

The Quest for Scalable Support of
Data-Intensive Workloads in Distributed Systems

Ioan Raicu,1 Ian T. Foster,1,2,3 Yong Zhao4
Philip Little,5 Christopher M. Moretti,5 Amitabh Chaudhary,5 Douglas Thain5

1Department of Computer Science, University of Chicago, Chicago, IL, USA
2 Computation Institute, University of Chicago, Chicago, IL, USA

3 Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA
4 Microsoft Corporation, Redmond, WA, USA

5 Department of Computer Science & Engineering, University of Notre Dame, Notre Dame, IN, USA

iraicu@cs.uchicago.edu, foster@mcs.anl.gov, yozha@microsoft.com,
plittle1@nd.edu, cmoretti@nd.edu, achaudha@nd.edu, dthain@nd.edu

ABSTRACT
Data-intensive applications involving the analysis of large
datasets often require large amounts of compute and storage
resources, for which data locality can be crucial to high
throughput and performance. We propose a “data diffusion”
approach that acquires compute and storage resources
dynamically, replicates data in response to demand, and schedules
computations close to data. As demand increases, more resources
are acquired, thus allowing faster response to subsequent requests
that refer to the same data; when demand drops, resources are
released. This approach can provide the benefits of dedicated
hardware without the associated high costs, depending on
workload and resource characteristics. To explore the feasibility
of data diffusion, we offer both a theoretical and an empirical
analysis. We define an abstract model for data diffusion, introduce
new scheduling policies with heuristics to optimize real-world
performance, and develop a competitive online cache eviction
policy. We also offer many empirical experiments to explore the
benefits of dynamically expanding and contracting resources
based on load, to improve system responsiveness while keeping
wasted resources small. We show performance improvements of
one to two orders of magnitude across three diverse workloads
when compared to the performance of parallel file systems with
throughputs approaching 80 Gb/s on a modest cluster of 200
processors. We also compare data diffusion with a best model for
active storage, contrasting the difference between a pull-model
found in data diffusion and a push-model found in active storage.

Categories and Subject Descriptors
Copyright 2009 ACM 978-1-60558- 587-1/09/06...$5.00.D.4.2
[Operating Systems]: Storage and Management – storage
hierarchies

General Terms
Algorithms, Management, Measurement, Performance, Design.

Keywords
Data diffusion, data management, data-aware scheduling, Falkon

1. INTRODUCTION
The ability to analyze large quantities of data has become
increasingly important in many fields. To achieve rapid
turnaround, data may be distributed over hundreds to thousands of
computers. Traditional techniques commonly found in scientific
computing (i.e., the reliance on parallel file systems with static
configurations) do not scale to today’s largest systems for data-
intensive applications, as the rate of increase in the number of
processors outpaces parallel file system performance.

For example, a cluster we used in our experiment (with 316
processors) has a parallel file system rated at 1 GB/s, yielding 3.2
MB/s per processor of bandwidth. The second largest open
science supercomputer, the IBM Blue Gene/P at Argonne
National Laboratory, has 160K processors and a parallel file
system rated at 65 GB/s, yielding a mere 0.4 MB/s per processor.
That is an 8X reduction in bandwidth per processor between a
cluster from 2002 and one from 2009. This trend will likely
continue, with advances in many-core processors expected to
increase the number of cores two orders of magnitude over the
next decade.

We argue that in such circumstances, data locality is critical to the
successful and efficient use of large distributed systems for data-
intensive applications [1, 2]. One approach to achieving data
locality—adopted by Google [3, 4]—is to build large compute-
storage farms dedicated to storing data and responding to user
requests for processing. However, such approaches can lead to
idle resources if load varies over time and the data of interest.

We propose an alternative data diffusion approach [5], in which
resources required for data analysis are acquired dynamically
from a local resource manager (LRM), in response to demand.
Resources may be acquired either “locally” or “remotely”; their
location matters only in terms of associated cost tradeoffs. Both
data and applications “diffuse” to newly acquired resources for
processing. Acquired resources and the data that they hold can be
cached for some time, allowing more rapid responses to
subsequent requests. Data diffuses over an increasing number of
processors as demand increases, and then contracts as load
reduces, releasing processors back to the LRM for other uses.

Data diffusion involves a combination of dynamic resource
provisioning, data caching, and data-aware scheduling. The
approach is reminiscent of cooperative caching [6], cooperative
web-caching [7], and peer-to-peer storage systems [8]. Other data-

Copyright 2009 Association for Computing Machinery. ACM
acknowledges that this contribution was authored or co-authored by an
employee, contractor or affiliate of the U.S. Government. As such, the
Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government
purposes only.
HPDC’09, June 11–13, 2009, Munich, Germany.
Copyright 2009 ACM 978-1-60558- 587-1/09/06...$5.00.

aware scheduling approaches tend to assume static resources [9,
10], in which a system configuration dedicates nodes with roles
(i.e., clients, servers) at startup and no support is provided to
increase or decrease the ratio between client and servers based on
load. In our approach, however, we need to dynamically acquire
not only storage resources but also computing resources. In
addition, datasets may be terabytes in size, and data access is for
analysis (not retrieval). Further complicating the situation is our
limited knowledge of workloads, which may involve many
different applications. In principle, data diffusion can provide the
benefits of dedicated hardware without the associated high costs.

The performance achieved with data diffusion depends crucially
on the characteristics of application workloads and the underlying
infrastructure. As a first step toward quantifying these
dependences, we conducted experiments [5] with both micro-
benchmarks and a large-scale astronomy application and showed
that data diffusion improves performance relative to other
approaches, as well as provides improved scalability as
aggregated I/O bandwidth scaled linearly up to 64 nodes.

This paper is an evolution in both breadth and depth of data
diffusion as presented in [5]. In search for a deeper understanding,
we have defined a data diffusion abstract model (Section 3.1). We
also discuss the data-aware scheduler (Section 2.2) and improved
scheduling policies with heuristics to optimize real-world
performance (Section 2.2). Moreover, as an initial provably sound
algorithm we offer 2Mark, an O(NM)-competitive caching
eviction policy (Section 3.2), for a constrained problem on N
stores each holding at most M pages. This is the best possible such
algorithm with matching upper and lower bounds (barring a
constant factor).

In broadening the scope of the original work, we have explored
the benefits of dynamic resource provisioning (our previous work
investigated only static resource provisioning), which allows the
set of both compute and storage resources to expand and contract
based on load, to improve system responsiveness while keeping
wasted resources under control. We explored this space with two
workloads, the monotonically increasing workload (Section 4.1)
and the sin-wave workload (Section 4.2). We also explored the
all-pairs workload [11] (Section 4.3), which allows us to compare
data diffusion with a best model for active storage [12].
Experiments are performed on a subset of a 316-processor cluster.

The contributions of this paper lie in the deeper analysis of data
diffusion at both the theoretical and practical levels. We present
an O(NM)-competitive algorithm for the scheduler as well as a
proof of its competitive ratio, define new heuristics to improve
scheduling decisions, explore varying arrival rate workloads to
stress the dynamic resource provisioning, and compare data
diffusion with the best-case model of active storage.

