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Abstract

The practical realization of managing and executing large scale scientific computations
efficiently and reliably is quite challenging. Scientific computations often involve thousands or
even millions of tasks operating on large quantities of data, such data are often diversely
structured and stored in heterogeneous physical formats, and scientists must specify and run
such computations over extended periods on collections of compute, storage and network
resources that are heterogeneous, distributed and may change constantly.

We present the integration of several advanced systems: Swift, Karajan, and Falkon, to address
the challenges in running various large scale scientific applications in Grid environments. Swift
is a parallel programming tool for rapid and reliable specification, execution, and management
of large-scale science and engineering workflows. Swift consists of a simple scripting language
called SwiftScript and a powerful runtime system that is based on the CoG Karajan workflow
engine and integrates the Falkon light-weight task execution service. SwiftScript supports
concise specifications of complex parallel computations based on dataset typing and iterations,
and dynamic dataset mappings for accessing large scale datasets represented in diverse data
formats. Karajan dispatches large scale computations onto different computing resources,
where the Falkon service optimizes task throughput and resource efficiency via multi-level
scheduling and a streamlined dispatcher that delivers performance not provided by any other
system. Microbenchmarks show that Falkon throughput (487 tasks/sec) and scalability (54,000
executors and 1.5 million tasks queued) are one to two orders of magnitude better than other
systems used in production Grids.

We showcase the scalability, performance and reliability of the integrated system using
application examples drawn from astronomy, cognitive neuroscience and molecular dynamics,
which all comprise large number of fine-grained jobs. We show that Swift is able to represent
dynamic workflows whose structures can only be determined during runtime and reduce
largely the code size of various workflow representations using SwiftScript; schedule the
execution of hundreds of thousands of parallel computations via the Karajan engine; and
achieve up to 90% reduction in execution time than traditional batch schedulers (e.g. PBS) and
comparable performance to MPI execution by dispatching jobs to the Falkon execution service.

Keywords: scientific workflow, Swift, SwiftScript, Falkon, Karajan, virtual data language, parallel
computing, data Grid



1. INTRODUCTION

With the advances in scientific instrumentation and simulation, scientific data are growing fast
in both data size and data analysis complexity. For instance, the Sloan Digital Sky Survey Data
Release 6 [33] includes information about 320 million celestial objects, with 9 terabytes of
image data and 9 terabytes of catalog data; whereas the CMS detector being built to run at
CERN'’s Large Hadron Collider is expected to generate over a petabyte of data per year [2]. Data
volumes are also increasing dramatically in biology, earth science, medicine, and many other
disciplines. A typical scientific analysis needs to operate on either a large collection of data, or a
wide variation of parameters. With such scale and complexity, scientific computations can no
long afford to be carried out on a single desktop; instead, parallel and distributed computing
facilities are being adopted, and cluster and Grid computing have been actively put into
practice in science communities.

However, it is not trivial, and sometimes often daunting to realize large scale scientific
computations in distributed and parallelized fashion. Consider this painful but familiar scenario:
A neuroscientist needs to analyze ten thousand functional magnetic resonance imaging (fMRI)
files. The analysis program is a complex PERL script. Files are stored in a collection of UNIX
directories, with metadata coded in directory and file names. Local computing facilities are
inadequate, as the analysis of just a single file can take many minutes and thus the analysis of
the entire dataset would require weeks on a single computer. Thus, the scientist must manually
extract files, copy them to a remote cluster, start a home-grown script to dispatch tasks, and
check exit codes and output files to see which tasks succeeded and failed. When the
computation is completed, the problem of documenting what was done remains. These steps
can take days to perform manually, and are error prone.

Our investigation of a few fMRI applications indicate that such ad hoc scripts often require
hundreds or even thousands of lines of code (see Section Code Size Reduction) to deal with file
format issues, the coordination of data transfers and computing resources, and the tracking of
execution processes and exceptions. The result of this code and execution complexity is that
many interesting computations involving larger numbers of datasets and/or parameters can not
be performed. This example is trivial in complexity when compared with other large scale data
analysis collaborations. However, it already identifies many of the challenges that we seek to
address in this work:

a) Data are often diversely structured and stored in heterogeneous physical formats (most
commonly in collections of files). It is typically not feasible to require that all datasets be
converted to a common format or moved to a single repository.

b) Scientific datasets are often operated on by procedures developed under different
platforms and environments, using different programming languages. A procedure can
be an executable for a particular architecture; a script passed to an interpreter, such as
Awk, PERL, Python or a command shell; or a Web service with interface defined by
WSDL.

c¢) The large number of computations also requires tasks to be dispatched and executed on
parallel and distributed resources for improved throughput and performance. The



scheduling of such data analysis procedures often require extended periods of collective
usage of compute, storage, and network resources, which may change over time in
availability and capacity. Since manual bookkeeping of the process and tracking of
exceptions would be next to impossible, we need automated mechanisms to manage
the whole process efficiently and reliably.

d) A set of computations is often just a first step in a long analysis process, especially when
multiple studies are performed and/or results are shared with colleagues. It is vital to be
able to document data provenance in terms of the data from which it was derived and
the computational steps followed to derive it.

Such difficulties motivated us to develop Swift, a parallel programming system that supports
rapid and reliable specification, execution and management of large scale scientific
computations. A few lines of SwiftScript describe how analysis procedures should be applied to
the many fMRI images. Swift tools dispatch the thousands of tasks to TeraGrid [34] nodes. The
computations are performed quickly and reliably, and the results are documented with
descriptions about how they have been computed.

Swift builds on and includes technology previously distributed as the GriPhyN Virtual Data
System [12]. The open source Swift software combines:

o A data model and type system based on the XML dataset typing and mapping model
(XDTM) [22] to separate logical data structures from their physical representations.

o Asimple scripting language SwiftScript to enable the concise, high-level specifications of
complex parallel computations on logically typed datasets, and various mappers for
accessing such datasets represented in diverse data formats.

o An execution engine based on CoG Karajan [18] that can manage the dispatch of
hundreds of thousands of tasks to thousands of processors, whether on parallel
computers, campus grids, or multi-site grids, and optimizes the whole process using
adaptive scheduling techniques. Its abstract provider interface also enables Swift to
submit jobs to different execution services such as GRAM, batched schedulers (PBS,
Condor [35], etc.) and the Falkon provisioning and task execution service [30].

SwiftScript supports dynamic features such as dataset typing and iteration, dynamic dataset
mapping and workflow expansion, conditional execution etc, where the Swift system adopts
advanced scheduling techniques such as pipelining, clustering, and load balancing. We also
integrate Swift with the lightweight Falkon execution service as it enhances Swift with improved
task throughput and resource efficiency via multi-level scheduling and a streamlined dispatcher.

We showcase the scalability, performance and reliability of the integrated Swift system using an
fMRI analysis workflow from cognitive neuroscience, a photorealistic montage application from
the national virtual observatory project [21], and a molecular dynamics application from the
biochemistry discipline. We show that swift is able to represent scientific datasets and
workflows in simple compact form, and describe the dynamic workflow structure present in the
montage workflow, which can be only determined at runtime depending on the output of a
certain stage. The resulting code size can be one order of magnitude smaller as compared with



ad hoc scripts and MPI coding. By using Falkon as the execution service, Swift also achieves
comparable performance to MPI execution in scheduling and executing the montage workflow,
and up to 90% reduction in execution time compared with execution over GRAM plus PBS.

2. RELATED WORK

Parallel programming models are software technologies that express and execute parallel
computations. Popular parallel programming models include shared memory with threads,
messaging passing, and data parallel models.

Pthreads [24] is a standardized API for creating and manipulating threads on UNIX-style POSIX
systems, but it only has a C language binding, and requires explicit parallelism and significant
attention to details. OpenMP [26]is a set of APIs jointly defined and endorsed by many
computer hardware and software vendors to support multi-platform shared memory
multiprocessing programming in C/C++ and FORTRAN on many architectures including UNIX
and Microsoft Windows platforms. It comprises a set of compiler directives, library routines and
environmental variables that control program execution. OpenMP is simple and easy to use,
but it has scalability issue due to memory architecture limitations, and it lacks reliable error
handling.

The Message Passing Interface (MPI) API [23] is the most commonly used message passing
model in which a set of tasks use their own local memory during computation and
communicate by sending and receiving messages. Calls to MPI functions are embedded in
source code; parallelism is specified explicitly by programmers. MPI has been widely used with
many conventional programming languages.

In a data parallel model, a set of tasks work collectively on a common data structure, where
each task performs the same operation on a different partition of the common dataset. High
Performance FORTRAN (HPF) [14] is an example in this category that extends FORTRAN-90 with
parallel support such as directives for data distribution, assertions and data parallel constructs.

There are advantages to library and language extension approaches. Programs can be written in
familiar languages such as C, FORTRAN, or even scripting languages such as Python that have
flexible and powerful constructs and functions; libraries and APls offer extensive parallel
computing support for synchronization, communication, data/task partition etc. However, what
we try to achieve in Swift is to provide a simple concise notation that allows easy parallelization
and supports the composition of large numbers of parallel computations. We do not need all
the constructs and features in a full-fledged conventional language, and we are reluctant to
expose the directives for explicit parallelism specification, as they require expertise and
attention to the details of parallel programming, which may be difficult for end users. Many of
the models also require advanced compilation techniques, which may require significant work
when we try to apply them in distributed heterogeneous environments, in which we encounter
complex issues of data transfer, scheduling, load balancing, monitoring, provenance tracking
and exception handling. All these issues can also make the verification, compilation, debugging
and optimization of parallel programs difficult.



These considerations led us to choose to implement Swift as a simple, but new, parallel
programming notation, designed to coordinate the activities of executable programs. Our
decision to implement a new language has the downside that users will have to learn new
language syntax and understand the semantics of language constructs and execution. However,
since we define only a limited set of language constructs, such as foreach (used, for example, to
specify concurrent application of a function to all members of an array) and procedure
composition, the learning curve should not be steep. Also, Swift’s implicit parallelism does not
require intimate understanding of explicit parallel programming, although we may lose some
fine control over data/task partitioning in exchange for conciseness.

MapReduce [8] also provides a programming model and runtime system for the processing of
large datasets. It is based on a simple model with just two key functions: “map” and “reduce,”
borrowed from functional languages. The map function applies a specific operation to each of a
set of items, producing a new set of items; a reduce function performs aggregation on a set of
items. The MapReduce runtime system automatically partitions input data and schedules the
execution of programs in a large cluster of commodity machines. The system is made fault
tolerant by checking worker nodes periodically and reassigning failed jobs to other worker
nodes. Sawzall [27] is an interpreted language that builds on MapReduce and separates the
filtering and aggregation phases for more concise program specification and better
parallelization.

Swift and MapReduce/Sawzall share the same goals of providing a programming tool for the
specification and execution of large parallel computations on large quantities of data, and
facilitating the utilization of large distributed resources. However, the two also differ in several
aspects:

Programming model: MapReduce only supports key-value pairs as input or output datasets and
two types of computation functions — map and reduce. In contrast, Swift provides a type
system and allows for the definition of complex data structures and arbitrary computational
procedures. Furthermore, because Swift is a language, not a library, it can exploit compile-time
transformations to (for example) enable pipelining between different “map” operations.

