger scale scenarios, we
operations. emulated (ran the entire Falkon stack on 200
Thain et al [60] conducted experiments witlprocessors with multiple executors per processdr an
biometrics and data mining workloads using Chirgmulated the data transfers) an IBM Blue Gene/P.
The most data-intensive workload was where ead¥ie configured the Blue Gene/P with 4096
function executed for 1 second to compare twwrocessors, 2GB caches per node, 1Gb/s network
12MB items, for an 1/O to compute ratio ofconnectivity, and a 64Gb/s parallel file system. We
24MB:1000ms. At the largest scale (50 nodes aatso increased the problem size to 1000x1000 (1M
500x500 problem size), we measured an efficientasks), and set the 1/0O to compute ratios to
of 60% for the active storage implementation, arg#tMB:4sec (each processor on the Blue Gene/P is
3% for the demand paging (to be compared to thbout ¥ the speed of those in our 100 node cluster)
GPFS performance we cite). These experimer®n the emulated Blue Gene/P, we achieved an
were conducted in a campus wide heterogeneamfficiency of 86%. The throughputs steadily
cluster with nodes at risk for suspension, netwoikcreased up to 180Gb/s (of a theoretical upper
connectivity of 100Mb/s between nodes, and l@ound of 187Gb/s). It is possible that our emulatio
shared file system rated at 100Mb/s from which tlveas optimistic due to a simplistic modeling of the
dataset needed to be transferred to the comptiteus network, however it shows that the scheduler
nodes. scales well to 4K processors and is able to do 870

Due to differences in our testing environments, heduling decisions per second to complete 1M
direct comparison is difficult, but we compute th&Sks in 1150 seconds. The best case active storage
best case for active storage as defined in [60J, ajélded only 35% efficiency. We justify the lower
compare the data diffusion performance against tigfficiency of the active storage due to the sigaifit
best case. Our environment has 100 nodes (280€ that is spent to distribute the 24GB dataset t
processors) which are dedicated for the duration Hf nodes via the spanning tree. Active storage used
the allocation, with 1Gb/s network connectivityt2-3TB of network bandwidth ~(node-to-node
between nodes, and a parallel file system (GPF&)mmunication) and 24GB of parallel file system
rated at 8Gb/s. For the 500x500 workload, dap@ndwidth, while data diffusion used 4.7TB of
diffusion achieves a throughput that is 80% of tHietwork bandwidth, and 384GB of parallel file
best case of all data accesses occurring to laskl dSyStem bandwidth.

(see Figure 13). In reality, the best case active storage wouldirequ

We computed the best case for active storage to4¢he sizes of at least 24GB to fit the 1000x1000
96%, however in practice, based on the efficierfcy groblem size, while the existing 2GB cgqhe sizes fo
the 50 node case from previous work [60] whiciie Blue Gene/P would only be sufficient for an

achieved 60% efficiency, we believe the 100 no@3X83 problem. This comparison is not only
emulated, but also hypothetical. Neverthelesss it i
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interesting to see the significant difference ito billions of tasks, and have a large varianctask
efficiency between data diffusion and active steragxecution times ranging from hundreds of

at this larger scale. milliseconds to hours. Furthermore, each task is

B Best Case (active storage) involved in multiple reads and writes to and from

100% I Falkon (data diffusion) files, which can range in size from kilobytes to
H Best Case (parallel file system

gigabytes. These characteristics made traditional
resource management techniques found in HTC
inefficient; also, although some of these applaai
could be coded as HPC applications, due to the wide
variance of the arrival rate of tasks from manyrsise
an HPC implementation would also yield poor
utilization. Furthermore, the data intensive natofre
500x500 500x500 1000x1000 these applications can quickly saturate parallel fi

200 CPUs 200CPUs 4096 CPUs systems at even modest computing scales.

Figure 13: AP workload efficiency for 500x500 ~ Many of the applications presented in this section
problem size on 200 processor cluster and were executed via the Swift parallel programming
1000x1000 problem size on the Blue Gene/P  system [6], which in turn used Falkon, although

supercomputer with 4096 processors some applications are coded directly against the