2. DATA DIFFUSION ARCHITECTURE
We implement data diffusion [5] in the Falkon task dispatch
framework [13]. This section describes Falkon and data diffusion.

2.1 Falkon and Data Diffusion
To enable the rapid execution of many tasks on distributed
resources, Falkon combines (1) multilevel scheduling [14] to
separate resource acquisition (via requests to batch schedulers)
from task dispatch and (2) a streamlined dispatcher to achieve
several orders of magnitude higher throughput (487 tasks/s) and
scalability (54K executors, 2M queued tasks) than other resource

managers [13]. Recent work has achieved throughputs in excess
of 3750 tasks/s and scalability up to 160K processors [15].

Falkon is structured as a set of (dynamically allocated) executors
that cache and analyze data; a dynamic resource provisioner
(DRP) that manages the creation and deletion of executors; and a
dispatcher that dispatches each incoming task to an executor. The
provisioner uses tunable allocation and deallocation policies to
provision resources adaptively. Individual executors manage their
own caches, using local eviction policies, and communicate
changes in cache content to the dispatcher. The dispatcher sends
tasks to nodes that have cached the most needed data, along with
the information on how to locate needed data; executors access
needed data from local disk, peer executors, or persistent storage.

To support data-aware scheduling, we implement a centralized
index within the dispatcher that records the location of every
cached data object; this is similar to the centralized NameNode in
Hadoop’s HDFS [16]. This index is maintained as a loosely
coherent entity with the contents of the executor’s caches via
periodic update messages generated by the executors. Each
executor maintains a local index to record the location of its
cached data objects. This hybrid architecture provides a good
balance between latency to the data and good scalability. A prior
study [5] showed that a centralized index can often perform better
than a distributed index at modest scales (up to thousands of
processors).

Falkon supports the queuing of incoming tasks, whose length
triggers the dynamic resource provisioning to allocate resources
via GRAM4 [17] from the available set of resources, which in
turn allocates the resources and bootstraps the executors on the
remote machines. The scheduler sends tasks to compute nodes,
along with the necessary information about where to find related
input data. Initially, each executor fetches needed data from
remote persistent storage. Subsequent accesses to the same data
results in executors fetching data from other peer executors if the
data is already cached elsewhere. The current implementation
runs a GridFTP server [18] at each executor, which allows other
executors to read data from peer caches. If a data item is not found
at any of the known locations, it attempts to retrieve the item from
persistent storage; if this also fails, the respective task fails.

In our experiments, we assume data follows the normal pattern
found in scientific computing, namely, write-once/read-many (the
same assumption HDFS makes in the Hadoop system [16]). Thus,
we avoid complicated and expensive cache coherence schemes
other parallel file systems enforce. We implement four cache
eviction policies: Random, FIFO, LRU, and LFU [6]. Our
empirical experiments all use LRU; we will study the other
policies, including additional ones such as LRV [19], in future
work.

2.2 Data-Aware Scheduler
Data-aware scheduling is central to data diffusion, since
harnessing data locality in application access patterns is critical to
performance and scalability. We implement four dispatch policies.

The first-available (FA) policy ignores data location information
when selecting an executor for a task; it simply chooses the first
available executor and provides the executor with no information
concerning the location of cached data objects. The executor must
fetch all data needed by a task from persistent storage. This policy
is used for experiments not using data diffusion.

The max-compute-util (MCU) policy leverages data location
information, maximizing resource utilization even at the
potentially higher cost of data movement. It sends a task to an
available executor, preferring ones with the most local data.

The max-cache-hit (MCH) policy uses information about data
location to dispatch each task to the executor with the largest
amount of data needed by that task. If that executor is busy, task
dispatch is delayed until the executor becomes available. This
strategy reduces data movement operations compared to FA and
MCU but may lead to poor processor utilization.

The good-cache-compute (GCC) policy is a hybrid MCH/MCU
policy. The GCC policy sets a threshold on the minimum
processor utilization to decide when to use MCH or MCU. We
define processor utilization to be the number of processors with
active tasks divided by the total number of processors allocated.
MCU used a threshold of 100%, trying to keep all allocated
processors in use. We find that relaxing this threshold (e.g., to
90%) works well in practice, since it keeps processor utilization
high and it gives the scheduler flexibility to improve cache hit
rates significantly when compared to MCU alone.

The scheduler is window-based. It takes the scheduling window W
size (i.e., |W| as the number of tasks to consider from the wait
queue when making the scheduling decision), and it starts to build
a per task scoring cache hit function. If at any time a best task is
found (i.e., achieves a 100% hit rate to the local cache), the
scheduler removes this task from the wait queue and adds it to the
list of tasks to dispatch to this executor. This process is repeated
until the maximum number of tasks are retrieved and prepared to
be sent to the executor. If the entire scheduling window is
exhausted and no best task is found, the m tasks with the highest
cache hit local rates are dispatched. In the case of MCU, if no
tasks are found that would yield any cache hit rates, then the top m
tasks are taken from the wait queue and dispatched to the
executor. For MCH, if no tasks are returned, the executor returns
to the free pool of executors. For GCC, the aggregate CPU
utilization at the time of scheduling decision determines which
action to take. Prebinding of tasks to nodes can negatively impact
cache-hit performance if multiple tasks are assigned to the same
node, and each task requires the entire cache size, effectively
thrashing the cache contents at each task invocation. In practice,
we find that per task working sets are small (megabytes to
gigabytes) while cache sizes are bigger (tens of gigabytes to
hundreds of gigabytes), making the worst case not common.

The scheduler’s complexity varies with the policy used. For FA,
the cost is constant, as it simply takes the first available executor
and dispatches the first task in the queue. MCH, MCU, and GCC
are more complex, with a complexity of O(|Ti| + min(|Q|, W)),
where Ti is the task at position i in the wait queue and Q is the
wait queue. This could equate to many operations for a single
scheduling decision, depending on the maximum size of the
scheduling window and queue length. Since all data structures
used to keep track of executors and since files use in-memory
hash maps and sorted sets, operations are efficient. In another
study [20], we have shown that the data-aware scheduler can
perform thousands of scheduling decisions per second, effectively
netting scheduling costs on the order of milliseconds per decision.

3. THEORETICAL EVALUATION
We define an abstract model that captures the principal elements
of data diffusion in a manner that allows analysis. We first define

the model and then analyze the computational time per task,
caching performance, workload execution times, arrival rates, and
node utilization. We also present an O(NM)-competitive
algorithm for the scheduler and give a proof of its competitive
ratio.

3.1 Abstract Model
Our abstract model includes computational resources on which
tasks execute and storage resources on which data needed by the
tasks is stored. Simplistically, we have two regimes: the working
data set fits in cache, S≥W, where S is the aggregate allocated
storage and W is the working data set size; and the working set
does not fit in cache, S<W. We can express the time T required
for a computation associated with a single data access as follows,
both depending on Hl (data found on local disk), Hc (remote
disks), or Hs (centralized persistent storage).