Data format: in MapReduce, input and output data are usually key-value pairs, but it is also
possible to define new data sources. Swift provides a more flexible mapping mechanism to map
between logical data structures and various physical representations.

Dataset partition: Swift does not automatically partition input datasets. Instead, datasets can
be organized in structures, and individual items in a dataset can be transferred accordingly
along with computations.

Execution environment: MapReduce schedules computations within a cluster with a shared
Google File System. In contrast, Swift schedules across distributed Grid sites that may span
multiple administrative domains, and deals with security and resource usage policy issues.

MapReduce is useful in document processing problems, such as distributed indexing, sorting,
and clustering etc, where Swift can be used to coordinate distributed workflows involving
different applications.



Our work is also closely related to workflow languages and systems. A distinction is sometimes
made between scientific workflows and business workflows, where the former is more
concerned with the throughput of data through various stages of programs and applications,
and the latter correct, timely and secure execution of business logic.

Examples of scientific workflow languages and systems include Taverna [25], Kepler [19], and
Triana [5]. XPDL [38], BPEL [1], and BPML[4] are representatives of a family of process definition
languages for describing enterprise business processes and services. DAGMan [6] and Pegasus
[9] are two systems that are commonly referred to as workflow systems and that have been
widely applied in Grid environments. Neither is concerned with specifying data flow, but both
involve data-driven specification of task coordination.

BPEL stands for Business Process Execution Language for Web Services. A BPEL process
describes interactions between the process and its partners, and the coordination of the
interactions to achieve a business goal. BPEL’'s data model is based on WSDL messages and XML
schema, and it uses XPath for data manipulation. BPEL is starting to be tested in scientific
contexts. While BPEL can transfer data as XML messages, for large datasets, data exchange
must be handled via separate mechanisms. The BPEL 1.0 specification does not support dataset
iterations. Thus, according to Emmerich et al [10], an application with repetitive patterns on a
collection of datasets resulted in a BPEL document of 200MB in size, and as a consequence,
BPEL is cumbersome if not impossible to write for computational scientists. Although BPEL can
use XML Schema to describe data types, it does not provide support for mapping between a
logical XML view and arbitrary physical representations.

DAGMan provides a workflow engine that manages Condor jobs organized as directed acyclic
graphs (DAGs) in which each edge corresponds to an explicit task precedence. DAGMan is
known for its stability; it makes persistent workflow execution status and can survive machine
crashes. However it has no knowledge of data flow, and in distributed environment works best
with a higher-level, data-cognizant layer. It is based on static workflow graphs and lacks
dynamic features such as iteration or conditional execution, although these features are being
explored.

Pegasus is primarily a set of DAG transformers. Pegasus planners translate a workflow graph
into a location specific DAGMan input file, adding stages for data staging, inter-site transfer and
data registration. They can prune tasks for files that already exist, select sites for jobs, and
cluster jobs based on various criteria. Pegasus performs graph transformation with the
knowledge of the whole workflow graph, where in Swift the structure of a workflow is
constructed and expanded dynamically. A static workflow graph allows optimizations based on
the global state of the workflow, whereas a dynamic workflow structure allows adaptations to
changing environments.

Many workflow languages allow sequential, parallel, and recursive patterns, but do not directly
support iteration. Taverna relies on its workflow engine to run a process multiple times when a
collection is passed to a singleton-argument process. Kepler uses a ‘map’ operator to apply a
function that operates on singletons to collections. Swift’s typing supports flexible iteration
over datasets—and also type checking, composition, and selection. The ability to map logical
types from/to physical representations is not provided by these languages and systems.



3. THE SWIFT SYSTEM

The Swift system is a scalable environment for efficient specification, scheduling, monitoring
and tracking of parallel programs. The system comprises a simple scripting language called
SwiftScript [40] for concise high level specification of complex parallel computations, and an
efficient execution engine built on CoG Karajan [18]. Swift grows out of the GriPhyN Virtual
Data System [12], which is an open source Grid workflow system that has been widely applied
in many scientific domains. In the following sections, we present the motivation, design
principles and technical details about SwiftScript and the Swift runtime system.

3.1.  SwiftScript

Scientific computations often involve large number of parallel tasks operating on large number
of datasets. For instance, a spatial reorientation process on a complete fMRI study could
involve 9,000 operations on the images in that study. Such large number of computations are
common in scientific practice, for instance to study sensitivity to parameter values (in
parameter studies) and/or initial conditions (in ensemble simulations). Users working on such
problems frequently struggle with the description of the tasks and datasets, and bookkeeping
the computation processes and results.

Our goal in designing SwiftScript is to enable concise, easily parallelizable specification of large
scale scientific computations on structured datasets, to simplify the description, maintenance
and debugging of parallel program specifications. The design addresses primarily three
concerns:

(1) Dataset structures as first-class objects

Scientific applications deal primarily with file system based datasets. Analysis procedures read
file system based data and produce file system based data. However, we try to avoid encoding
complex physical layout and storage formats and the access methods for such data into our
SwiftScript, as they complicate the description of application logic, and make programs hard to
understand and maintain. To this end, we have developed the XML Dataset Typing and
Mapping model that allows logical datasets to be described and manipulated as first-class
objects in the language. XDTM provides the abstraction from physical representations and
locations, and also supports typing of logical datasets. SwiftScript language constructs allow
programmers to define variables that correspond to file system structures (XDTM supports
other data structures such as relational database schemas as well) and then to operate on
those variables as if they were ordinary language objects.

(2) Interfaces to diverse computational procedures that are rich enough to allow remote
execution

Scientific applications involve many kinds of computational procedures that are developed in
different programming languages on different platforms. SwiftScript defines constructs that
allow programmers to define interfaces to such procedures and then invoke them from
SwiftScript programs. Procedures are modeled as functional (in the sense that they do not
modify their inputs and the computations are deterministic), they are defined as logical
operations on typed logical datasets. Although this choice limits the application of SwiftScript in



non-functional scenarios, it greatly simplifies the programming model and implementation. The
interfaces to invoking actual computational procedures provide support for constructing the
command-line calls that may be used to execute procedures and for specifying what file system
objects may be required at remote execution sites, so that they can be translated into data
movements.

(3) Coordination constructs that allow for implicit parallelism, via functional operations,
dataflow, iterations etc.

Functional procedures can be composed to form more complex analysis workflows. SwiftScript
is a data-flow language in that procedures produce datasets that can be further consumed by
other procedures, thus forming data dependencies. The structural representation of a dataset
also allows parallel iterations over a collection of data items. SwiftScript does not provide
explicit parallel directives but relies on a compiler to exploit parallelism, in relieving
programmers from synchronization, communication and task partition issues.

We illustrate in Figure 1 the features and language constructs of SwiftScript using excerpts from
an fMRI workflow.

3.2. Dataset Typing

Lines 1-6 in Figure 1 declare the logical data types used in the fMRI workflow. An fMRI Run is a
series of brain scans called volumes, with a Volume containing a 3D image of a volumetric slice
of a brain image, represented by an Image (voxels) and a Header (scanner metadata). An Airis a
parameter file for spatial adjustment, and an AirVector is a set of such parameter files.

SwiftScript relies on XDTM as its data model and type system. XDTM is motivated by the fact
that logically clean data structures are often represented by “messy” physical representations
in odd formats and storage organizations. For instance, an fMRI study is physically represented
in a nested directory structure, with metadata coded in directory and file names, and a volume
is represented by two files located in the same directory, distinguished only by file name suffix
[15]. While we can incorporate the complex file system layouts and file formats into application
programs and workflow specifications, the resulting code is hard to read and maintain, and
cannot easily be adapted to changes in representations. Such messy physical representations
make program development, composition, and execution unnecessarily difficult.

We address this problem by using XDTM, which allows logical datasets to be defined in a
manner that is independent of the datasets’ concrete physical representations. XDTM employs
a two-level description of datasets, defining separately via a type system based on XML Schema
the abstract structure of datasets, and the mapping of that abstract data structure to physical
representations.

A dataset’s logical structure is specified via a subset of XML Schema, which defines primitive
scalar data types such as Boolean, Integer, String, Float, and Date, and also allows for the
definition of complex types via the composition of simple and complex types. We use a C-style
syntax (as shown in the example) to represent type schema, which gets translated into XML
Schema transparently, so users don’t have to deal with XML Schema directly. Such logical
structures are mapped to physical dataset access during execution time by a set of mappers.



1 type Image {}

2 type Header {}

3 type Volume { Image img; Header hdr; }
4 type Run { Volume v[]; }

5 type Air {}

6 type AirVector { Air a[]; }

7 (Volume ov) reorient ( Volume iv, string direction, string overwrite)
8 {

9 app {

10 reorient @filename(iv.hdr) @filename(ov.hdr) direction overwrite;
11 }

12 }

13 (Run or) reorientRun (Run ir, string direction, string overwrite)

14

15 foreach Volume iv, iinir.v {

16 or.v[i] = reorient(iv, direction, overwrite);

17 }

18 }

19 (Run resliced) fmri_wf ( Runr) {

20 Run yroRun = reorientRun(r, "y", "n");

21 Run roRun = reorientRun( yroRun , "x", "n");

22 Volume std = roRun.v[1];

23 AirVector roAirVec = alignlinearRun(std, roRun, 12, 1000, 1000, "81 3 3");
24 resliced = resliceRun( roRun, roAirVec, "-0", "-k");

25}

26 Run bold1<run_mapper;location="fmridc/functional_data/",prefix="bold1">;
27 Run sbold1<run_mapper;location="fmridc/functional_data/",prefix="sbold1">;
28 sbold1 = fmri_wf (bold1);

Figure 1 Sample fMRI Workflow

3.3. Procedures

Datasets are operated on by procedures, which take typed data described by XDTM as input,
perform computations on those data, and produce data described by XDTM as output.

Lines 7-12 in the example define what we call an atomic procedure, which specifies the
interface to calling an executable program. The procedure reorient has typed input parameters
iv, direction and overwrite (to the right of the procedure name) and one output parameter ov
(to the left of the procedure name). The body of this particular procedure specifies that it
invokes a program (conveniently, also called reorient) that will be dynamically mapped to a
binary executable; this executable will be invoked at an execution site chosen by the Swift
system at run time. The body also specifies how input parameters map to command line
arguments. The notation @filename is a built-in mapping function that maps a logical data
structure to a physical file name. In this case, it extracts the file name of input header and
output header, which are then put in the command line to invoke the reorient program.



Lines 13-18 define a compound procedure reorientRun. A compound procedure calls one or
more other SwiftScript procedures. The procedure takes in a run ir and applies the procedure
reorient (which rotates a brain image along a certain axis) to each volume in the run to
produces a reoriented run or. Because the multiple calls to reorient operate on independent
data elements, they can proceed in parallel.