_Falkon APIs. All these applications pose significan
. ; \éﬁallenges to traditional resource management found
storage _fundamentally boils d_own to a comparisqn |ipc and HTC, from both job management and
of pushllng data Versus pulling data. The aCt'\é%rage management perspective, and are in critical
storage implementation pus_hes all th? needed qmﬂed of MTC enabled middleware. This section
for a workload to all nodes via a spanning treethWiyis,ses these applications in more details, and

data diffusion, nodes puI_I only the files immedinte explores their performance scalability across aewid
needed for a task, creating an incremental spannj ge of systems, such as clusters, grids, and
forest (analogous to a spanning tree, but one thy ' ' '

supports cycles) at runtime that has links to tbéh ﬁtpercompL.Jters. .

parent node and to any other arbitrary node 81 Functional Magnetic ~ Resonance
persistent storage. We measured data diffusion ltaaging

perform comparably to active storage on our 200e note that for each volume, each individual task
processor cluster, but differences exist between th the fMRI [62] workflow required just a few
two approaches. Data diffusion is more dependesgconds on an ANL_TG cluster node, so it is quite
on having a well balanced persistent storage fer tmefficient to schedule each job over GRAM and
amount of computing power, but can scale to largeBS, since the overhead of GRAM job submission
number of nodes due to the more selective natureanfd PBS resource allocation is large compared with
data distribution. Furthermore, data diffusion onlthe short execution time. In Figure 14 we show the
needs to fit the per task working set in local @sch execution time for different input data sizes foe t
rather than an entire workload working set as & tfiMRI workflow.

case for active storage. We submitted from UC_SUBMIT to ANL_TG and
At measured the turnaround time for the workflows. A
5. Applications 120-volume input (each volume consists of an image
We have found many real applications that arefite of around 200KB and a header file of a few
better fit for MTC than HTC or HPC. Theirhundred bytes) involves 480 computations for the
characteristics include having a large number &dur stages, whereas the 480-volume input has 1960
small parallel jobs, a common pattern in mangomputation tasks. The GRAM+PBS submission
scientific applications [6]. They also use file®ad low throughput although it could have
(instead of messages, as in MPI) for intra-procesgotentially used all the available nodes on the sit
communication, which tends to make thed2 nodes to be exact, as we only used the 1A64
applications data intensive. nodes). We can however bundle small jobs together
ealsing the clustering mechanism in Swift, and we

applications from many domains as potential goc?@ow theb executign t(;rl‘n((aj was reduh(ied by up to 4
candidates that have these characteristics to shgWe> (o s were bundled into roughly 8 groups, as
examples of many-task computing application 1e grouping of JObS.WaS a dynamic process) with
These applications cover a wide range of domai RAM and clustering, as t_he overhead was
from astronomy, physics, astrophysicse,‘mort'zed by the bundled jobs. The Falkon

pharmaceuticals, ~ bioinformatics,  biometricEEXecution service (with 8 worker nodes) however
{’Qrther cuts down the execution time by 40-70%, as

neuroscience, medical imaging, chemistry, clima . . g
ging ¥ gach job was dispatched efficiently to the workers.

modeling, economics, and data analytics. They oft . .
involve many tasks, ranging from tens of thousandye carefully chose the bundle size for the clustgri

We have identified various loosely coupl
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so that the clustered jobs only required 8 nodesgeconds consumed 866.33 CPU hours and wasted
execute. This choice allowed us to compa@®09 CPU hours (99.98971% efficiency); if we
GRAM/Clustering against Falkon, which used #clude the last 43 seconds as the experiment was
nodes, fairly. We also experimented with differerwinding down, the workflow consumed 867.1 CPU
bundle sizes for the 120-volume run, but the oVerdlours and it wasted 1.78 CPU hours, with a final
variations for groups of 4, 6 and 10 were nafficiency of 99.7949013%. The experiment
significant (within 10% of the total execution timecompleted in 15091 seconds on a maximum of 216
for the 8 groups). processors, which results in a speedup of 2061@; no
the average number of processors for the entire