S ≥W : (Rl+C) ≤ T ≤ (Rc+C)
S <W : (Rc+C) ≤ T < (Rs+C)

Here Rl, Rc, Rs are the average cost of accessing local data (l),
cached data (c), or persistent storage (s), and C is the average
amount of computing per data access. The relationship between
cache hit performance and T can be expressed as follows.

S ≥W : T = (Rl+C)*HRl + (Rc+C)*HRc
S <W : T = (Rc+C)*HRc + (Rs+C)*HRs

Here HRl is the cache hit local disk ratio, HRc is the remote cache
ratio, and HRs is the cache miss ratio; HRl/c/s = HL/C/S/(HL + HC +
HS). We can merge the two cases such that the time to complete
task i is TKi = C + Rl*HRl + Rc*HRc + Rs*HRs.

The time needed to complete an entire workload D with K tasks
on N processors is

TN(D) = ∑
=

K

i
iTK

1

where D is a function of K, W, A, C, and L.

We define speedup to be SP = T1(D) / TN(D). Efficiency is
defined as EF = SP / N.

The maximum task arrival rate (A) that can be sustained is
S ≥W : N*P/(Rl+C) ≤ Amax ≤ N*P/(Rc+C)
S <W : N*P/(Rc+C) ≤ Amax < N*P/(Rs+C)

where P is the execution speed of a single node. These regimes
can be collapsed into a single formula: A = (N*P/T)*K.

We can express a formula to evaluate tradeoffs between node
utilization (U) and arrival rate; counting data movement time in
node utilization, we have U = A*T/(N*P).

Although the presented model is simplistic, it accurately reflects
the time to complete various workloads [5] for an astronomy
application [21], with an average of 6% model error and a
standard deviation of 5%. Because of space constraints, we do not
present the details of this validation.

3.2 O(NM)-Competitive Caching
Among known algorithms with provable performance for
minimizing data access costs, none can be applied to data
diffusion, even if restricted to the caching problem. For instance,
LRU maximizes the local store performance but is oblivious of
the aggregate cached data and persistent storage. Towards
developing an algorithm with provable performance, we show that

the difficulty lies not only in there being multiple stores, but also
in the possibility of there being multiple copies of the same object
in different stores. For the case where there cannot be such
multiple copies, we give an O(NM) competitive ratio online
algorithm [22]. An online algorithm solves a problem without
knowledge of the future, while an offline optimal [22] is a
hypothetical algorithm that has knowledge of the future. The
competitive ratio is the worst-case ratio of their performance and
is a measure of the quality of the online algorithm, independent of
a specific request sequence or workload characteristics.

In the constrained version of the problem there are N stores, each
capable of holding M objects of uniform size. Requests are made
sequentially to the system, each specifying a particular object and
a particular store. If the store does not have the object at that time,
it must load the object to satisfy the request. If the store is full, it
must evict one object to make room for the new object. If the
object is present on another store in the system, it can be loaded
for a cost of Rc, which we normalize to 1. If it is not present in
another store, it must be loaded from persistent storage for a cost
of Rs, which we normalize to cs RRs /= . Note that if Rs < Rc, we
can use LRU at each node instead of 2Mark to maintain
competitive performance. We assume Rl is negligible.

All stores in the system are allowed to cooperate (or be managed
by a single algorithm with complete state information). This
approach allows objects to be transferred between stores in ways
not directly required to satisfy a request (e.g., to back up an object
that would otherwise be evicted). Specifically, two stores may
exchange a pair of objects for a cost of 1 without using extra
memory space. Further, executors may write to an object in their
store. The system is not allowed to keep multiple copies of an
object simultaneously on different stores.

We propose an online algorithm 2Mark (using the well-known
marking algorithm [22] at two levels) for data diffusion. Let the
corresponding optimum offline algorithm be OPT . For a
sequence σ , let)(σ2Mark be the cost 2Mark incurs to handle
the sequence, and define)(σOPT similarly. 2Mark may mark
and unmark objects in two ways, designated local-marking an
object and global-marking an object. An object may be local-
marked with respect to a particular store (a bit corresponding to
the object is set only at that store) or global-marked with respect
to the entire system. 2Mark interprets the request sequence as
being composed of two kinds of phases, local-phases and global-
phases. A local-phase for a given store is a contiguous set of
requests received by the store for M distinct objects, starting with
the first request the store receives. A global-phase is a contiguous
set of requests received by the entire system for NM distinct
objects, starting with the first request the system receives. We
prove that)())/(/2()(σσ OPT2Mark ⋅+++≤ vsNMsMNM
for all sequences σ , which establishes that is O(NM)-
competitive. From the lower bound on the competitive ratio for
simple paging [22], this is the best possible deterministic online
algorithm for this problem, barring a constant factor.

2Mark essentially uses an M-competitive marking algorithm to
manage the objects on individual stores and the same algorithm on
a larger scale to determine which objects to keep in the system as
a whole. When a store faults on a request for an object that is on
another store, it exchanges the object it evicts for the object
requested (see Figure 1). We establish a bound on the competitive

ratio by showing that every cost incurred by 2Mark can be
correlated to one incurred by OPT . These costs may be s-faults
(in which an object is loaded from persistent storage for a cost of
s), or they may be 1-faults (in which an object is loaded from
another cache for a cost of 1). The number of 1-faults and s-faults
incurred by 2Mark can be bounded by the number of 1-faults
and s-faults incurred by OPT in sequence σ .

Because of our restricted file access patterns (write-once, read-
many), we do not worry about having multiple copies of the same
object in different caches and keeping these caches synchronized.

Consider the ith global phase. During this global phase, let OPT
load objects from persistent storage u times, and exchange a pair
of objects between stores v times, incurring a total cost of su+v.
Every object loaded from persistent storage by 2Mark is
globallymarked and not evicted from the system until the end of
the global phase. Since the system can hold at most NM objects,
the number of objects loaded by 2Mark in the ith global phase is
at most NM. We claim OPT loads at least one object from
persistent storage during this global phase. This is true if this is
the first global phase as all the objects loaded by 2Mark have to
be loaded by OPT as well. If this is not the first global phase, OPT
must satisfy each of the requests for the distinct NM objects in the
previous global phase by objects from the system and thus must s-
fault at least once to satisfy requests in this global phase.