Lines 19-25 define another compound procedure fmri_wf, which itself calls a series of
procedures including the reorientRun defined above. The definitions for the other procedures
alignlinearRun and resliceRun are similar to reoreintRun and omitted here. This procedure
essentially defines a simple four-step pipeline computation, using variables and/or datasets to
establish data dependencies. It applies reorientRun to a run first in the x axis and then in the y
axis, and then aligns each image in the resulting run with the first image. The program
alignlinear determines how to spatially adjust an image to match a reference image, and
produces an air parameter file. The actual alignment is done by the program reslice. Note that
variable yR, being the output of the first step and the input of the second step, defines the data
dependencies between the two steps.

As demonstrated in the example, procedures can be further called by other procedures, and
thus constructing a sub-workflow within more complex workflows. The procedure abstraction
allows arbitrary complex workflows to be easily composed from simple ones, and enables the
sharing and collaborative development of complicated analysis procedures.

3.4. Iterations

The foreach statement at lines 15-17 defines iteration over the dataset ir. Iterations and
procedural abstractions can be used to exploit repetitive patterns in workflows (and programs
in general). While procedures are used to apply repetition in a lexical sense, based on the
semantics of the problem (it is known at workflow design time where these repetitions occur),
iterations apply to repetitions based on dynamic data (repeatedly executing a block of code for
each datum in a collection).

Using iterations and procedures has impact on both workflow specification and execution.
Exploiting repeated patterns and redundancy in workflows can lead, depending on the problem
of course, to significant reductions in both code size and memory usage for the workflow
system. As stated by Emmerich et al., the BPEL specification for a 4x200 flow leads to a size of
5MB [10]. In Swift, however, a few lines with nested foreach statements (for example, a nested
set of iterations that applies the program reorient to each volume in a whole Study) can express
hundreds of thousands of parallel tasks.

3.5. Dataset Mapping

The logical datasets defined in SwiftScript need to be mapped to concrete physical storage
when the script is executed. Line 26 and 27 specify the mappings for the input dataset bold1
and the output dataset sbold1 respectively. Each mapping specification consists of three pieces
of information: the type of the dataset (Run in this case), the mapping descriptor (run_mapper),
and mapping parameters (location and prefix). What run_mapper does is that it goes into the



specific location, finds the pairs of image and header files that share the specific prefix and have
suffixes “.hdr” and “.img” respectively, and returns a run containing an array of volumes.

We define a standard mapping interface, and data providers implement the interface to
support access to various data representations. A mapping descriptor provides the pointer to a
mapping implementation. We also provide default mapping implementations for string
mapping, file system mapping, and CSV (comma separated-value) files.

3.6. Dynamic Workflow Structure

The mapping process is activated when a SwiftScript is executed by the Swift system, and the
datasets need to be evaluated. A foreach statement must be expanded prior to execution into a
set of nodes: one per component of the compound data object specified in the foreach. This
expansion is performed at runtime: when a foreach node is scheduled for execution, the
appropriate mapping function is called on the specified dataset to determine its members (a set
of volumes in this case), and for each member of the dataset identified (for each volume in the
run) a new job (reorient) is created.

This dynamic expansion mechanism also allows us to switch input datasets (e.g., from a run of
10 volumes for testing purpose, to another run of 500 volumes for production) without
changing either the workflow definition or the execution system, since the mapper discovers
the dataset components at run time.

Dataset mapping not only abstracts away the complexity of dealing with “messy” physical
representations, but also enables us to represent workflows whose structures can only be
determined based on run-time data, a capability that is absent from most workflow systems
based on static workflow structures. We illustrate this unique feature using a photo-realistic
montage application [17][21].

Montage is a suite of software tools developed to generate large astronomical image mosaics
by composing multiple small images. The typical process involves the following key steps:

o Image projection
= Re-project each image into a common coordinate space
o Background rectification
= Calculate a list of overlapping images
= Perform image difference between each pair of overlapping images
= Fit difference images into a plane
= Background correction
o Image Co-addition

= Optionally divide a region into a grid of sub-regions, and co-add the images in each
region into a mosaic

= Co-add the processed images (or mosaics in sub-regions) into a final mosaic



In the background rectification stage, a list of overlapping images first needs to be calculated,
and then the image difference program is applied for each pair of the overlapping images. The
specification of such dynamic workflows has turned out to be impossible for workflow systems
based on static workflow structures, including our precursor — the virtual data system, and
Condor DAGMan. It is also absent from other workflow systems (such as BPEL 2.0) that have
iteration support but lack dataset mapping capability, because of the list of overlapping images
can not be determined until the calculation is performed. Deelman et al. [17] approached the
problem by developing specific C code (around 1200 lines of code) to call out the montage
programs and generate the static workflow structure for each input image set.

Our XDTM mechanism affords us to represent the workflow in a compact and elegant manner.
The list of the overlapping images contains the following columns:

cntrl cntr2 plus  minus diff

Where cntrl and cntr2 are the image numbers, and plus, minus the image file names, and diff
the difference image file name. In Figure 2 we show an example of the columns and rows in
such a file. The SwiftScript program that maps the file content into a logical dataset and then
iterates over the dataset is shown in Figure 3.

| entrl | cntr2 | plus | minus | diff |
|int  |int | char | char | char |
0 91  p_990427s-j1190056.fits  p_990427s-j1190044.fits  diff.000000.000091.fits
0 191 p_990427s-j1190056.fits  p_990427s-j1200221.fits  diff.000000.000191 fits
0 441 p_990427s-j1190056.fits  p_990427s-j1180221.fits  diff.000000.000441 fits
1 95 p_000704n-j0410209.fits p_000704n-j0340056.fits  diff.000001.000095.fits
1 246 p_000704n-j0410209.fits p_000704n-j0420056.fits  diff.000001.000246.fits
1 1036 p_000704n-j0410209.fits p_000704n-j0410220.fits  diff.000001.001036.fits
2 3 p_980415s-j0620021.fits p_980415s-j0610257.fits diff.000002.000003.fits
2 211 p_980415s-j0620021.fits  p_980415s-j0610245.fits  diff.000002.000211.fits
2 493 p_980415s-j0620021.fits p_980415s-j0620033.fits diff.000002.000493.fits
2 739 p_980415s-j0620021.fits  p_980415s-j0630257.fits  diff.000002.000739.fits
2 772 p_980415s-j0620021.fits p_980415s-j0630245.fits diff.000002.000772.fits

Figure 2 The File Content of a Montage Overlapping Image List

The program defines a logical structure DiffStruct corresponding to the columns, and uses a
standard csv_mapper to map from the calculated overlapping list diffsTbl into a list of such
logical structures, and then we can iterate over the list and apply difference program to each of
the image pairs. The parameter header to the csv_mapper indicates that the file contains
metadata (the column names), and hdelim indicates that they are delimited by character “|”.
The resulting SwiftScript program for the whole montage process is just 92 lines and it includes
every stage and can adapt to any input image set without any code change.

SwiftScript also supports other dynamic features such as conditional execution, which are also
used in the montage workflow specification to determine the number of sub-regions to co-add
based on input data size. The details are omitted here due to space limitation.



type DiffStruct {
int cntr1;
int cntr2;
Image plus;
Image minus;
Image diff;

}

// table of overlapping images
Table diffsTbl = mOverlaps ( projimgThbl );

DiffStruct diffs[]<csv_mapper; file=diffsTbl, skip=1, header=true, hdelim=" |">;
foreach d in diffs {

Image image1 = d.plus;

Image image2 = d.minus;

/I call the difference program with the two overlapping images

Image diffimg = mDiffFit(image1, image2);

Figure 3 Montage Workflow Specification (excerpts)

3.7. Code Size Reduction

The primary focus of SwiftScript’s design is to provide a compact and easy to code workflow
notation. As an approximate measure of the claim, we compare in Table 1 the lines of code
needed to express five different fMRI workflows, coded in SwiftScript, with two other
approaches, one based on ad-hoc shell scripts (“Script,” able to execute only on a single
computer) and a second (“Generator”) that uses PERL scripts to generate explicit DAG style pre-
XDTM SwiftScript. With the script approach, the programmer must take care of locating the
specific image files in directories, putting each of the file names into a program invocation, and
tracking the outputs of each invocation. The generator approach works in similar ways in that it
needs to locate the files; defines the invocations on each individual file, and also constructs the
data dependencies between different analysis stages explicitly. The new SwiftScript programs
are smaller and more readable—and also provide for type checking, provenance tracking,
parallelism, and distributed execution that come with the virtual data system.

Table1l Lines of Code with Different Workflow Encodings

Workflow Script Generator | SwiftScript
GENATLAS1 49 72 6
GENATLAS2 97 135 10

FILM1 63 134 17

FEAT 84 191 13

AIRSN 215 ~400 37

We also compare the code size of our SwiftScript program with the MPI approach in the
Montage example. The reason that we can conduct such comparison is that the Montage
application provides conventional sequential programs for processing individual images. For
instance, the program mProjectPP performs fast projection on an image. The application also
provides MPI programs that invoke sequential programs on multiple processors. An example is



the mProjExecMPI program, which reads a list of image files and calls the mProjectPP program
simultaneously on multiple processors, each processing one of the images. The MPI program is
coded in C++ and the total number of lines is 950. In the SwiftScript program, we achieve the
same parallelization by first declaring the function interface for mProjectPP, and then defining a
compound procedure mProjectBatch that iterates over a list of images, and applies mProjectPP
to each of the images. The total number of lines involved is 15. In addition to significant code
size reduction, our high level SwiftScript specification also does not require any specific parallel
directives such as the initialization of multiple processors, the assignment of processor ranks
and the tracking of success and failed jobs etc. The SwiftScript program also has the advantage
that it can be scheduled to execute on various number of computing resources across multiple
clusters. We will show in the evaluation section that the Swift system also achieves comparable
performance to MPI execution in running the Montage workflow.

3.8. The Swift Runtime System

The Swift runtime system (see Figure 4) is a scalable environment for efficient specification,
scheduling, monitoring and tracking of SwiftScript programs. The system consists a SwiftScript
compiler that compiles SwiftScript programs into abstract computation plans, an execute
engine built on CoG Karajan and a set of libraries and tools for the scheduling and execution of
the computation plans, a provenance tracking tool that records the execution process, and
resource provisioning mechanism for submission to diverse computation and storage
resources. We are still in the process to integrate the virtual data catalog (VDC) [42] as first
introduced and implemented in the virtual data system to store the program, provenance, and
metadata information.
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Figure 4 The Swift Runtime System

3.9. Program Compilation

SwiftScript programs are compiled into abstract computation plans that can be interpreted by
the execution engine. SwiftScript borrows a number of concepts used in generic programming



languages, some of which require support in the underlying execution language (such as
conditional execution), and some of which benefit from support in the execution language
(iterators and procedures). We choose CoG Karajan as the underlying execution engine, and
Karajan scripts as the representations for execution plans. Karajan provides a set of
abstractions (and corresponding libraries and implementations) for file operation, data transfer,
job submission, and Grid services access. Such operations can be organized using Karajan
language constructs such as sequential and parallel execution, sequential and parallel
iterations, conditional execution and functional abstraction etc. We extend Karajan with
specific libraries to support the XDTM type system and logical dataset manipulation, adapters
to access legacy VDS components (for instance, the site catalog that keeps information about
each execution site), mappers for accessing heterogeneous physical data storage, and also with
fault tolerance mechanisms.