6000

p— experiment was 207.26 CPUs, so the speedup of
5000 {~{B GRAM/Clustering 4808 206.9 reflects the 99.79% computed efficiency.
4000 ——— 3683 0 1800 3600 5400 7200 9000 10800 12600 14400
225 ‘ ‘ ‘ i \ i \
z ‘ ‘ [ 20000
g 3000 1 2510 200
= = 17500
2000 175 17 L
1239 a6 902 1123 150 | . / 15000
1000 156 6 ” | \\ / 12500
120 327 § 125 \ / 2
0 3 B 1 10000 8
% 100 ™~ ki
120 240 360 480 @ ><
Input Data Size (Volumes) 75 / . 7500
- -
. . . 50 //- num_all_workers 000
Figure 14 Execution Time for the fMRI Workflow ~ fum_busy,_workers
25§ // —waitQ_length \\M 2500
. . — delivered_tasks
5.2 MolDyn (Chemistry Domain) ok | || e | | PN,
The goal of this molecular dynamics (MolDyn) — ° ™™ % % 8 o 00 0 e

applicatio_n is to optimize and automate the Figure 15: 244 Molecule MolDyn application;
computational workflow that can be used to generatesymmary view showing executor’s utilization in

the necessary parameters and other input files for re|ation to the Falkon wait queue length as
calculating the solvation free energy of ligands] a experiment time progressed

can also be extended to protein-ligand binding. ) )
energy. Solvation free energy is an important S worth comparing the performance we obtained
quantity in Computational Chemistry with a variet)fé)r MolDyn using Falkon with that of MolDyn over
of applications, especially in drug discovery an qdmonal GRAM/PBS. Due to re!|qblllty issues
design. The accurate prediction of solvation frd&/ith GRAM and PBS) when submitting 20K jobs
energies of small molecules in water is still iy ©Ver the course of hours, we were not able to
unsolved problem, which is mainly due to thauccessfullyfinish the same _244 molecule run over
complex nature of the water-solute interactions. [ARAM/PBS. We therefore tried to do some smaller
the study, a library of 244 neutral ligands is ehos €XPeriments, in the hopes that it would increase th
for free energy perturbation calculations. ThiBrobability of doing a successful run. We tried
library contains compounds with various chemic&€veral runs with 50 molecules (4201 of jobs fer th
functional groups. Also, the absolute free energfes®0 molecule run, instead of 20497 jobs for the 244

solvation for these compounds are knowﬁlolecule run); the best execution times we were
experimentally, and will serve as a tool t@ble to achieve for the 50 molecule runs with
benchmark our calculations. All the structures wef@RAM/PBS (on the same testbed) took 25292

obtained from the NIST Chemistry WebBool€conds. We achieved a speedup of only 25.3X
database [63]. compared to 206.9X when using Falkon on the same

. workflow and the same Grid site in a similar state.
Our experiment performed a 244 molecule run,

which is composed of 20497 jobs that should talV¥€ €xplain this drastic difference mostly due te th
less than 957.3 CPU hours to complete; in practid¥pical job duration (~200 seconds) and the
it takes even less as some job executions aredshaygPmission rate throttling of 1/5 jobs per second;
between molecules. Figure 15 shows the resouM@h 200 second jobs, the most concurrent jobs we
utilization in relation to Falkon queue length g t €Ould expect was 40. Increasing the submission rate
experiment progressed. We see that as resourd¥gttle resulted in GRAM/PBS gateway instability,
were acquired (using the dynamic resourc Even causing it to stop functioning. Furthermore
provisioning, starting with 0 CPUs and ending witRach node was only using a single processor of the
216 CPUs at the peak), the CPU utilization was nedifal processors available on the compute nodes due
perfect (green means utilized, red mean idle) wifR the local site PBS policy that allocates eathgo

the exception of the end of the experiment asahe |ENtiré (dual processor) machine and does not allow
few jobs completed (the last 43 seconds). Figure @§1€r jobs to run on allocated machines; it is Ut
shows the same information on a per task basis. TRdhe application to fully utilize the entire maué,

entire experiment with the exception of the last 48rough multi-threading, or by invoking several
different jobs to run in parallel on the same maehi
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This is a great example of the benefits of havlrg tcaching of the multi-megabyte application binaries,
flexibility to set queue policies per applicationand the caching of 35MB of static input data that
which is impractical to do in real-world deployedvould have otherwise been read from the shared file
systems. system for each job. Note that each job still had