Within the ith global phase consider the jth local phase at some
store X. The renaming of objects ensures that any object p
removed from X because of a request for p at some other store Y is
never requested again at X. Thus, the first time an object is

Figure 1: Algorithm 2Mark

Input: Request for object p at store X from sequence σ
1 if p is not on X then
2 if X is not full then /* No eviction required */
3 if p is on some store Y then
4 Transfer p from Y to X
5 else
6 Load p to X from persistent storage
7 end
8 else /* Eviction required to make space in X */
9 if all objects on X are local-marked then
10 local-unmark all /*Begins new local phase */
11 end
12 if p is on some store Y then
13 Select an arbitrary local-unmarked object q on X
14 Exchange q and p on X and Y
 /* X now has p and Y has q */ 15 if p was local-marked on Y then
16 local-mark q on Y
17 end
18 else /* p must be loaded from persistent storage */
19 if all objects in system are global-marked then
20 global-unmark and local-unmark all objects
 /*Begins new global phase & local phases at each store */
21 end
22 if all objects on X are global-marked then
23 Select an arbitrary local-unmarked object q on X
24 Select an arbitrary store Y with at least one global-unmarked

object or empty space
25 Transfer q to Y , replacing an arbitrary global-unmarked

object or empty space
26 else
27 Evict an arbitrary global-unmarked object q on X
28 end
29 Load p to X from persistent storage
30 end
31 end
32 end
33 global-mark and local-mark p

requested at X in this local phase, it is locally marked and remains
in X for all future requests in this local phase. Hence, X can 1-fault
for an object only once during this local phase. Since X can hold
at most M objects, it incurs at most M 1-faults in the jth local
phase. We claim that when j≠1, OPT incurs at least one 1-fault in
this local phase. The reasoning is similar to that for the ith global
phase: since OPT satisfies each of the requests for M distinct
objects in the previous local phase from cache, it must 1-fault at
least once in this local phase. When j=1, however, it may be that
the previous local phase did not contain requests for M distinct
objects. There are, however, at most NM 1-faults by 2Mark in all
the local phases in which j=1, for the N stores each holding M
objects, in the ith global phase.

Since OPT has the benefit of foresight, it may be able to service a
pair of 1-faults through a single exchange. In this both the stores
in the exchange get objects that are useful to them, instead of just
one store benefiting from the exchange. Thus, since OPT has v
exchanges in the ith global phase, it may satisfy at most 2v 1-
faults and 2Mark correspondingly has at most 2vM +NM 1-
faults. The second term is due to 1-faults in the first local phase
for each store in this global phase. Thus the total cost in the ith
global phase by 2Mark is at most sNM +2vM + NM, while that of
OPT is at least s+v, since u≥1 in every global phase.

4. EMPIRICAL EVALUATION
We measured the performance of the data-aware scheduler on
various workloads, with both static (SRP) and dynamic (DRP)
resource provisioning, and ran experiments on the
Argonne/University of Chicago TeraGrid [23] (up to 100 nodes,
200 processors). The Falkon service ran on an 8-core Xeon 2.33
GHz, 2 GB RAM, Java 1.5, 100 Mb/s network, and 2 ms latency
to the executors. Each node had a local disk with at least 50 GB
free. The persistent storage was GPFS [24] with <1 ms latency to
executors and had enough storage capacity to store the entire
working set per workload.

The three subsections that follow cover three diverse workloads:
monotonically increasing (MI), sine-wave (SI), and all-pairs (AP).
We use workloads MI and SI to explore the dynamic resource
provisioning support in data diffusion and the various scheduling
policies (e.g., FA, GCC, MCH, MCU) and cache sizes (e.g., 1
GB, 1.5 GB, 2 GB, 4 GB, and 50 GB); the smaller cache sizes are
artificially made smaller to explore the relationship between
aggregate cache size and workload working set. We use the AP
workload to compare data diffusion with active storage [11].

4.1 Monotonically Increasing Workload
The MI workload has a high I/O to compute ratio (10MB:10ms).
The dataset is 100 GB (10K x 10 MB files). Each task reads one
file chosen at random (uniform distribution) from the dataset, and
computes for 10 ms. The arrival rate is initially 1 task/s and is
increased by a factor of 1.3 every 60 seconds to a maximum of
1000 tasks/s. The increasing function is

[] 240,1000),3.1*(min 1 <≤= − iAceilingA ii , which varies arrival rate A
from 1 to 1000 in 24 distinct intervals, makes up 250K tasks and
spans 1415 seconds. This workload aims to explore a varying
arrival rate under a systematic increase in task arrival rate, to
evaluate the scheduler’s ability to optimize data locality.

We investigated the performance of the FA, MCH, MCU, and
GCC policies, while analyzing cache size effects by varying node
cache size (1 GB to 4 GB). We define several metrics:

Demand (Gb/s): throughput needed to satisfy arrival rate
Throughput (Gb/s): measured aggregate transfer rates
Wait Queue Length: number of tasks ready to run
Cache Hit Global: file access from a peer executor cache
Cache Hit Local: file access from local cache
Cache Miss: file accesses from the parallel file system
Speedup (SP): SP = TN(FA) / TN(GCC|MCH|MCU)
CPU Time (CPUT): amount of processor time used
Performance Index (PI): PI=SP/CPUT, normalized [0…1]
Average Response Time (ARi): time to complete task i,
including queue time, execution time, and communication costs

The baseline experiment (FA policy) ran each task directly from
GPFS, using dynamic resource provisioning. Aggregate
throughput matches demand for arrival rates up to 59 tasks/s but
remains flat at an average of 4.4 Gb/s beyond that. At the
transition point when the arrival rate increased beyond 59, the
wait queue length also started growing to an eventual maximum
of 198K tasks. The workload execution time was 5011 seconds,
yielding 28% efficiency (ideal being 1415 seconds).

We ran the same workload with data diffusion with varying cache
sizes per node (1 GB to 4 GB) using the GCC policy, optimizing
cache hits while keeping processor utilization high (90%). The
dataset was diffused from GPFS to local disk caches with every
cache miss (the red area in the graphs); global cache hits are in
yellow and local cache hits in green. The working set was 100
GB, and with a per node cache size of 1 GB, 1.5 GB, 2 GB, and 4
GB caches, we get aggregate cache sizes of 64 GB, 96 GB, 128
GB, and 256 GB. The 1 GB and 1.5 GB caches cannot fit the
working set in cache, while the 2 GB and 4 GB cache can.

We first analyze the 1 GB cache size experiment (see Figure 2).
Throughput keeps up with demand better than the FA policy, up
to 101 tasks/s arrival rates (up from 59), at which point the
throughput stabilizes at an average of 5.2 Gb/s. Within 800
seconds, working set caching reaches a steady state with a
throughput of 6.9 Gb/s. The overall cache hit rate was 31%,
resulting in a 57% higher throughput than GPFS. The workload
execution time is reduced to 3762 seconds, down from 5011
seconds for the FA policy, with 38% efficiency.

Figure 2: MI workload, 250K tasks, 10 MB:10 ms ratio, up to

64 nodes using DRP, GCC policy, 1 GB caches/node
The same experiment with 1.5 GB caches improved efficiency to
89%, as a result of improved cache hit rates of 78%. Both the 1
GB and 1.5 GB cache sizes achieve reasonable cache hit rates,

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0
10
20
30
40
50
60
70
80
90

100

C
ac

he
 H

it/
M

is
s

%

No
de

s
A

llo
ca

te
d

Th
ro

ug
hp

ut
 (G

b/
s)

Q
ue

ue
 L

en
gt

h
(x

1K
)

Time (sec)

Cache Hit Local

Cache
Miss

Throughput

Demand

Queue
Length

Nodes

despite the fact that the cache sizes are too small to fit the working
set in cache; the reason is that the data-aware scheduler looks
deep (i.e., window size set to 2500) in the wait queue to find tasks
that will improve the cache hit performance.