In SwiftScript programs are driven by data dependencies. Since explicit dependency analysis
and translation into sequential and parallel operations would be very difficult, and the power
and flexibility provided by path specifications and expressions in SwiftScript further complicate
the process. We choose therefore to utilize existing future and event mechanisms in Karajan
which allow us to bypass any dependency analysis and effectively let the engine dynamically
figure out the dependencies. Karajan is not a data-flow oriented language, however it contains
constructs that can facilitate data-flow oriented programming. Conceptually data-flow can be
seen as a system where parts of the computation progresses based on the availability of data
that flows between them. The data flow can be implemented in strict multi-threaded languages
using Futures [13][20] (similar to single-assignment variables, which are constructs used for
synchronization in concurrent programming languages [7]), a feature that Karajan supports. A
Future is a mechanism to provide a placeholder for values that will be resolved asynchronously.
The Future provides a way to ask for the actual value. Two situations are possible:

1. The Future has resolved already. That is, the method calculating the value has finished,
and stored the result in the Future. Asking for the Future's value will immediately give
the result.

2. The Future has not resolved. In this case, the current thread is blocked until the Future
resolves. The current thread is effectively synchronized with the thread calculating the
value.

So essentially we treat all computations as parallel and the future mechanism establishes the
dependencies between them thus constructing the workflow structure dynamically at run time.

3.10. Scheduling

Karajan uses lightweight threading techniques to instantiate and dispatch tasks (It represents
active tasks as “lightweight threads”, i.e. not a conventional Java thread but some brief
description of an executable task) and thus can execute large-scale task graphs. One important
source of memory utilization in general is the statically allocated stack space needed by threads
and processes. Due to the architecture of current operating systems, threads and processes
must statically allocate sufficient memory to handle the most demanding tasks, yet promote
wasteful usage in the case of less demanding tasks. Threads also consume other operating



resources which limit the number of total concurrent threads that can be started. But threads
and/or processes are not entirely necessary for the execution of workflows. They serve the
purpose of time-sharing processors. However, in the case of, for example, Grid job submissions,
most of the time is spent waiting for notifications while a job is executing remotely. This wait
period does not use the processor, but instead consumes memory (and other OS resources) for
the very purpose of preserving state inherent to the threading mechanism itself. In other
words, the necessity for time-sharing a processor exists only in short phases of Grid tasks. In
addition, those relatively short phases, being processor intensive, do not benefit from time-
sharing the processor. Consequently the use of threads is largely unnecessary for the
coordination of Grid tasks.

Karajan addresses the problem of thread memory consumption by employing lightweight
threading and asynchronous libraries (where possible). Lightweight threads allow dynamic
allocation of only the strictly necessary memory for preserving task/workflow state
information. The advantage of using lightweight threading (event-based systems) and
asynchronous 1I/O has been previously studied in CML [31], SEDA [37], and in the Erlang
language [3], originally developed by Ericsson to support scalable, distributed, and fault-
tolerant applications (in particular telecommunication systems).

3.11. Execution

Intermediate abstract execution plans represented in customized Karajan scripts are
interpreted and dispatched by Karajan onto execution sites. We call these plans abstract
because executions can be carried out in a location independent fashion: tasks are dispatched
to virtual nodes that can be bound to different kinds of computing facilities varying from
personal desktops and clusters to multi-site Grid environments. Swift uses just-in-time planning
to determine at runtime the actual execution processes such as site selection, data stage-ins
and stage-outs, and runtime error checking. A set of callbacks allow customized functions to
determine where to dispatch tasks, how to group tasks to increase granularity, and/or when
and how to perform data staging operations etc. The derivation process is also captured by the
system and stored in the virtual data catalog.

Swift can schedule the execution of a program on different compute resources based on an
abstract provider interface in CoG Karajan. The interface defines the processes involved in a job
execution such as submit, suspend, resume, and cancel. If we implement the interface for a
computation resource, for instance, the local host, then we can submit jobs to the local host
provider.

Karajan provides the implementations for the following execution resources:

e Local host, jobs can be submitted to the local host, for instance, a workstation, a laptop,
etc.

e Cluster scheduler submission (PBS or Condor), jobs can be submitted to a computer
cluster managed by PBS or Condor.

e GRAM job submission [11], jobs can be submitted to Globus GRAM gatekeeper, or the
GRAM-WS service released in Globus Toolkit 4.



e Falkon [30] lightweight task execution service that can dispatch and execution fine
grained tasks using mulit-level scheduling and a streamlined task dispatcher.

There is a configuration file that specifies which of these providers to submit to. Thus the same
SwiftScript program can be configured to execute either on a local workstation, a LAN cluster,
or on multi-site Grid environments.

3.12. Fault Tolerance

Swift addresses reliability issues at several levels. At the software development level, its type
checking capabilities allow it to identify potential problems in a program prior to execution. Its
support for virtual nodes makes it easy to first test a program using a local host submission
mechanism with a small set of datasets, and then move to larger problems and execution sites.

Swift provides exception handling and retry mechanisms to deal with failures that may occur at
different levels. Transitory problems are recovered by retrying the faulty tasks (for instance,
retrying a transfer if a GridFTP server is busy). Host-level faults (where a resource exhibits
problems with unknown duration) are dealt with by rescheduling a task on a different site.
Host-level faults can also be dealt with downstream, for example in Falkon. Common problems
can be identified and tagged accordingly in order for Falkon to avoid particular faulty hosts
when known problems arise. For example, a common problem that happens when running
large scale applications on many CPUs with data on shared file systems is the “Stale NFS
handle” error, which simply means that the shared file system mount is in an inconsistent state
(likely due to the shared file system’s I/O servers being overloaded); this error implies that all
tasks that execute on the particular compute node that need data from the shared file system
will fail. With Falkon’s ability to suspend faulty hosts (for a specified amount of time), tasks can
be rescheduled on other hosts in the same site, and only after a certain number of repetitive
failures in the same site, does Falkon pass on the error back to Swift in order to have the task
rescheduled at a different site.

Swift also keeps a restart log, allowing it to resume the state of a computation in case of
premature termination (e.g., caused by a machine reboot). The restart log is similar to a Condor
rescue DAG [6], except that Condor tags jobs that are finished, whereas we log datasets that
are successfully produced. The reason is that the Condor DAG is control- flow based, which
keeps track of job status; where Swift evaluates workflows by data availability so it makes more
sense to track data in our case. This logging mechanism can resume a workflow from where it
was stopped, since the workflow evaluation mechanism is based on data availability, and when
we restart the execution of a workflow, we mark the logged datasets as being computed and
available, then the stages dependent on such datasets can continue executing, thus correctly
resuming the execution of the workflow. We have tested restartability by repeatedly
interrupting program execution, and verified that our programs continue from where they were
interrupted. We also note some (good) side effects to this mechanism: (a) new inputs can be
added after a computation has been run for some time, and once we restart the computation,
the system is able to figure out that these new inputs are present and not processed, and thus
schedule their executions. (b) We can make modifications to a program and restart it, as long as



the modifications do not affect prior data flows. This effect is useful for debugging and testing
purposes.

3.13. Optimization

Swift also supports advanced Grid scheduling and optimization, such as pipelining, clustering,
and load balance etc.

Pipelining refers to the ability to optimize execution by executing dependent iterations
incrementally. Swift is built on data-driven mechanism, so once an item in a collection is
processed, any processes that are dependent on that data item can proceed right away without
waiting for the whole collection to finish. This advantage comes for free with the future
mechanism, as a particular piece of data can be used as soon as it is available (resolved),
regardless of the lexical and structural intricacies of the program.

Clustering/Partitioning is a solution that tries to reduce costs incurred by various phases in the
task submission process. It is based on the observation that the initialization phase is
computationally intensive and for large numbers of short jobs it can introduce a high overhead.
It attempts to identify simple structures in a workflow and combine them into a single task.
Partitioning can also be useful in scheduling closely related tasks on the same resource in order
to minimize data movement between resources. Since a SwiftScript program is dynamically
evaluated, we do not need the knowledge of the whole workflow graph for partitioning, we
instead introduce small delays (a clustering window) in task submission with the purpose of
accumulating independent tasks. This solution would identify groups of possibly independent
jobs in the graph based on the time the system attempts to submit them, and group them
without exceeding a pre-set bundle size (or total execution time). Compared with static
partitioning engaged in Pegasus, our dynamic clustering does not need prior knowledge of the
workflow graph, and it can better adapt to changing conditions such as job dispatching rate and
available compute resources, but in the mean time its lack of global knowledge also makes it
harder to perform higher level partitioning, such as vertical clustering (group jobs in multiple
consecutive stages). The Falkon lightweight execution service provides better granularity
control than clustering as the dispatch overhead per task is small enough that we can process
each task individually. However, in a cluster environment where Falkon is not installed,
clustering can be used to improve the overall throughput over the more heavyweight
schedulers (i.e. PBS, Condor, etc).

Load Balancing: Swift programs can be scheduled and executed on multiple Grid sites. Swift
firstly chooses valid sites for the execution of a specific task by checking site availability, and
also making sure the required applications for the task are installed on those sites. It then
applies some heuristics based on site responsiveness to dispatch jobs. Basically, each site is
given a score associated with how fast and reliable it turns jobs around, the score is increased
when jobs run successfully and decreased upon exceptions. Jobs are dispatched to each site
proportional to its score. More sophisticated proactive strategies can be adopted using Swift
call-outs to schedule jobs based on, for instance, site resource monitoring information.



3.14. Provenance Tracking

When a job is run on a computing resource (e.g., a remote site or local host), we initiate its
POSIX process execution using an application-launching tool called Kickstart [36]. Kickstart
serves two purposes—it provides a uniform way for Swift to pass arguments to an execution
site, and it captures detailed information about the actual execution environment and the
application’s behavior. This information is returned after execution to the submitting host as an
invocation document and is stored in the VDC. The invocation document contains
environmental details (such as host name, IP address, current working directory, and the
complete set of environment variables), information about the behavior of the application
(including its exit code and signals), and the application’s resource usage (including its system
time and user time, paging and swapping activity, and OS context switches). Virtually all
information available about the process through standard POSIX/Linux end-user interfaces is
captured. Such information has proven invaluable in debugging and monitoring distributed
applications, and in recording and querying the provenance of the data derived by Swift
applications [28][42].