5.3 Molecular Dynamics: DOCK some minimal read and write operations to the
The DOCK (molecular dynamics) application [64i?aKrgd f'lel systtttetzn, btUt ttheydwerﬁ o? the ordter?sf 1
deals with virtual screening of core metabolic &tsg (only at the start and end of computations),

- ith the majority of the computations being in the
against KEGG [65] compounds and drugs. DOC ! .
addresses the problem of “docking” molecules 00s of seconds, with an average of 713 seconds.

each other. In general, *“docking” is the o000 o Processor 450
identification of the low-energy binding modes of a o000 —Tasks Completed — 400
— — Throughput (tasks/sec) /

small molecule, or ligand, within the active siteao 800000
macromolecule, or receptor, whose structure i
known. A compound that interacts strongly with
receptor (such as a protein molecule) associatéd wig & soooco |
a disease may inhibit its function and thus acaas$ 3 4o {§
beneficial drug. Development of antibiotic and£§ 300000 1
anticancer drugs is a process fraught with dead.end 200000+
Each dead end costs potentially millions of dollars 100004
wasted years and lives. Computational screening of 0
protein drug targets helps researchers prioritize °

targets and determine leads for drug candidates.

The goal of this project was to 1) validate outigbi

to approximate the binding mechanism of the
protein’s natural ligand (a.k.a compound that bjndsThese computations are, however, just the beginning
2) determine key interaction pairings of chemicalf a much larger computational pipeline that will
functional groups from different compounds wittscreen millions of compounds and tens of thousands
the protein’s amino acid residues, 3) study th@f proteins. The downstream stages use even more
correlation between a natural ligand that is sintila computationally intensive and  sophisticated
other compounds and its binding affinity with th@rograms that provide for more accurate binding
protein’s binding pocket, and 4) prioritize theffinities by allowing for the protein residues lie
proteins for further study. flexible and the water molecules to be explicitly

Running a workload consisting of 934,80§nodeled. Computational screening, which is

molecules on 116K CPU cores using Falkon toc;glatively inexpensive, cannot replace the wet lab

2.01 hours (see Figure 16). The per-task executi noays: but can significantly reduce the number of

time was quite varied with a minimum of 1 second€ad ends by providing more qualified protein
a maximum of 5030 seconds. and a mean argets and leads. To grasp the magnitude of this
7134560 seconds. The two-hour run has a sustair?&?l'cat'on’ the largest run we made of 934,803
utilization of 99.6% (first 5700 seconds ofaSkS we perform_egl represents only 0_'09% of the
experiment) and an overall utilization of 78% (duli,e.arch space (1 billion .runs).be.lng conS|dered1[?yt

to the tail end of the experiment). Note that wé hacientists we are working with; simple calculations
allocated 128K CPUs, but only 116K CI:,Ugroject a search over the entire parameter space to
registered successfully and were available for tﬁgethOiQG%SKCPU yéelars, Ct;he e/(g)uw_?rllgnt_of 48| days
application run; this was due to GPFS contention ! t:l e h t-core tug er}e | IS 1S a ar%?
bootstrapping Falkon on 32 racks, and was fixed {{OP'€M that cannot be Solved In a reasonable

later large runs by moving the Falkon framework gmount of time without a supercomputer scale
RAM before starting, and by pre-creating lo esource. Our loosely coupled approach holds great

directories on GPFS to avoid lock contention. romise for making this problem tractable and

have made dozens on runs at 32 and 40 rack scaﬁ%@?ageable on today's largest supercomputers.
and we have not encountered this specific problém4 Production Runs in Drug Design

since. We have been working extensively with a group of
Despite the loosely coupled nature of thigesearqhers at the Midwes.t Center for Structural
application, our preliminary results show that theenomics at Argonne National Laboratory, who
DOCK application performs and scales well tgave adopted Falkon and use it in their daily
nearly full scale (116K of 160K CPUS). Théarodqctlon runs in modeling three-dl_mensm_nal
excellent scalability (99.7% efficiency wherProtein structures towards drug design. Since
compared to the same workload at 64K CPUs) wREoteins with similar structures tend to behave in
achieved only after careful consideration was takéfnilar ways, the team compares the modeled
to avoid the shared file system, which included the
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Figure 16: 934,803 DOCKS5 runs on 118,784 CPU
cores on Blue Gene/P
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structures to known proteins in order to predietrt
functions —a computationall intensive task.