Figure 3 shows results with 2 GB local caches (128 GB
aggregate). Aggregate throughput is close to demand (up to the
peak of 80 Gb/s) for the entire experiment. We attribute this good
performance to the ability to cache the entire working set and then
schedule tasks to the nodes that have required data to achieve
cache hit rates approaching 98%. Note that the queue length never
grew beyond 7K tasks, significantly less than for the other
experiments (91K to 198K tasks long). With an execution time of
1436 seconds, efficiency was 99%.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0
10
20
30
40
50
60
70
80
90

100

C
ac

he
 H

it/
M

is
s

%

No
de

s
A

llo
ca

te
d

Th
ro

ug
hp

ut
 (G

b/
s)

Q
ue

ue
 L

en
gt

h
(x

1K
)

Time (sec)

Cache
Hit

Local

Cache
Miss

Throughput

Demand
Queue
Length

Nodes

Cache Hit
Global

Figure 3: MI workload, 250K tasks, 10 MB:10 ms ratio, up to

64 nodes using DRP, GCC policy, 2 GB caches/node
Figure 4 summarizes the aggregate I/O throughput measured in
each of the seven experiments we conducted. The solid bars are
the average throughput achieved from start to finish, partitioned
among local cache, remote cache, and GPFS; the thin black line is
the “peak” (99th percentile sample) throughput achieved. The
peak is interesting because of the progressive increase in job
submission rate and may be viewed as a measure of how far a
particular method can go in keeping up with application demands.

80

6

12

73 81 81

21
46

0
2
4
6
8

10
12
14
16
18
20

Ideal FA GCC
1GB

GCC
1.5GB

GCC
2GB

GCC
4GB

MCH
4GB

MCU
4GB

Th
ro

ug
hp

ut
 (G

b/
s)

Local Worker Caches (Gb/s)
Remote Worker Caches (Gb/s)
GPFS Throughput (Gb/s)

Figure 4: MI average and peak (99th percentile) throughput
We see that the FA policy had the lowest average throughput of 4
Gb/s, compared to between 5.3 Gb/s and 13.9 Gb/s for data
diffusion (GCC, MCH, and MCU with various cache sizes), and
14.1 Gb/s for the ideal case. In addition to having higher average

throughputs, data diffusion also achieved significantly higher
throughputs toward the end of the experiment (the black bar)
when the arrival rates are highest, as high as 81 Gb/s (compared to
6 Gb/s for the FA policy. Note also that GPFS file system load
(the red portion of the bars) is significantly lower with data
diffusion than for the GPFS-only experiments (FA), ranging from
0.4 Gb/s to 3.6 Gb/s depending on the size of the caches. Remote
caches showed a lower network load, with most policies being
under 1 Gb/s with the exception of the MCU policy at 1.5 G/s.

The performance index attempts to capture the speedup per
processor time achieved (see Figure 5). Notice that while GCC
with 2 GB and 4 GB caches each achieve the highest speedup of
3.5X, the 4 GB case achieves a higher performance index of 1 as
opposed to 0.7 for the 2 GB case. The reason is that fewer
processor resources were used throughout the 4 GB experiment
(17 CPU-hours instead of 24 CPU-hours). This reduction in
resource usage was due to the larger caches, which in turn allowed
the system to perform better with fewer resources for longer
durations; hence, the wait queue did not grow as fast, thereby
resulting in less aggressive resource allocation. Notice the
performance index of the FA policy, which uses GPFS solely;
although the speedup gains with data diffusion compared to the
FA policy are modest (1.3X to 3.5X), the performance index of
data diffusion is significantly more (2X to 34X).

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

FA GCC
1GB

GCC
1.5GB

GCC
2GB

GCC
4GB

MCH
4GB

MCU
4GB

Pe
rf

or
m

an
ce

 In
de

x

1

1.5

2

2.5

3

3.5

Sp
ee

du
p

(c
om

p.
 to

 L
A

N
 G

PF
S)

Performance Index
Speedup (compared to first-available)

Figure 5: MI workload PI and speedup comparison
The response time is critical for interactive applications. We see a
significant difference (500X) between the best response time
(GCC, 3.1 seconds per task) and the worst response time (FA,
1569 seconds). A principal factor influencing the average
response time is the time tasks spend in the wait queue. In the
worst (FA) case, the queue length grew to 198K tasks as the
allocated resources could not keep up with the arrival rate. In
contrast, the best (GCC) case queued up only 7K tasks at its peak.

The experiments presented in this subsection show that large
enough aggregate caches to hold the entire working set is
important to achieve near-optimal performance, although smaller
caches can still be effective as long as the scheduler inspects tasks
deep in the wait queue. Furthermore, the ability to keep up with
higher demands and keep wait queues short allows data diffusion
to be a good candidate for data-intensive interactive applications.

4.2 Sine-Wave Workload
The previous subsection explored a workload with monotonically
increasing arrival rates. To explore how well data diffusion deals

with decreasing arrival rates, we define a sine-wave (SW)
workload that follows the function (where time is elapsed minutes
from the beginning of the experiment).

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
+++= 705.5*)11.0(*)1)859678.2*)11.0(sin((timetimesqrtA

This workload aims to explore the data-aware scheduler’s ability
to optimize data locality in the face of frequent joins and leaves of
resources caused by variability in demand. This function is
essentially a sine-wave pattern, in which the arrival rate increases
in increasingly stronger waves, increasing up to 1000 tasks/s
arrival rates. The working set is 1 TB large (100K files of 10 MB
each), and the I/O to compute ratio is 10 MB:10 ms. The
workload is composed of 2M tasks, where each task accesses a
random file (uniform distribution) and takes 6505 seconds to
complete in the ideal case. The testbed includes up to 100 nodes,
with local disks of at least 50 GB free; we therefore set the cache
size to 50 GB per node for these experiments (instead of the 1 GB
to 4 GB in Section 4.1), since our aim here was to investigate the
dynamic resource provisioning effectiveness on a variable arrival
rate workload.