Now that we have SwiftScript to specify large complex parallel computations, and we have the
Karajan execution engine to efficiently and reliably dispatch the large number of jobs, we need
to make jobs execute efficiently on distributed Grid resources. As we have already mentioned,
jobs can be dispatched to a local provider where jobs run on a local workstation or laptop.
However, this is only suitable for small test cases to verify that the workflows run as intended.
To run larger and production level experiments, Swift dispatches (usually via GRAM) jobs to
parallel computing clusters where hundreds and thousands of computers can be used. In the
latter case, we rely on batch schedulers running on each execution site to handle the jobs
dispatched to them. However, batch schedulers (such as Condor and PBS) commonly used to
manage parallel computing clusters are not typically configured to enable easy configuration of
application-specific scheduling policies. In addition, their sophisticated scheduling algorithms
can be relatively expensive to execute, and do not scale well to long lists of queued jobs.
Applications that require the rapid execution of many small tasks often do not perform well.
For instance, the reorient process in the fMRI workflow can involve hundreds or thousands of
volumes, but each reorientation only takes no more than a few seconds, and the Montage
image difference process shows the same pattern. Such processes usually incur large overhead
and low throughput using a conventional batch scheduler. In order to address this issue, we
have developed and integrated Falkon, a lightweight task execution service that can dispatch
and execution fine grained jobs an order of magnitude faster than conventional batch
schedulers.

4. THE FALKON EXECUTION SERVICE

Falkon is a Web Services-based system whose main goal is to support the efficient execution of
large numbers of small (fine-grained) tasks in batch scheduled environments that are typically
found in most production Grids.

To enable the rapid execution of many tasks on compute clusters, we have developed Falkon
(see Figure 5) [30], a Fast and Light-weight tasK executiON framework. Falkon integrates (1)



multi-level scheduling to separate resource acquisition (via, e.g., requests to batch schedulers)
from task dispatch, and (2) a streamlined dispatcher. Falkon avoids the need for reconfiguring
existing queues (one possible approach that is not practical in real deployed systems) by
submitting one or more requests for nodes and then deploying on those nodes software that
implements a domain-specific scheduling strategy. By thus embedding a new scheduler inside
the old, it separates the two tasks of resource provisioning (acquiring the resources needed for
a computation) and scheduling (mapping tasks to those resources). Once the resources are
acquired, they can be used repeatedly for executing jobs, without incurring the overhead for
allocating resources for each job. Resources can also be allocated or de-allocated dynamically
with regard to a workload. In Falkon, resource provisioning is performed by the DRP (Dynamic
Resource Provisioning) component [29][30]. DRP can be useful when either resource demand
or resource availability varies during the course of program or workload execution, in which
case it can improve execution times and/or the efficiency of resource utilization. Falkon’s
integration of multi-level scheduling and streamlined dispatchers delivers performance not
provided by any other system. We describe Falkon architecture and implementation, and
present performance results for both microbenchmarks and applications.
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Figure 5 Falkon Service Architecture

Falkon is built on top of a Web Services-based architecture that offers applications a simple and
efficient interface into a complex set of Grid resources. Falkon provides a Web Services
interface for users to submit job execution requests. The jobs are first queued at the service.
Falkon then calls out to DRP, which uses WS-GRAM to allocate resources in any Grid site after
which the pool of resources can be maintained, increased, and decreased based on the load
(queue length) of the Falkon service and the policies defined within DRP. For instance, DRP will
try to allocate more workers if jobs start piling up in the service queue, and a worker can be
configured to automatically de-register itself from the service if it has been idle (no jobs
dispatched to it) for a certain time. The acquired resources register themselves with the Falkon
service after which jobs in the service queue will be dispatched to the resources based on
scheduling decisions. The Falkon service is unique in the sense that it can achieve relatively high
throughput in the range of hundreds to thousands of tasks per second when running fine grain
tasks, with a per task overhead measured in milliseconds. This unique feature of Falkon in



combination with the dynamicity of provisioning can enable a wide range of applications to run
significantly more efficiently, due to efficient task dispatch and the dynamic resource
provisioning that simplify the compute resource management at the applications.

Micro-benchmarks show that Falkon can achieve throughput up to 487 tasks/second in a
general case where each task is handled separately (with throughputs exceeding 2500 tasks/sec
with techniques similar to the clustering defined earlier), manage up to 54,000 executors, and
scale to 1.5 million queued tasks.

We conducted similar benchmarks on Condor and PBS to gain insight into how Falkon performs
as compared with those systems. We set the number of resources to 32 nodes (64 processors)
and measured the time to complete 64 jobs of various task lengths (ranging from 1 sec to
16384 sec). We then calculated the efficiency of resource usage as:

E=Sp/5|

Sy is the practical measured speedup, where S, is the ideal speedup, which equals to the
number of processors being used. The maximum efficiency thus is 100%.
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Figure 6: Efficiency of resource usage for varying task lengths on 64 processors comparing
Falkon, Condor and PBS

shows Falkon’s efficiency to be 95% with 1 sec tasks and 99% with 8 sec tasks. In contrast, both
PBS (v2.1.8) and Condor (v6.7.2) have an efficiency of less than 1% for 1 sec tasks and require
about 1,200 sec tasks to get 90% efficiency and 3,600 sec tasks to get 95% efficiency. They can
only achieve 99% efficiency with 16,000 sec tasks.

As both the PBS and Condor versions being tested on the experiment clusters (ANL/UC Teragrid
site) are not the latest versions, we also derived the efficiency curve for Condor version 6.9.3,
the latest development Condor version, which is claimed to have a throughput of 11 jobs/sec
[39] (up from our measured 0.5 jobs/sec and the 2 jobs/sec reported by others [32]). Efficiency
is much improved, reaching 90%, 95%, and 99% for job lengths of 50, 100, and 1000 seconds
respectively. The results in for Condor v6.9.3 are derived, not measured. We derived based on
the achieved throughput cited in [39] of 11 tasks/sec for sleep O tasks. Essentially, we
computed the per task overhead of 0.0909 seconds, which we could then add to the ideal time
of each respective task length to get an estimated task execution time. With this execution



time, we could compute speedup, which we then used to compute efficiency. Our derivation of
efficiency is simplistic, but it allowed us to plot the likely efficiency of the latest development
Condor code against the older production Condor code, the PBS production code, and Falkon. It
should be noted that illustrates the efficiency of these systems for a relatively small set of
resources (only 64 processors), and that the efficiency gap will likely only increase as the
number of resources increases (see Figure 7). Also, shows only the efficiency for a small
number of jobs (64), which makes slower throughput scenarios (PBS and Condor) hard to
achieve high efficiency due to the large time to dispatch the tasks to the CPUs. We therefore
generalize the results from with the results in Figure 7.

We emphasize the need for such high throughputs by measuring the theoretical (assuming 1M
tasks) resource efficiency at three different scales (small grid sites — 100 processors, medium
size grid site — 1K processors, large Grid — 10K processors) for various throughputs (1, 10, 100,
500, 1K, 10K, 100K, and 1M tasks/sec). It is worth noting that current production LRMs (i.e.
throughput of 1 task/sec) require relatively long tasks in order to maintain high efficiency. For
example, even in a small Grid site with 100 processors, tasks need to be 100 seconds in
duration just to get 90% efficiency; the task duration is increased to 900 seconds for a modest
1K processors, 10K seconds (~2.8 hours) for 10K processors just to maintain 90% efficiency.
With throughputs in the range of 500 tasks/sec (which is obtainable with Falkon), the same 90%
efficiency can be reached with tasks of length 0.2 seconds, 1.9 seconds, and 20 seconds for the
same three cases. It should be evident that the higher the throughput of tasks/sec that can be
dispatched and executed over a set of resources, the higher the resource efficiency for the
same workloads and the faster the applications turn-around times will be.

Small Grid Site (100 processors) Medium Size Grid Site (1K p! 100% Large Grid (10K processors) B
100% - 100% g o ; T /
90% - = 90% h N 90% ] /
80% 80% i 80% : 1 I i
0% ! ! [ / 70% | . / / 0% 1 T ] ]
3 60% i . ] / 3 0% . .' ] ] 3 6% ? 1 ] 1
$ 5% ] / 2 50% + : 3 50% - ] i
E 0% . = / / E a0% J i / / & 0% + ™ 7/ ]
30% - i / / 30% - = 30% i - / /
20% o -~ // / 20% . Jg / 20% - - /
10% A 10% i T 10% P o
0% +==== - 0% == = = 09 =L - =

- %
0001 001 0.1 1 10 100 1000 10000 100000 0001 001 01 1 10 100 1000 10000 100000 0.001 001 01 1 10 100 1000 10000 100000

Task Length (sec) Task Length (sec) Task Length (sec)
— 1 task/sec (i.e. PBS, Condor 6.8) ——10 tasks/sec (i.e. Condor 6.9.2) ‘ =1 task/sec (i.e. PBS, Condor 6.8) — 10 tasks/sec (i.e. Condor 6.9.2) ‘ ‘ =1 taskisec (i.e. PBS, Condor 6.8) —10 tasks/sec (i.e. 6.9.2)
c e. Falkon) /sec ec a

Condor
= = 100 tasks/se 500 tasks/sec (i = = 100 tasks/s 500 tasks/sec (i.e. Falkon) = = 100 tasks/se 500 tasks/sec (i.e. Falkon)
- - 1K tasks/se 10K tasks/sec ERE| - - 1K task s/s

c 10K tasks/sec
100K tasks/sec 1M tasks/sec

K tasks/sec - 1K tasks/sec
100K tasks/sec 1M tasks/sec 100K tasks/sec 1M tasks/sec

Figure 7: Resource Efficiency for various resource scales and workload characteristics
Finally, we wanted to investigate the effects of the task dispatch rates on the I/O throughput
that could be achieved with Falkon and with Condor or PBS to and from the shared file system
and compare that with the ideal 1/O throughput without any provisioning, task dispatch, and
scheduling overhead. The experiments involved the execution of tasks on 64 nodes which
consisted of tasks with input and/or output with varying sizes from 1B to 1GB. The shared file
system in this case was GPFS and it was configured with 8 I/O servers to handle the traffic in
and out of the shared file system. The results are shown in Figure 8. It is interesting to note that
Falkon (primarily due to the high dispatch rates it can achieve) can achieve close to the ideal I/O
throughput for both read performance. On the other hand, Condor and PBS both require large
(i.e. 1GB) input and/outputs per job in order to achieve the same level of performance that
Falkon can achieve with significantly smaller input and outputs per job (i.e. 1MB).



For real applications, we show in the System Evaluation Section that Falkon can reduce

application execution time significantly (up to 90%), as compared with other job submission
mechanisms, such as GRAM plus PBS.
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Figure 8: The effect of task dispatch rates and how it affect 1/0 throughput

5. SYSTEM EVALUATION

We evaluate various aspects of the Swift system using both synthetic workloads and real
scientific applications, and we report the experiment results in the following sections. Unless
otherwise specified, the experiments used a machine at the computation institute at the
University of Chicago as the Swift submit host, and we used two computation clusters, one is
the IA64 clusters at the ANL/UC TeraGrid site with 62 nodes, and the other the computation
Institute Teraport cluster with 120 nodes. Both clusters had 1 Gb/s Ethernet connections and
used PBS as the default local scheduler. We summarize the configurations of the test
environment in Table 2. The ANL_TG cluster was used as the default execution site to which
jobs were submitted.