As the Protein Data Bank expandsponentially, it
becomes more difficult to coax desktop machine
do the types of analysis required. They turne:
Falkon as a way to utilize their existing softw
applications on increasingly large machines, s«
the IBM Blue Gene/P supercomputeith 160K
processors. “Falkon has allowed us to ask bi
guestions and perform experiments on a scale r
before attempted —er even thought possible,” se
Andrew Binkowski, one of the main researck
involved in performing the productions runs. “s
is the difference between comparing a ne
determined protein structure to a family of rele
proteins versus comparing it to the entire pro
universe.” The team has done all of this us
existing software packages that were not desi
for high-throughput computing or ma-task
computing, and used Falkon to coordinate and ¢

Gene/P CPU time. Using the power of the E
Gene/P we can perform detailed m-variable
parameter studies of the behavior of all aspec
petroleum refining covered by MAF

As a larger and more complex test, we perform
2D parameter sweep to explore the sensitivity e
investment required to maintain production cape
over a 4decade span on variations in the dit
production yields from low sulfur light crude a
medium sulfur heavy crude oils. This mimics «
possible segment of the many complex multivar
parameter studies that become possible with a
computing powr. A single MARS model executic
involves an application binary of 0.5MB, static i

data of 15KB, 2 floating point input variables am
single floating point output variable. The aver:
microtask execution time is 0.454 seconds. To s
this efficiently, we performed ta-batching of 600
model runs into a single task, yielding a workl
with 4KB of input and 4KB of output data, and

the execution of many loos+-coupled computations average execution time of 271 secor

that are treated as “black boxes” without .

applicationspecific code modificatior

Over the course of 7 mon (09/08 — 04/09), this
group managed to run 2 million production j
consuming 170K CPU hours with a minimum
256 concurrent processors, an average of
processors, and a maximum of 512concurrent
processors; the average per job execution time
310 secondswith a standard deviation of 3.
seconds.

5.5 Economic Modeling: MARS

We also evaluated MARS (Macro Analysis
Refinery Systems), an economic model
application for petroleum refining developed by
Hanson and J. Laitner at Argonn«6]. This
modeling code performs a fast but br-based
simulation of the economic and environmel
parameters of petroleum refining, covering ovet
primary & secondary refine processes. MARS
analyzes the processing stages for six grade
crude oil (from lowsulfur light to higl-sulfur very-
heavy and synthetic crude), as well as processe
upgrading heavy oils and oil sands. It includehE
major refinery products incling gasoline, diesel
and jet fuel, and evaluates ranges of product st
It models the economic and environmental imp
of the consumption of natural gas, the produc
and use of hydrogen, and c-to-liquids co-
production, and seeks to provide irhts into how
refineries can become more efficient through
capture of waste energy.

While MARS analyzes this large number
processes and variables, it does so at a coarsk
without involving intensive numerics. It consistb
about 16K lines of Gode, and can process me
internal model execution iterations, with a rai
from 0.5 seconds (1 internal iteration) to hc
(many thousands of internal iterations) of B

We executed a workload with 600 million mo
runs (1M tasks) on 128K prcssors on the Blue
Gene/P (see Figure 17The experiment consum
9.3 CPU years and took 2483 seconds to com;
Even at this large scale, the pesk execution times
were quite deterministic with an average of 280
seconds; this means that most processors wouk
and stop executing tasks at about the same
which produces the peaks in task completion 1
(blue line) that are as high as00 tasks/sec. As a
comparison, a 1 processor experiment using a ¢
part of the same workload had an average
271+0.3 seconds; this yielded an efficiency of ¢
with a speedup of 126,89@deal speedup beir
130,816).
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Figure 17: MARS application (summary view) on