Our first experiment consisted of running the SW workload with
all computations running directly from the parallel file system and
using 100 nodes with static resource provisioning. We see the
measured throughput keep up with the demand up to the point
when the demand exceeds the parallel file system peak
performance of 8 Gb/s; beyond this point, the wait queue grew to
1.4M tasks, and the workload needed 20491 seconds to complete
(instead of the ideal case of 6505 seconds), yielding an efficiency
of 32%. Note that although we are using the same cluster as in the
only MI workload (Section 4.1), GPFS’s peak throughput is
higher (8 Gb/s vs. 4 Gb/s) because of a major upgrade to both
hardware and software in the cluster between running these
experiments.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0
10
20
30
40
50
60
70
80
90

100

C
ac

he
 H

it/
M

is
s

N
od

es
 A

llo
ca

te
d

Th
ro

ug
hp

ut
 (G

b/
s)

Q
ue

ue
 L

en
gt

h
(x

1K
)

Time (sec)

Cache Hit
Local

Cache
Miss

Throughput

Demand

Queue
Length

Node
Cache Hit

Global

Figure 6: SW workload, 2M tasks, 10MB:10ms ratio, 100

nodes, GCC policy, 50GB caches/node
Enabling data diffusion with the GCC policy, setting the cache
size to 50GB, the scheduling window size to 2500, and the
processor utilization threshold to 90%, we get a run that took 6505
seconds to complete (see Figure 6), yielding an efficiency of
100%. We see the cache misses (red) decrease from 100% to 0%
over the course of the experiment, while local cache hits (green)
frequently make up 90%+ of the cache hits. Note that the data
diffusion mechanism was able to keep up with the arrival rates

throughout, with the exception of the peak of the last wave, when
it was able to achieve only 72 Gb/s (instead of the ideal 80 Gb/s),
at which point the wait queue grew to its longest length of 50K
tasks. The global cache hits (yellow) is stable at about 10%
throughout, which reflects the fact that the GCC policy is
oscillating between optimizing cache hit performance and
processor utilization around the configured 90% threshold.

Enabling dynamic resource provisioning, Figure 7 shows the
workload still manages to complete in 6697 seconds, yielding
97% efficiency. To minimize wasted processor time, we set each
worker to release its resource after 30 seconds of idleness. Note
that upon releasing a resource, its cache is reset; thus, after every
wave, cache performance is again poor until caches are rebuilt.
The measured throughput does not fit the demand line as well as
the static resource provisioning did, but it increases steadily in
each wave and achieves the same peak throughput of 72 Gb/s
after enough of the working set is cached.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0
10
20
30
40
50
60
70
80
90

100

C
ac

he
 H

it/
M

is
s

%

N
od

es
 A

llo
ca

te
d

Th
ro

ug
hp

ut
 (G

b/
s)

Q
ue

ue
 L

en
gt

h
(x

1K
)

Time (sec)

Cache Hit
Local

Cache
Miss

Throughput

Demand

Queue
Length

Nodes

Cache Hit
Global

Figure 7: SW workload, 2M tasks, 10MB:10ms ratio, up to

100 nodes with DRP, GCC policy, 50GB caches/node
In summary, we see data diffusion make a significant impact.
Using the dynamic provisioning where the number of processors
is varied based on load does not hinder data diffusion’s
performance significantly (achieves 97% efficiency) and yields
less processor time consumed (253 CPU hours as opposed to 361
CPU hours for SRP and GCC and 1138 CPU hours for FA).

4.3 All-Pairs Workload
In previous work, several of us addressed large-scale data-
intensive problems with the Chirp [12] distributed file system.
Chirp has several advantages, such as delivering an
implementation that behaves like a file system and maintains most
of the semantics of a shared file system. Moreover, Chirp offers
efficient distribution of datasets via a spanning tree, making Chirp
ideal in scenarios with a slow and high-latency data source.
However, Chirp does not address data-aware scheduling.
Therefore, when used by All-Pairs [11], it typically distributes an
entire application working data set to each compute node local
disk prior to the application running. We call the All-Pairs use of
Chirp active storage. This requirement hinders active storage
from scaling as well as data diffusion, making large working sets
that do not fit on each compute node local disk difficult to handle,
and producing potentially unnecessary transfers of data. Data
diffusion transfers only the minimum data needed per job.

To understand the comparison between data diffusion and the best
model of active storage, we first define a common benchmark for
data-intensive computing, namely, All-Pairs (AP). Variations of
the AP problem occur in many applications, for example when we
want to understand the behavior of a new function F on sets A and
B or to learn the covariance of sets A and B on a standard inner
product F [11]. The AP problem is easy to express in terms of two
nested for loops over some parameter space. This regular structure
also makes it easy to optimize its data access operations.
Nevertheless, AP is a challenging benchmark for data diffusion,
because of its on-demand, pull-mode data access strategy.

In previous work [11], we conducted experiments with biometrics
and data mining workloads using Chirp. The most data-intensive
workload was where each function executed for 1 second to
compare two 12 MB items, for an I/O to compute ratio of 24
MB:1000 ms. At the largest scale (50 nodes and 500x500 problem
size), we measured an efficiency of 60% for the active storage
implementation, and 3% for the demand paging (to be compared
to the GPFS performance we cite). These experiments were
conducted in a campuswide heterogeneous cluster with nodes at
risk for suspension, network connectivity of 100 Mb/s between
nodes, and a shared file system rated at 100 Mb/s from which the
data set needed to be transferred to the compute nodes.

Because of differences in our testing environments, a direct
comparison is difficult, but we compute the best case for active
storage as defined in [11] and compare measured data diffusion
performance against this best case. Our environment has 100
nodes (200 processors) that are dedicated for the duration of the
allocation, with 1 Gb/s network connectivity between nodes, and a
parallel file system (GPFS) rated at 8 Gb/s. For the 500x500
workload, data diffusion achieves a throughput that is 80% of the
best case of all data accesses occurring to local disk (see Figure
8). We computed the best case for active storage to be 96%. In
practice, however, based on the efficiency of the 50-node case
from previous work [11] that achieved 60% efficiency, we believe
the 100-node case will not perform significantly better than the
80% efficiency of data diffusion. Running the same workload
through Falkon directly against a parallel file system achieves
only 26% of the throughput of the purely local solution.

To push data diffusion harder, we made the workload 10X more
data-intensive by reducing the compute time from 1 second to 0.1
seconds, yielding an I/O-to-compute ratio of 24 MB:100 ms (see
Figure 9). For this workload, the throughput steadily increased to
about 55 Gb/s as more local cache hits occurred. We found
extremely few cache misses, thus indicating the high data locality
of the AP workload. Data diffusion achieved 75% efficiency.
Active storage and data diffusion transferred similar amounts of
data over the network (1536 GB for active storage and 1528 GB
for data diffusion with 0.1 s compute time and 1698 GB with 1 s
compute time workload) and to and from the shared file system
(12 GB for active storage and 62 GB and 34 GB for data diffusion
for 0.1 s and 1 s compute time workloads, respectively). With
such similar bandwidth usage, similar efficiencies were expected.

Our comparison between data diffusion and active storage
essentially involves a comparison of pushing versus pulling data.
The active storage implementation pushes all the needed data for a
workload to all nodes via a spanning tree. With data diffusion,
nodes pull only the files immediately needed for a task, creating
an incremental spanning forest (analogous to a spanning tree, but
one that supports cycles) at runtime that has links both to the

parent node and to any other arbitrary node or persistent storage.
We measured data diffusion to perform comparably to active
storage on our 200-processor cluster, but differences exist
between the two approaches. Data diffusion depends more on
having a well-balanced persistent storage for the amount of
computing power, but it can scale to larger number of nodes
because of the more selective nature of data distribution [20].
Furthermore, data diffusion needs to fit only the per task working
set in local caches, rather than an entire workload working set as
is the case for active storage.