Table2 Configurations of the Test Environment

Name Type Location #nodes Configuration
. UChicago Cl Intel P4 2.4GHZ
UC_SUBMIT Submit Host Workstation 1 1 GB Memory
Intel Itanium 2
62 Dual Proc. 1.3 GHZ
ANL_TG Execution Site AN.L/UC 4 GB Memory
Teragrid Cluster Intel Xeon
98 Dual Proc. 2.4 GHZ
4 GB Memory
UChicago Cl AMD Opteron

UC_TP Execution Site 120 Dual Proc. 2.2 GHZ

Teraport Cluster 4 GB Memory




5.1.  Scalability

We consider first the size of the parallel computations that can be executed correctly. Since
Swift integrates Karajan, we measure the maximum number of tasks (or the maximum number
of nodes in a task graph) that can be processed and dispatched with certain amount of memory
in both systems. Figure 9 shows the scalability results. For the Karajan measurement, we used a
simple script that creates multiple parallel threads; each of the threads merely waits for a
certain amount of time (so all the threads can be created before any of them terminates). In
doing so, we make sure that there is no extra overhead associated with each thread other than
the information necessary for its creation.

For the Swift measurement, we used a synthesized workflow where we could set the number of
nodes in the workflow and also the data dependencies (edges) between graph nodes. We set
the Java virtual machine (in which the Swift scheduler runs) heap size to use certain amount of
memory, and we kept adding nodes in the workflow until the system ran out of memory in
processing the workflow to get the maximum number of nodes. The Karajan system is shown to
be highly scalable, with 32 MB memory, it can create more than 40,000 threads. Each thread
has a memory footprint of 800 bytes, which is the base line as each thread only contains the
minimal information. Our Swift in general has much higher memory footprint (3.2 KB for each
node, the size could vary with different workflow graphs and procedure definitions, as both
data dependencies and input, output parameters need to be kept in memory), but can still
support up to 4,000 threads with 32 MB memory, and 160,000 nodes with 1 GB memory. The
reason each node takes more space is because we use futures for data synchronization, and
each future object wraps a java dataset object. Also for each node, we need to store its
associated procedure information, such as input, output names, types and values etc.
Nevertheless, the lightweight Karajan thread leaves much space for further improvement of our
Swift system.
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Figure 9 Swift System Scalability



5.2. Pipelining
Our SwiftScript language design allows us to implement pipelining across iterations (which is
similar to the map operator in functional programming languages) for improved performance.
In Swift, we realize pipelining using the future mechanism we adopt for evaluating data
dependencies. Pipelining allows us to dispatch jobs more efficiently as they become ready.

We evaluate the effect of pipelining in our implementation and show the result In . On the top,
we show the execution time for the fMRI workflow defined in Figure 1 without pipelining, and
on the bottom, the execution time with pipelining. The workflow operated on a 120-volume
input dataset and involved four stages of 120 computations each. We can observe that the run
without pipelining had to wait for all computations in one stage to finish before it could
proceed to the next stage, thus the distinct start times for all four stages. While in the pipelined
run, the computations between different stages were overlapped. Consequently, the execution
time was reduced by 21% for the fMRI workflow with pipelining enabled.
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Figure 10 The Pipelining Effect for the fMRI Workflow



5.3. Load Balancing

Load balancing is achieved in Swift using heuristics based on site responsiveness (Each site has a
score associated with its load and the turn-around rate for job submissions). We tested system
load balancing also using the 120-volume input fMRI workflow, and we configured Swift to
submit from UC_SUBMIT to both the ANL_TG and UC_TP clusters. Since UC_TP was in the same
local area network as that of the submit host, and the processors on UC_TP were faster than
those on ANL_TG, jobs dispatched to the UC_TP cluster completed faster, thus we can observe
in Figure 11 that overall the system balanced the load across the two sites, ANL_TG got 218 jobs
(in solid blue) out of the total number of 480, and UC_TP got the other 262 jobs (in solid gray),
and relatively more jobs were scheduled on the UC_TP cluster.
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Figure 11 Load Balancing Across Two Clusters

We also notice the total execution time was cut down by 50% as compared with the execution
time on a single cluster (ANL_TG). The reason was because Swift dispatched jobs to the two
sites simultaneously, and the overall queue wait time was reduced significantly, as jobs were in
two separate queues at the two sites, where each local scheduler dealt with only the jobs in its
queue.

As illustrated in the former Section, Swift can achieve great speedup by submitting jobs to the
Falkon service via the Falkon provider that we developed. Figure 12 shows both the throughput
of Swift via the Falkon provider, and the throughput of the Falkon service (tasks were submitted
from a Falkon client directly without going through Swift). In the experiment, the Falkon service
was run on the ANL_TG site, and we submitted both from a separate node within that cluster
(ANL->ANL), and from the UC_SUBMIT host (UC->ANL), and we measured the throughput,



defined as the number of sleep(0) jobs completed per second. We ran two worker threads on
32 nodes (as each node has dual processors) to get the numbers for 64 nodes.

We measured a throughput of 120 tasks per second when submitting jobs from the Falkon
client to the Falkon service directly in the same cluster, and a slightly lower throughput if we
ran the Falkon client at the UC_SUBMIT host. When Swift was used to submit the same set of
jobs, it was able to achieve up to 56 jobs per second in the LAN setting, and up to 46 jobs per
second from the UC_SUBMIT host. Swift incurred a large overhead, but mainly because the
scheduling in Swift involves creation of a sandbox environment for each job (so that it does not
interfere with other concurrent running jobs on that node), and also logging and tracking of the
job execution processing. For each sleep job, many extra steps such as site selection, execution
directory setup and cleanup, exit code checking, etc were performed. In comparison, when jobs
were submitted from the Falkon client, it involved only submission and getting back the exit
code. Nevertheless, comparing with a standard setting when we use GT2 GRAM and PBS cluster
scheduler where we can only get up to 2 jobs per second, the throughput of Swift combined
with Falkon is improved by a factor of 23. These performance numbers with Falkon are with an
older version that did not have all the latest optimizations we currently have in Falkon now; we
expect these numbers to further increase with the latest Falkon code base that can achieve as
high as 487 tasks/sec.
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Figure 12 Swift throughput with the Falkon provider

We further compare the performance of submitting from Swift to providers such as PBS and
Falkon using real application examples in the next Section.



5.4. Application Performance

Swift can either submit jobs via GRAM to a conventional batch scheduler such as PBS, in which
case resource provisioning and job execution are combined together, or it can submit to the
Falkon execution service, where resource provisioning is separated from job execution. We
evaluate the effect of such separation using three examples: 1) fMRI (medical imaging), 2)
Montage (astronomy), and 3) MolDyn (chemistry, molecular dynamics simulations). We repeat
the fMRI and Montage experiments five times and the error bars indicate the standard
deviations of the measurements. These applications all involve stages that have large number
of small parallel jobs, a pattern that is common in many other scientific applications [41]. While
we can push hundreds or even thousands of such small jobs via GRAM to a PBS queue, they will
take up most of the available computing nodes but at the same time only achieve low
throughput due to queuing overhead. We show that while clustering (bundling a number of
small jobs into one large job) can help improve the throughput of such small jobs by 2 to 4 fold,
the Falkon service can improve performance 7 to 10 fold for the fMRI application, in other
words, achieving up to 90% reduction in execution time. For the Montage application, Falkon
can achieve comparable performance to MPI execution. In the case of MolDyn, we achieved an
8 fold improvement in the application performance when comparing Falkon with GRAM/PBS
submission.

5.4.1. fMRI (Medical Imaging Domain)

We note that for each volume, each individual task in the fMRI workflow required just a few
seconds on an ANL_TG cluster node, so it is quite inefficient to schedule each job over GRAM
and PBS, since the overhead of GRAM job submission and PBS resource allocation is large
compared with the short execution time. In Figure 13 we show the execution time for different
input data sizes for the fMRI workflow.

6000
0 GRAM
5000 — B GRAM/Clustering 4808
O Falkon
4000 3683
E 3000 + 2510
= k=
2000
1239
000 | 866 992 1123678
456 327 546
120
0 ,
120 240 360 480

Input Data Size (Volumes)

Figure 13 Execution Time for the fMRI Workflow



We submitted from UC_SUBMIT to ANL_TG and measured the turnaround time for the
workflows. A 120-volume input (each volume consists of an image file of around 200KB and a
header file of a few hundred bytes) involves 480 computations for the four stages, whereas the
480-volume input has 1960 computation tasks. The GRAM+PBS submission had low throughput
although it could have potentially used all the available nodes on the site (62 nodes to be exact,
as we only used the 1A64 nodes). We can however bundle small jobs together using the
clustering mechanism in Swift, and we show the execution time was reduced by up to 4 times
(jobs were bundled into roughly 8 groups, as the grouping of jobs was a dynamic process) with
GRAM and clustering, as the overhead was amortized by the bundled jobs. The Falkon
execution service (with 8 worker nodes) however further cuts down the execution time by 40-
70%, as each job was dispatched efficiently to the workers. We carefully chose the bundle size
for the clustering so that the clustered jobs only required 8 nodes to execute. This choice
allowed us to compare GRAM/Clustering against Falkon, which used 8 nodes, fairly. We also
experimented with different bundle sizes for the 120-volume run, but the overall variations for
groups of 4, 6 and 10 were not significant (within 10% of the total execution time for the 8
groups, plus or minus).

5.4.2. Montage (Astronomy Domain)

The Montage workflow demonstrated similar job execution time pattern as there were many
small jobs involved. We show in Figure 14 the comparison of the workflow execution time using
Swift with clustering over GRAM, Swift over Falkon, and MPI. The Montage application code we
used for clustering and Falkon are the same. The code for the MPI runs is derived from the
same set of source code, with the addition of data partitioning and inter-processor
communication, so when multiple processors are allocated, each would process part of the
input datasets, and combine the outputs if necessary. The MPI execution was well balanced
across multiple processors, as the processing for each image was similar and the image sizes did
not vary much. All three approaches needed to go over PBS to request for computation nodes,
we used 16 nodes for Falkon and MPI, and also configured the clustering for GRAM to be
around 16 groups.