the Blue Gene/P; 1M tasks using 128K process
cores

5.6 Large-scale Astronomy Application
Evaluation

We have implemented théstroPortal [67, 68]
which performs the “stacki” of image cutouts
from different parts of the sky. This function ¢
help to statistically detect objects too fa
otherwise. Astronomical image collections usu
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cover an area of sky several times (in differefhe following experiment (Figure 18) offers a
wavebands, different times, etc). On the other hartktailed view of the performance (time per stadk pe
there are large differences in the sensitivities pfocessor) of the stacking application as we vaey t
different observations: objects detected in onedbalocality. The last data point in each case reprssen
are often too faint to be seen in another surwey. ideal performance when running on a single node.
such cases we still would like to see whether theNete that although the GPFS results show
objects can be detected, even in a statisticaldash improvements as locality increases, the results are
There has been a growing interest to re-projedt edar from ideal. However, we see data diffusion gets
image to a common set of pixel planes, then stgckiolose to the ideal as locality increases beyond 10.
images. The stacking improves the signal to noise,

. J 0 Data Diffusion (GZ)
and after coadding a large number of images, there1 o _‘;‘ggthD('félgw” (FIm)
will be a detectable signal to measure the average e ~=—GPFS (FIT)
brightness/shape etc of these objects. While tass h% 1400 \C e
been done for years manually for a small number df A\

. . . . . © 1200 -
pointing fields, performing this task on wide arefs £ 1000 \

sky in a systematic way has not yet been dons. It & 400
also expected that the detection of much fainteg oo 5=
sources (e.g., unusual objects such as transiests) o

be obtained from stacked images than can be 222 -— — :
detected in any individual image. o -
Astronomical surveys produce terabytes of data, and 1 138 2 3 4 5 10 20 30 Ideal
contain millions of objects. For example, the SDSS Locality

DR5 dataset has 320M objects in 9TB of imageEigl_Jre 18: Performance of the sta(_:king applica_tion
[69]. To construct realistic workloads, we idemfi ~ using 128 CPUs for workloads with data locality
the interesting objects (for a quasar search) froi®nging from 1 to 30, using data diffusion and GPFS

SDSS DRS. The working set we constructedsing data diffusion, we achieve an aggregated 1/O
con5|st_ed of 771,725 objects in 558,500 files, Whe{hroughput of 39Gb/s with high data locality, a
each file was either 2MB compressed or 6MEignjficantly higher rate than with GPFS, whichgop
uncompressed, resulting in a total of 1.1TB . 4t 4Gb/s. These results show the decreased load
compressed and 3.35TB uncompressed. From t§i$ shared infrastructure (i.e., GPFS), which

working set, various workloads were defined, wit])imately gives data diffusion better scalability.
certain data locality characteristics, varying frme

lowest locality of 1 (i.e., 1-1 mapping betwee®-/ Montage (Astronomy Domain) o
objects and files) to the highest locality of 3@ (i The Montage [70] workflow demonstrated similar
each file contained an average of 30 objects). job execution time pattern as there were many small

The AstroPortal was tested on the ANL/UéObS involved. We show in Figure 19 the comparison

: . . of the workflow execution time using Swift with
TeraQnd S|te,. W'th. up to 128 processors. Thcei stering over GRAM, Swift over Falkon, and MPI.
experiments investigate the performance a

scalability of the stacking code in four e Montage application code we —used for
configurations: 1) Data Diffusion (GZ), 2) Dat clustering and Falkon are the same. The code or th

o O Pl runs is derived from the same set of source
Diffusion (FIT), 3) GPFS (GZ), and 4) GPFS (FIT)'code, with the addition of data partitioning antkin

At the start of ea_lch experiment, all data is prese locessor communication, so when multiple
only on the persistent storage system (GPFS). For

e : ocessors are allocated, each would process part o
data diffusion we use the MCU policy and CaChélD e input datasets, and combine the outputs if

data on local ners. For the GPFS experiments gcessary. The MPI execution was well balanced
use the FA policy and perform no caching. G

o ; . cross multiple processors, as the processing for
|nd_|cates thaF th? image data is in c_ompressedefbr_rgach image \?vas F:;imilar and the imagg sizes dig not
while FIT indicates that the image data i