Figure 8: AP workload efficiency

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0
10
20
30
40
50
60
70
80
90

100

C
ac

he
 H

it/
M

is
s

Th
ro

ug
hp

ut
 (G

b/
s)

Time (sec)

Cache Hit
Local

Cache
Miss

Data Diffusion
Throughput

Local Disk Throughput

Cache Hit
Global

GPFS Throughput

Figure 9: AP workload, 500x500=250K tasks, 24 MB:100 ms,

100 nodes, GCC policy, 50 GB caches/node

5. RELATED WORK
 Over the past decade, considerable work has been done on data
management of distributed systems. We believe our discussion in
the preceding sections has provided readers the necessary
background to understand the sometimes-subtle details we now
describe between data diffusion and other systems.

The Stork [25] scheduler seeks to improve performance and
reliability when batch scheduling by explicitly scheduling data
placement operations. While Stork can be used with other system
components to co-schedule CPU and storage resources, no
attempt is made to retain nodes and harness data locality in data
access patterns between tasks.

The GFarm team implemented a data-aware scheduler in Gfarm
using an LSF scheduler plug-in [9, 26]. Their performance results

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

500x500
200 CPUs

1 sec

500x500
200 CPUs

0.1 sec

Ef
fic

ie
nc

y

Best Case (active storage)
Falkon (data diffusion)
Best Case (parallel file system)

are for a small system in comparison to our own results and offer
relatively slow performance (6 nodes, 300 jobs, 900 MB input
files, 0.1–0.2 jobs/s, and 90 MB/s to 180 MB/s data rates);
furthermore, the papers present no evidence that their system
scales. In contrast, we have tested our proposed data diffusion
with 200 processors, 2M jobs, input data ranging from 1byte to 1
GB per job, working sets of up to 1 TB, workflows exceeding
1000 jobs/sec, and data rates exceeding 9 GB/s.

BigTable [27], Google File System (GFS) [3], MapReduce [4],
and Hadoop [16] couple data and computing resources to
accelerate data-intensive applications. However, these systems all
assume a dedicated set of resources, in which a system
configuration dictates nodes with roles (i.e., clients, servers) at
startup, and there is no support to increase or decrease the ratio
between client and servers based on load; note that upon failures,
nodes can be dynamically removed from these systems, but this is
done for system maintenance, not to optimize performance or
costs. This is a critical difference, as these systems are typically
installed by a system administrator and operate on dedicated
clusters. Falkon and data diffusion work on batch-scheduled
distributed resources (such as those found in clusters and Grids
used by the scientific community), which are shared by many
users. Although MapReduce/Hadoop systems can also be shared
by many users, nodes are shared by all users and data can be
stored or retrieved from any node in the cluster at any time. In
batch scheduled systems, sharing is done through abstraction
called jobs which are bound to some number of dedicated nodes at
provisioning time. Users can access only those nodes that are
provisioned to them; and when nodes are released, there are no
assumptions on the preservation of node local state (i.e., local disk
and RAM). The tight coupling of execution engine (MapReduce,
Hadoop) and file system (GFS, HDFS) means that scientific
applications must be modified to use these underlying non-
POSIX-compliant file systems to read and write files. Data
diffusion coupled with the Swift parallel programming system
[28, 29] can enable the use of data diffusion without any
modifications to scientific applications, which typically rely on
POSIX-compliant file systems. Furthermore, through the use of
Swift’s check-pointing at a per task level, failed application runs
(synonymous with a job for MapReduce/Hadoop) can be restarted
from the point at which they previously failed; although tasks can
be retried in MapReduce/Hadoop, a failed task can render the
entire MapReduce job failed. We also note that data replication in
data diffusion occurs implicitly as a result of demand (e.g.,
popularity of a data item), while in Hadoop an explicit parameter
must be tuned per application and typically incurs unnecessary
performance hindering overheads. We believe Swift and data
diffusion are more generic for scientific applications and better
suited for batch-scheduled clusters and Grids.

Two systems often compared with MapReduce and GFS are
Sphere [30] and Sector [31]. Sphere is designed to be used with
the Sector Storage Cloud and implements certain specialized, but
commonly occurring, distributed computing operations. For
example, the MapReduce programming model is a subset of the
Sphere programming model, as the Map and Reduce functions
could be any arbitrary functions in Sphere. Sector is the
underlying storage cloud that provides persistent storage for the
data required by Sphere and manages the data for Sphere
operations. Sphere is analogous to Swift, and Sector is analogous
to data diffusion, although they each differ considerably. For
example, Swift is a general-purpose parallel programming system,

and the programming model of both MapReduce and Sphere is a
subset of the Swift programming model. Data diffusion and Sector
are similar in function, both providing the underlying data
management for Falkon and Sphere, respectively. However,
Falkon and data diffusion have been tested mostly in LANs, while
Sector targets WANs. Data diffusion has been architected to run
in nondedicated environments, where the resource pool (both
storage and compute) varies based on load, provisioning resources
on-demand and releasing them when they are idle. Sector runs on
dedicated resources and focuses on decreasing the resource pool
as a result of failures. Another important difference between Swift
running over Falkon and data diffusion, as opposed to Sphere
running over Sector, is the ability to run “black box” applications
on distributed resources without any need to modify legacy
applications; access to files are done over POSIX read and write
operations. Sphere and Sector take the approach of MapReduce,
in which applications are modified to support the read and write
operations of applications.

With respect to provable performance results, several online
competitive algorithms handle problems in scheduling (see [32]
for a survey) and others problems in caching (see [22] for a
survey), but none, to the best of our knowledge, combine the two.
The closest problem in caching is the two-weight paging problem
[33]; it allows for different page costs but assumes a single cache.

6. CONCLUSION AND FUTURE WORK
Dynamic analysis of large data sets is becoming increasingly
important in many domains. When building systems to perform
such analyses, we face difficult tradeoffs. Do we dedicate
computing and storage resources to analysis tasks, enabling rapid
data access but wasting idle resources? Or do we move data to
compute resources, incurring potentially expensive transfer costs?

This paper studied data diffusion, which seeks to combine
elements of both dedicated and on-demand approaches. We
envision data diffusion as a process in which data is stochastically
moving around in the system, through which different
applications can reach their dynamic equilibrium. One can think
of a thermodynamic analogy of an optimizing strategy, in terms of
energy required to move data around (“potential wells”) and a
“temperature” representing random external perturbations (“job
submissions”) and system failures. This paper proposes exactly
such a stochastic optimizer.

The key idea in data diffusion is that we respond to demands for
data analysis by allocating data or compute systems and by
migrating code or data to those systems. We retain these
dynamically allocated resources for some time, so that workloads
with data locality can obtain the performance benefits of
dedicated resources. To explore this approach, we have extended
the Falkon framework to cache data at executors and incorporated
a data-aware scheduler in the dispatcher.