The workflow had twelve stages, and we only show the parallel stages and the total execution
time in the figure (the serial stages ran on a single node, and the difference of running them
across the three approaches was small, so we only included them in the total time for
comparison purposes). The workflow produced a 3x3 square degree mosaic around galaxy M16,
where there were about 440 input images (2MB each), and 2,200 overlappings between them.
There were two mAdd stages because we divided the region into subsets, co-added images in
each subset, and then co-added the subsets together into a final mosaic. We can observe that
the Falkon execution service performed close to the MPI execution, which indicated that jobs
were dispatched efficiently to the 16 workers. The GRAM execution with clustering enabled still
did not perform as well as the other two, mainly due to PBS queuing overhead. It is worth
noting that the last stage mAdd was parallelized in the MPI version, but not for the version for
GRAM or Falkon, and hence the big difference in execution time between Falkon and MPI, and
the source of the major difference in the entire run between MPI and Falkon.
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Figure 14 Execution Time for the Montage Workflow

Katz et al. [17] have also created a task-graph implementation of the Montage code, using
Pegasus. They did not implement quite the same application as us: for example, they ran
mOverlap and mimgtbl on the portal rather than on compute nodes, and they omitted the final
mAdd phase. Thus direct comparison with Swift over Falkon is difficult. However, if we omit the
final mAdd phase from the comparison, Swift over Falkon is then about 5% faster than MPI, and
thus also faster than the Pegasus approach, as they claimed that MPI execution time was the
lower bound for them. The reasons that Swift over Falkon performs better are that MPI incurs
initialization and aggregation processes, which involve multi-processor communications, for
each of the parallel stages, where Falkon acquires resource at one time and then the
communications in dispatching tasks from the Falkon service to workers have been kept
minimum (only 2 message exchanges for each job dispatch). The Pegasus approach used
Condor’s glide-in mechanism, where Condor is still a heavy-weight scheduler compared with
Falkon.

5.4.3. MolDyn (Chemistry Domain)

We further illustrate the execution process in Falkon using a molecular dynamics (MolDyn)
application. The goal of this study is to optimize and automate the computational workflow
that can be used to generate the necessary parameters and other input files for calculating the
solvation free energy of ligands, and can also be extended to protein-ligand binding energy.
Solvation free energy is an important quantity in Computational Chemistry with a variety of
applications, especially in drug discovery and design. The accurate prediction of solvation free
energies of small molecules in water is still a largely unsolved problem, which is mainly due to
the complex nature of the water-solute interactions. In the study, a library of 244 neutral



ligands is chosen for free energy perturbation calculations. This library contains compounds
with various chemical functional groups. Also, the absolute free energies of solvation for these
compounds are known experimentally, and will serve as a tool to benchmark our calculations.
All the structures were obtained from the NIST Chemistry WebBook database.

The MolDyn workflow consists of the following 8 stages:
e Stage 1: Annotate each of the molecules in the study with charges.

e Stage 2: For each molecule, the ligand structures are modified using Antechamber to
generate the individual parameter and topology files for CHARMM Program.
Antechamber automatically detects the atom type, bond type and bond order from the
three-dimensional geometry of the molecule, and generates the residue topology file.

e Stage 3: The ligand structure is equilibrated using CHARMM program.

e Stage 4: Compute the solvation energy using three coupling (staging) parameters using
the PERT module of the program CHARMM.

e Stage 6 computes the free energy for each of the resulting input configurations of each
molecule in the study using weighted histogram analysis method (WHAM).

e Stages 7 and 8 extract the free energy value from prior stages and put the final data into
a tabular form.

Stage 1 is done once for all molecules in the workflow, stages 2-8 are done for each molecule.
The number of jobs in the workflow is about 1 + 84N where N is the number of molecules. The
computation for each molecule takes about 235.4 minutes on one ANL_TG node processor, and
22.7 min given up to 32 ANL_TG nodes (64 processors); this resulted in a speedup of 10.4x,
significantly less than 64 (the number of processors used at most), mostly due to the structure
of the workflow which had several stages which were not parallelizable. shows the graphical
representation of each task for the 1 molecule experiment. Red denotes wait queue time in
Falkon and green denotes execution time per task.
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Figure 15: MolDyn 1 Molecule Workflow Task View



We were using the dynamic resource provisioning capabilities of Falkon in this experiment, and
hence resources were only allocated on demand when they were needed. Notice the first job
gueue time is about 81 seconds, essentially the time it took from when Falkon requested one
node and when it was allocated and ready to process work. Then, after the first three jobs
completed in serial fashion), there was a stage with 68 independent jobs, which in turn
triggered Falkon to allocated 31 more nodes (dual processors each) to be able to process all 68
independent jobs in parallel. The red lines for these 68 jobs shows the time delay that the
allocation request took to traverse GRAM4 and PBS until the workers were ready to process
jobs.

To better understand the structure of the MolDyn workflow, we show the graph structure of
the workflow in Figure 16. Notice the large amount of parallelism that is obtainable at various
stages of the workflow.

Figure 16: MolDyn Workflow Graph

showed the execution of 1 molecule, which is composed of 85 jobs that consume 235.4 CPU
minutes. Our next experiment performed a 244 molecule run, which is composed of 20497
jobs that should take less than 957.3 CPU hours to complete; in practice, it takes even less as



some job executions are shared between molecules. Figure 17 shows the resource utilization in
relation to Falkon queue length as the experiment progressed. We see that as resources were
acquired (using the dynamic resource provisioning, starting with 0 CPUs and ending with 216
CPUs at the peak), the CPU utilization was near perfect (green means utilized, red mean idle)
with the exception of the end of the experiment as the last few jobs completed (the last 43
seconds). shows the same information on a per task basis, while Figure 18 shows the
information on a per executor basis. The entire experiment with the exception of the last 43
seconds consumed 866.33 CPU hours and wasted 0.09 CPU hours (99.98971% efficiency); if we
include the last 43 seconds as the experiment was winding down, the workflow consumed
867.1 CPU hours and it wasted 1.78 CPU hours, with a final efficiency of 99.7949013%. The
experiment completed in 15091 seconds on a maximum of 216 processors, which results in a
speedup of 206.9; note the average number of processors for the entire experiment was 207.26
CPUs, so the speedup of 206.9 reflects the 99.79% computed efficiency.
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Figure 17: 244 Molecule MolDyn application; left: summary view showing executor’s
utilization in relation to the Falkon wait queue length as experiment time progressed; right:
task view showing per task wait queue time and execution time as experiment time
progressed
It is worth comparing the performance we obtained for MolDyn using Falkon with that of
MolDyn over traditional GRAM/PBS. Due to reliability issues (with GRAM and PBS) when
submitting 20K jobs over the course of hours, we were not able to successfully run the same
244 molecule run over GRAM/PBS. We therefore tried to do some smaller experiments, in the
hopes that it would increase the probability of doing a successful run. We tried several runs
with 50 molecules (4201 of jobs for the 50 molecule run, instead of 20497 jobs for the 244
molecule run); the best execution times we were able to achieve for the 50 molecule runs with
GRAM/PBS (on the same testbed as we have used for Falkon, using up to 200 processors) took
25292 seconds. So we achieved a speedup of only 25.3X compared to 206.9X speedup when

using Falkon on the same workflow and the same Grid site in a similar state.
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We explain this drastic difference mostly due to the typical job duration (~200 seconds) and the
submission rate throttling of 1/5 jobs per second; the best case scenario is that the workflow
could have kept 40 machines busy, but in reality the number of concurrent jobs ranged
between 30~40 jobs. Increasing the submission rate throttle resulted in GRAM/PBS gateway
instability, or even causing it to stop functioning. Furthermore, each node was only using a
single processor of the dual processors available on the compute nodes due to the local site
PBS policy that allocates each job an entire (dual processor) machine and does not allow other
jobs to run on allocated machines; it is left up to the application to fully utilize the entire
machine, through multi-threading, or by invoking several different jobs to run in parallel on the
same machine. This is a great example of having a system like Falkon that allows the specific
configuration of new queues that behave appropriately on a per application basis, which is
quite impractical to do (mostly due to policy) in real-world deployed Grids.

5.4.4. Application Summary

The evaluation of the Swift runtime system shows that it is fast and scalable in executing large
scale scientific computations. Swift leverages lightweight threading techniques and can
schedule hundreds of thousands of parallel computations efficiently; its combination of type
checking, retry mechanism and restart log supports reliable workflow execution. The abstract
provider interface and various implementations allow workflows to be executed either on a
single desktop, on a cluster managed by a batch scheduler, or on multi-site distributed
resources. The integration with the lightweight Falkon execution service significantly improves
system throughput for large number of small jobs. In particular, we show that Swift plus Falkon
can achieve comparable performance to MPI execution for the Montage workflow, and also can
reduce execution time by as much as 90% for the fMRI pipeline when compared with GRAM
and PBS submission. We also showed a large scale MolDyn workflow with 20K tasks that was
able to achieve 99.8% efficiency on 216 processors over a period of 15K seconds; Falkon was
able to achieve an application speedup of 206.9X when GRAM/PBS was only able to achieve a
25.3X speedup on the same Grid site with similar usage conditions.

6. CONCLUSION

We have discussed the motivations for providing a high level abstraction of data, programs and
computations in large scale Data Grid environments, and challenges inherent in attempting to
do so, and we have proposed a scripting language for concise specifications of large scale
parallel computations on file system data and a runtime system to support data, workflow,
metadata, and provenance management. We have shown that the Swift language and system
support efficient description, compilation, execution and optimization of parallel computations,
using examples from large-scale scientific experiments in domains such as astronomy,
biochemistry, and neuroscience.

SwiftScript is a parallel program notation that cleanly separates logical data structures from
their physical storage formats, by means of the underlying XDTM mechanism. XDTM employs a
two-level description of datasets, defining separately via a type system based on XML Schema
the abstract structure of datasets, and the mapping of that abstract data structure to physical
representations. The dataset mapping mechanism allows physical datasets to be mapped to



logical data structures, thus enabling SwiftScript to represent dynamic workflow structures and
expand workflow nodes during run time. SwiftScript models file system data as first-class typed
objects, and allows for the definitions of concise typed procedures that operate on these typed
datasets, and the composition of complex scientific workflows from simple and compound
procedures. Its support for dataset selection and iteration enables a SwiftScript program to
scale easily to tens of thousands of computations. Programs written in SwiftScript are much
more compact in code size, and also easier to read, understand and maintain.

The runtime system Swift provides the automated mechanism to compile logical workflow
representations into concrete distributed execution plan, manage and coordinate distributed
computing, network and storage resource for the efficient and reliable execution of the plan,
monitor and record the execution process, and trace the derivation history of data products.
The provenance of data derivations is captured and stored in VDC along with dataset,
procedure and workflow definitions; together they allow powerful exploration and expressive
guery of the virtual data products.

Swift integrates and extends the CoG Karajan engine, whose abstract provider interface
supports submission to different computing facilities ranging from local desktops, to computer
clusters and multi-site Grid environments. By leveraging the lightweight Falkon execution
service, Swift is able to achieve high throughput in executing large number of fine-granular jobs,
a common pattern we find in both the fMRI and Montage workflows, and other scientific
applications.

In conclusion, the language and system together can bring significant usability and productivity
increases, in representing and executing large scale scientific workflows, and in facilitating
discovery, understanding, assessment, and sharing of data, procedures, workflows and
computation resources, as well as in the productive use of distributed resources for
computation, scheduling, and collaboration.

For future directions, we continue to work to improve the language and system to deal with
other requirements and characteristics in large scale scientific computations. In particular, we
are working on more intuitive invocation interface (the specification of how an application or
service is invoked) in SwiftScript and easier mapper implementation. SwiftScript mappers are
currently specified as Java classes. Pre-coded mappers work well for applications with
structured file collections such as in the fMRI and Montage cases, but other customized
mappers are required for more complex data structures, and the implementation of such
mappers are not trivial.