uncompressed ary much. All three approaches needed to go over
: PBS to request for computation nodes, we used 16
Data diffusion can make its largest impact on Iargfodes for Falkon and MPI, and also configured the
scale deployments, and hence we ran a seriescRistering for GRAM to be around 16 groups.
experiments to capture the performance at a lar e workflow had twelve stages, and we only show
scale (128 processors) as we vary the data Iocal'k e parallel stages and the total éxecution timeén
We investigated the data-aware scheduler’s akbdityﬁgure (the serial stages ran on a single node thad
exploit the data locality found in the Variou%lifference of running them across the' three
workloads and its ability to direct tasks to congoat roaches was small. so we only included them in
on which needed data was cached. We found thatfhoé] total time for c'omparison purposes). The
data-aware scheduler can get within 90% of thdid%\%rkflow produced a 3x3 square degree hosaic

cache hit ratios in all cases. around galaxy M16, where there were about 440
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input images (2MB each), and 2,200 overlappingsing brutal-force resources. It provides a simple
between them. There were tw#\dd stages becauseprogramming model and powerful runtime system
we divided the region into subsets, co-added imades processing large datasets. The model is based o
in each subset, and then co-added the subdets key functions: “map” and “reduce”, and the
together into a final mosaic. We can observe that truntime system automatically partitions input data
Falkon execution service performed close to tlend schedules the execution of programs in a large
MPI execution, which indicated that jobs wereluster of commodity machines. MapReduce has
dispatched efficiently to the 16 workers. The GRANbeen applied to document processing problems (e.g.
execution with clustering enabled still did notistributed indexing, sorting, clustering).

perform as well as the other two, mainly due to PB&pjications that can be implemented in
queuing overhead. It is worth noting that the 'aﬂapReduce are a subset of those that can be
stagemAdd was parallelized in the MPI version, bufmplemented in Swift due to the more generic
not fqr th_e version for GRA_M or Falkon, and hencﬁrogramming model found in Swift. Contrasting
the big difference in execution time between FalkoS\ift and Hadoop are interesting as it could
and MPI, and the source of the major difference gytentially attract new users and applications to
the entire run between MPI and Falkon. systems which traditionally were not considered.

Katz et al. [71] have also created a task-graRle compared two benchmarks, Sort and
implementation of the Montage code, using PegasygerdCount, and tested them at different scales and
They did not implement quite the same applicatigjth gifferent datasets. [72] The testbed consisted
as us: for example, they ran mOverlap and mimgthl 270 processor cluster (TeraPort at UChicago).
on the portal rather than on compute nodes, and thgaqoop (the MapReduce implementation from
omitted the final mAdd phase. Thus directyahgol) was configured to use Hadoop Distributed
comparison with Swift over Falkon is difficult. gje System (HDFS), while Swift used Global
However, if we omit the finaiAdd phase from the parallel File System (GPFS). We found Swift
comparison, Swift over Falkon is then about 5%fered comparable performance with Hadoop, a
faster than MPI, and thus also faster than tgprising finding due to the choice of benchmarks
Pegasus approach, as they claimed that MRhich favored the MapReduce model. In Sorting
execution time was the lower bound for them. Th&er a range of small to large files, Swift exeonti
reasons that Swift over Falkon performs better agges were on average 38% higher when compared
that MPI incurs initialization and aggregationg Hadoop. However, for WordCount, Swift

processes, ~ which  involve  multi-processogyecution times were on average 75% lower.

communications, for each of the parallel stage%

where Falkon acquires resource at one time and ti:r experience with Swift and Hadoop indicate that

the communications in dispatching tasks from t € file systems (GPFS and Hadoop) are the main

- - ttlenecks as applications scale; HDFS is more
Falkon service to workers have been kept minimu o ’ -
- . alable than GPFS, but it still has problems with
(only 2 message exchanges for each job d'SpatC%j%iall files, and it requires applications be mesdifi

The Pegasus approach used Condor's glide: ; .
mechanism, where Condor is still a heavy-weight '€ &' current efforts in Falkon to enable Stoift
operate over local disks rather than shared file

scheduler compared with Falkon. systems and to cache data across jobs, which would

3500 in turn offers comparable scalability and
3000——2’\642"""‘”(:'“5@””9 performance to HDFS without the added
2500 1 0 Falkon requirements of modifying applications.