Our work is significant because of the support that data-intensive
applications require, with the growing gap between parallel file
system performance and the increase in the number of processors
per system. The contributions of this paper lie in the deeper
analysis of data diffusion at both the theoretical and the practical
levels. We present an O(NM)-competitive algorithm for the
scheduler, as well as a proof of its competitive ratio; define new
heuristics to improve scheduling decisions; explore the
effectiveness of data diffusion under varying arrival rate
workloads; and compare data diffusion with active storage.

We plan to explore more sophisticated algorithms that address
what happens when an executor is released. Should we discard
cached data? Should it be moved to another executor, or should it
be moved to persistent storage? Do cache eviction policies affect
cache hit ratio performance? Answers to these and other related
questions will presumably depend on workload and system
characteristics. We also have preliminary work that addresses
data-intensive applications on petascale systems with our file-
based collective I/O primitives for loosely coupled applications
[34]. We will explore methods of supporting data-intensive
science, aiming for the largest scales (e.g., hundreds of thousands
of processors) available to the open science community.

ACKNOWLEDGMENTS
This work was supported in part by the NASA Ames Research
Center GSRP Grant Number NNA06CB89H and by the Office of
Advanced Scientific Computing Research, Office of Science, U.S.
Dept. of Energy, under Contract DE-AC02-06CH11357. This
research was also supported in part by the National Science
Foundation through TeraGrid resources provided by UC/ANL.
We also thank Alex Szalay for the contributions and ideas on the
inception of data diffusion.

REFERENCES
[1] A. Szalay, J. Bunn, J. Gray, I. Foster, I. Raicu. “The

Importance of Data Locality in Distributed Computing
Applications,” NSF Workflow Workshop 2006

[2] J. Gray. “Distributed Computing Economics,” Technical
Report MSR-TR-2003-24, Microsoft Research, 2003

[3] S. Ghemawat, H. Gobioff, S.T. Leung. “The Google File
System,” ACM SOSP 2003, pp. 29-43

[4] J. Dean, S. Ghemawat. “MapReduce: Simplified Data
Processing on Large Clusters,” OSDI 2004

[5] I. Raicu, Y. Zhao, I. Foster, A. Szalay. “Accelerating Large-
scale Data Exploration through Data Diffusion,” ACM
Workshop on Data-Aware Distributed Comp. 2008

[6] S. Podlipnig, et al. “A Survey of Web Cache Replacement
Strategies,” ACM Computing Surveys, 2003

[7] R. Lancellotti, et al. “A Scalable Architecture for Cooperative
Web Caching,” Web Engineering Workshop 2002

[8] R. Hasan, et al. “A Survey of Peer-to-Peer Storage
Techniques for Distributed File Systems,” ITCC 2005

[9] W. Xiaohui, et al. “Implementing Data Aware Scheduling in
Gfarm Using LSF Scheduler Plugin Mechanism,” GCA05,
2005

[10] P. Fuhrmann. “dCache, the Commodity Cache,” MSST 2004
[11] C. Moretti, et al. “All-Pairs: An Abstraction for Data-

Intensive Cloud Computing,” IPDPS 2008
[12] D. Thain, et al. “Chirp: A Practical Global Filesystem for

Cluster and Grid Computing,” JGC, Springer, 2008
[13] I. Raicu, et a. “Falkon: A Fast and Light-weight tasK

executiON Framework,” IEEE/ACM SC 2007
[14] G. Banga, et al. “Resource Containers: A New Facility for

Resource Management in Server Systems,” OSDI 1999
[15] I. Raicu, Z. Zhang, M. Wilde, I. Foster, P. Beckman, K.

Iskra, B. Clifford. “Toward Loosely Coupled Programming
on Petascale Systems,” IEEE SC 2008

[16] A. Bialecki, et al. “Hadoop: A Framework for Running
Applications on Large Clusters Built of Commodity
Hardware,” http://lucene.apache.org/hadoop/, 2005

[17] M. Feller, et al. “GT4 GRAM: A Functionality and
Performance Study,” TeraGrid Conference 2007

[18] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C.
Dumitrescu, I. Raicu, I. Foster. “The Globus Striped
GridFTP Framework and Server,” ACM/IEEE SC, 2005

[19] P. Cao, et al. “Cost-Aware WWW Proxy Caching
Algorithms,” USENIX Symposium on Internet Technologies
and Systems, 1997

[20] I. Raicu, I. Foster, Y. Zhao, A. Szalay, P. Little, C. Moretti,
A. Chaudhary, D. Thain. “Towards Data Intensive Many-
Task Computing,” under review at Data Intensive Distributed
Computing: Challenges and Solutions for Large-Scale
Information Management, 2009

[21] I. Raicu, I. Foster, A. Szalay, G. Turcu. “AstroPortal: A
Science Gateway for Large-scale Astronomy Data Analysis,”
TeraGrid Conf. 2006

[22] E. Torng. “A Unified Analysis of Paging and Caching,”
Algorithmica 20, 175–200, 1998

[23] ANL/UC TeraGrid Site Details,
 http://www.uc.teragrid.org/tg-docs/tg-tech-sum.html, 2007
[24] F. Schmuck, R. Haskin, “GPFS: A Shared-Disk File System

for Large Computing Clusters,” FAST 2002
[25] T. Kosar. “A New Paradigm in Data Intensive Computing:

Stork and the Data-Aware Schedulers,” IEEE CLADE 2006
[26] X. Wei, et al. “Integrating Local Job Scheduler – LSF with

Gfarm,” ISPA05, vol. 3758/2005, 2005
[27] F. Chang, et al. “Bigtable: A Distributed Storage System for

Structured Data,” USENIX OSDI 2006
[28] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von

Laszewski, I. Raicu, T. Stef-Praun, M. Wilde. “Swift: Fast,
Reliable, Loosely Coupled Parallel Computation,” IEEE
Workshop on Scientific Workflows 2007

[29] Y. Zhao, I. Raicu, I. Foster, M. Hategan, V. Nefedova, M.
Wilde. “Realizing Fast, Scalable and Reliable Scientific
Computations in Grid Environments,” Grid Computing
Research Progress, Nova Pub. 2008

[30] R. Grossman, Y. Gu. “Data Mining Using High Performance
Clouds: Experimental Studies Using Sector and Sphere,”
ACM KDD 2008

[31] Y. Gu, et al. “Distributing the Sloan Digital Sky Survey Using
UDT and Sector,” e-Science 2006

[32] K. Pruhs, et al. “Online Sscheduling,” Handbook of
Scheduling: Algorithms, Models, and Performance Analysis,
2004

[33] S. Irani. “Randomized Weighted Caching with Two Page
Weights,” Algorithmica, 32:4, 624-640, 2002

[34] X. Zhang, A. Espinosa, K. Iskra, I. Raicu, I. Foster, M. Wilde.
“Design and Evaluation of a Collective I/O Model for Loosely-
coupled PetascaleProgramming,” IEEE MTAGS 2008

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /AlmanacMT
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BeeskneesITC
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /EngraversMT-Bold
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HolidaysMT
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-DemiBold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MonotypeSorts2
 /MS-Mincho
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OCRATTRegular
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /VacationMT
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