Data partitioning is an important issue in harnessing parallel and distribute computing
resources. lterations in SwiftScript allow programs to operate on the finest level of datasets.
However, SwiftScript currently does not support coarse level data partitioning, such as blocked
or cyclic partition that are commonly observed in data parallel programs. We consider
extending SwiftScript with (optional) data partitioning directives, and give experienced user
more control over the data being processed.

We are also investigating data locality aware scheduling strategies. [43] Most cluster execution
environments have a shared file system, where input and output datasets are staged in to and



out from. This shared medium becomes a bottleneck when a large number of I/O intensive
computations are executed in the cluster, although the computing resource may not have
saturated. Considering that each node in a cluster usually has its own local disks, and local disk
access is at least as fast, if not faster than a shared storage space, we can cache and replicate
intermediate computation results on local disks, and make scheduling decisions according to
the availability of the intermediate data, i.e. choosing the compute node that has most of the
required data for a job. Such a strategy could further increase the number of parallel
computations and improve system throughput.

Currently most of the applications we deal with are binary executables that operate on file
system based data. However, our SwiftScript programming model can be equally applied to
Web services invocation and coordination. SwiftScript specifies abstract interfaces to
procedures, which can be bound to service invocations at runtime, and the XDTM data model is
based on XML Schema, which can naturally capture Web service inputs and outputs. While
Service Oriented Architecture is gaining adoption, SwiftScript can provide a bridge between the
application and service deployment models.

7. ACKNOWLEDGEMENT

We would like to thank Bruce Berriman, Daniel Katz, and John Good for their help and support
on the Montage application. Montage is supported by the NASA Earth Sciences Technology
Office Computing Technologies program, under Cooperative Agreement Notice NCC 5-6261.

We would also like to thank Ben Clifford, Gregor Von Laszewski, and Tiberiu Stef-Praun for their
contributions to the Swift system. The evaluation of the Swift system was carried out on
computing facilities at the Computation Institute at the University of Chicago, and at the
Teragrid ANL/UC site.

This work was supported by the National Science Foundation GriPhyN Project, grant ITR-800864
and iVDGL, grant PHY-122557; 12U2 — Interactions in Understanding the Universe, grant PHY-
0636265; the Mathematical, Information, and Computational Sciences Division subprogram of
the Office of Advanced Scientific Computing Research, U.S. Department of Energy under
contract DE-AC02-06CH11357; the National Institutes of Health, grants NS37470, NS44393 and
DC008638-01; and NASA Ames Research Center GSRP Grant Number NNAO6CB89H.

8. REFERENCES

[1] Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller, D.,
Smith, D., Thatte, S., Trickovic, |., Weerawarana, S.: Business Process Execution Language
for Web Services, Version 1.1. Specification, BEA Systems, IBM Corp., Microsoft Corp., SAP
AG, Siebel Systems (2003).

[2] Arbree, A., Avery, P., Bourilkov, D., Cavanaugh, R., Graham, G., Rodriguez, J., Wilde, M.,
Zhao, Y.: Virtual Data in CMS Analysis. Proceedings of the 2003 Conference for Computing
in High-energy and Nuclear Physics (CHEP 03).

[3] Armstrong, J., Virding, R., Wikstrom, C., Williams, M., Concurrent Programming in Erlang,
Prentice-Hall, 1996, ISBN 0-13-285792-8, 2nd edition.



[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Business Process Modeling Language 1.0 Specification, http://www.bpmi.org/, 2002

Churches, D., Gombas, G., Harrison, A., Maassen, J., Robinson, C., Shields, M., Taylor, 1.,
Wang, |, Programming Scientific and Distributed Workflow with Triana Services.
Concurrency and Computation: Practice and Experience. Special Issue on Scientific
Workflows, 2005.

The Condor DAGMan (Directed Acyclic Graph Manager),
http://www.cs.wisc.edu/condor/dagman, 2007.

Cytron, R. Ferrante, J., Rosen, B., Wegman, M., and Zadeck, F., Efficiently computing static
single assignment form and the control dependence graph. ACM Transactions on
Programming Languages and Systems, 13(4):451-490, Oct 1991.

Dean, J. and Ghemawat, S., MapReduce: Simplified data processing on large clusters. In
OSDI, 2004.

Deelman, E., Singh, G., Su, M.-H., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K.,
Berriman, G.B., Good, J., Laity, A., Jacob, J.C. and Katz, D.S. Pegasus: A Framework for
Mapping Complex Scientific Workflows onto Distributed Systems. Scientific Programming,
13 (3). 219-237.

Emmerich, W., Butchart, B., Chen, L., Wassermann, B. and Price, S. Grid Service
Orchestration Using the Business Process Execution Language (BPEL). Journal of Grid
Computing, 3 (3-4). 283-304.

Foster, 1., Globus Toolkit Version 4: Software for Service-Oriented Systems. IFIP
International Conference on Network and Parallel Computing, 2005, Springer-Verlag LNCS
3779, 2-13.

Foster, 1., Voeckler, J., Wilde, M. and Zhao, Y. Chimera: A Virtual Data System for
Representing, Querying, and Automating Data Derivation. in 14th Conference on Scientific
and Statistical Database Management, (2002).

Halsted. R. H., Multilisp: A language for concurrent symbolic computation. ACM
Transactions on Programming Languages and Systems 7(4), pages 501--538, April 1985.

High Performance Fortran Forum. High Performance Fortran Language Specification.
Technical report, Rice University, Dept. Computer Science, October 1992.

Horn, J.V., Dobson, J., Woodward, J., Wilde, M., Zhao, Y., Voeckler, J. and Foster, I. Grid-
Based Computing and the Future of Neuroscience Computation. in Methods in Mind, MIT
Press, 2006.

Huettel, S., Song, A. and McCarthy, G. Functional Magnetic Resonance Imaging. Sinauer
Associates, 2004.

Katz, D., Berriman, G., Deelman, E., Good, J., Jacob, J., Kesselman, C., Laity, A., Prince, T,
Singh, G., and Su, M. A Comparison of Two Methods for Building Astronomical Image
Mosaics on a Grid, Proceedings of the 7th Workshop on High Performance Scientific and
Engineering Computing (HPSEC-05), 2005



[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]
[35]

Laszewski, G.v., Hategan, M. and Kodeboyina, D. Java CoG Kit Workflow, in Taylor, 1.J.,
Deelman, E., Gannon, D.B. and Shields, M. eds. Workflows for eScience, 2007, 340-356.

Ludascher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger-Frank, E., Jones, M., Lee, E., Tao,
J., Zhao, Y., Scientific Workflow Management and the Kepler System. Concurrency and
Computation: Practice & Experience, Special Issue on Scientific Workflows, 2005.

Mohr, E., Kranz, D.A., Halsted, R. H.: Lazy Task Creation: A Technique for Increasing the
Granularity of Parallel Programs, Proceedings of the ACM Conference on Lisp and
Functional Programming. 1990.

The Montage project web page, http://montage.ipac.caltech.edu/, 2007

Moreau L, Zhao Y, Foster |, Voeckler J, and M Wilde. XDTM: XML Dataset Typing and
Mapping for Specifying Datasets. In European Grid Conference, 2005.

M. P. I. Forum. MPI: A Message-Passing Interface Standard, May 1994.

Mueller, F., A library implementation of POSIX threads under UNIX, 1993 winter USENIX,
San Diengo, CA, January 25-29, 1993.

Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T., Glover, K.,
Pocock, M. R., Wipat, A,, Li, P., Taverna: A tool for the composition and enactment of
bioinformatics workflows. Bioinformatics Journal, 20(17):3045—-3054, 2004.

OpenMP: a Proposed Industry Standard APl for Shared Memory Programming. White
Paper, http://www.openmp.org/, October 1997.

Pike, R., Dorward, S., Griesemer, R., Quinlan, S., Interpreting the Data: Parallel Analysis
with Sawzall, Scientific Programming, Special Issue on Grids and Worldwide Computing
Programming Models and Infrastructure 13:4, pp. 227-298.

The Provenance Challenge, http://twiki.ipaw.info/bin/view/Challenge/WebHome, 2006.

Raicu, I, Dumitrescu, C. and Foster, |, “Dynamic Resource Provisioning in Grid
Environments”, TeraGrid Conference 2007, June 2007.

Raicu, ., Zhao, Y., Dumitrescu, C., Foster, |., Wilde, M., “Falkon: a Fast and Lightweight
Task Execution Framework”, IEEE/ACM Supercomputing (SC'07), November 2007.

Reppy, J. H. Concurrent Programming in ML. Cambridge University Press, Cambridge,
England, 1999.

Robinson, E., DeWitt, D. J., “Turning Cluster Management into Data Management: A
System Overview”, Conference on Innovative Data Systems Research, 2007.

Sloan Digital Sky Survey Data Release 6, http://www.sdss.org/dr6

The TeraGrid, http://www.teragrid.org, 2007.

Thain, D., Tannenbaum, T., Livny, M., Distributed Computing in Practice: The Condor
Experience, Concurrency and Computation: Practice and Experience, 2004.



[36]

[37]

[38]

[39]
[40]

[41]

[42]

[43]

Vockler, J.-S., Mehta, G., Zhao, Y., Deelman, E. and Wilde, M., Kickstarting Remote
Applications. in 2nd International Workshop on Grid Computing Environments (2006).

Welsh, M., Culler, D., and Brewer, E., SEDA: An Architecture for Well-Conditioned,
Scalable Internet Services. In Proceedings of the Eighteenth Symposium on Operating
Systems Principles (SOSP-18), Banff, Canada, October, 2001.

XML Process Definition Language (XPDL) (WFMCTC-1025). Technical report, Workflow
Management Coalition, Lighthouse Point, Florida, USA, 2002.

T. Tannenbaum. “Condor RoadMap”, Condor Week 2007.

Zhao, Y., Dobson, J., Foster, I., Moreau, L. and Wilde, M. A Notation and System for
Expressing and Executing Cleanly Typed Workflows on Messy Scientific Data. SIGMOD
Record, 34 (3). 37-43. 2005.

Zhao, Y., Hategan, M., Clifford, B., Foster, I., Laszewski, G.v., Raicu, I., Stef-Praun, T., Wilde,
M., Swift: Fast, Reliable, Loosely Coupled Parallel Computation, IEEE International
Workshop on Scientific Workflow (SWF07), Collocated with ICWS 2007.

Zhao, Y., Wilde, M., Foster, ., Applying the Virtual Data Provenance Model, Proceedings of
the International Provenance and Annotation Workshop 2006 (IPAW2006), Lecture Notes
in Computer Science, Springer, 2006.

I. Raicy, ., Zhao, Y., Foster, |., Szalay, A. “A Data Diffusion Approach to Large Scale
Scientific Exploration,” Microsoft eScience Workshop at RENCI 2007.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