2000

6. Future Work and Conclusions

1000 Clusters with 62K processor cores (e.g., TACC Sun
500 I Constellation System, Ranger), Grids (e.g., Te@Gri
OMM with over a dozen sites and 161K processors), and
S & S S & & supercomputers with 160K processors (e.g., 1BM
IRy ¢ Blue Gene/P) are now available to the scientific
N

community. These large HPC systems are
considered efficient at executing tightly coupled
Figure 19: Execution Time for the Montage parallel jobs within a particular machine using MPI

Workflow to achieve inter-process communication. We

5.8 Data Analytics: Sort and WordCount proposed using HPC systems for loosely-coupled
’ 4 ’ %Dplications, which involve the execution of
Many programming models and frameworks hav d ial iobs th be individual
been introduced to abstract away the managem@r%Epen ent, sequential jobs that can be in ivigual
eduled, and wusing files for inter-process

details of running applications in distributed L
i ; communication.
environments. MapReduce [5] is regarded as “a

power-leveler that solves computation problems

Components
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We believe that there is more to HPC than tightkcales continue to increase according to Moore’s
coupled MPI, and more to HTC than embarrassinglaw.

parallel long running jobs. Like HPC applicationsy, fyture work, we will develop both the theoretica
and science itself, applications are becoming,q practical aspects of building efficient and
increasingly complex opening new doors for manyajable support for both compute-intensive and
opportunities to apply HPC in new ways if W&gata-intensive MTC. To achieve this, we envision
broaden our perspective. We hope this paper leaygfiding a new distributed data-aware execution
the broader community with a stronger appreciatiQfpyic that scales to at least millions of processo
of the fact that applications that are not tightly,q petabytes of storage, and will support HPC,
coupled MPI are not necessarily embarrassinglytc, and HTC workloads concurrently and
parallel. Some have just so many simple tasks ﬂ@ficiently. Clients will be able to submit
managing them is hard. Applications that operate @gmputational jobs into the execution fabric by
or produce large amounts of data need sophisticagi%mitting to any compute node (as opposed to
data management in order to scale. There exXgfymitting to single point of failure gateway noges
applications that involve many tasks, each composg fapric will guarantee that jobs will execute at
of tightly coupled MPI tasks. Loosely coupledeast once, and that it will optimize the data
applications often have dependencies among tasi®ement in order to maximize processor utilization
and typically use files for inter-procesgng minimize data transfer costs. The execution
communication. Efficient support for these sorts @fpric will be elastic in which nodes will be akite
applications on existing large scale systemgi, and leave dynamically, and data will be
including future ones (e.g. Blue Gene/Q [73] ang;iomatically replicated throughout the distributed
Blue _Water supercomputer'_s) |nvoIve_s ;ubstant@lstem for both redundancy and performance. We
technical challenges and will have big impact ofjj| employ a variety of semantic for the data &xe
science. patterns, from full POSIX compliance for generality
This paper has shown good support for MTC onta relaxed semantics (e.g. eventual consistency on
variety of resources from clusters, grids, andata modifications, write-once read-many data
supercomputers through the use of Swift and Falkatcess patterns) to avoid consistency issues and
Furthermore, we have taken the first steps to addréncrease scalability. Achieving this level of
data-intensive MTC by offloading much of the I/Gscalability and transparency will allow the data-
away from parallel file systems and into thaware execution fabric to revolutionize the typés o
network, making full utilization of caches (both orapplications that can be supported at petascale and
disk and in memory) and the full network bandwidtfuture exascale levels.

of commodity networks (e.g. gigabit Ethernet) a

well as proprietary and more exotic networké\Ckr‘()WledgememS

(Torus, Tree, and Infiniband). This work was supported in part by the NASA Ames
We argue that data locality is critical to thdResearch Center GSRP Grant Number
successful and efficient use of large distributedNAO6CB89H and by the Office of Advanced
systems for data-intensive applications, where tgientific Computing Research, Office of Science,
threshold of what constitutes a data-intensive.S. Dept. of Energy, under Contract DE-AC02-
application is lowered every year as the perforrean06CH11357. This research was also supported in
gap between processing power and storagart by the National Science Foundation through
performance widens. Large scale data managemgetaGrid resources provided by UC/ANL.

is the next major road block that must be addressed

in a general way, to ensure data movement References

minimized by intelligent data-aware scheduling boiﬁ

among distributed computing sites, and among
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