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Abstract 
Loosely coupled programming is a powerful paradigm for 

rapidly creating higher-level applications from scientific 
programs on petascale systems, typically using scripting 
languages. This paradigm is a form of many-task computing 
(MTC) which focuses on the passing of data between 
programs as ordinary files rather than messages. While it has 
the significant benefits of decoupling producer and consumer 
and allowing existing application programs to be executed in 
parallel with no recoding, its typical implementation using 
shared file systems places a high performance burden on the 
overall system and on the user who will analyze and consume 
the downstream data. Previous efforts have achieved great 
speedups with loosely coupled programs, but have done so 
with careful manual tuning of all shared file system access. In 
this work, we evaluate a prototype collective IO model for file-
based MTC. The model enables efficient and easy distribution 
of input data files to computing nodes and gathering of output 
results from them. It eliminates the need for such manual 
tuning and makes the programming of large-scale clusters 
using a loosely coupled model easier. Our approach, inspired 
by in-memory approaches to collective operations for parallel 
programming, builds on fast local file systems to provide high-
speed local file caches for parallel scripts, uses a broadcast 
approach to handle distribution of common input data, and 
uses efficient scatter/gather and caching techniques for input 
and output. We describe the design of the prototype model, its 
implementation on the Blue Gene/P supercomputer, and 
present preliminary measurements of its performance on 
synthetic benchmarks and on a large-scale molecular 
dynamics application. 

1 Overview 
We define “loosely coupled applications” as programs that 

involve the sequenced execution of other programs. In this 
programming model, programs exchange data via files; the 
application typically involves a large number of invocations, 
often of several different programs; and programs are typically 
feature a high degree of inter-task parallelism, enabled by data 
independence within the flow graph of files. Applications are 
typically written in scripting languages (Perl, Python, Tcl, and 
numerous “shells”) [Ousterhout1998], which facilitate both 
the invocation of application programs and the passing and 
manipulation of files for program inputs and outputs. This 
style of programming is extensively employed in virtually 

every domain of science. For example, biologists run PERL 
scripts of BLAST and PFAM; neuroscientists run shell scripts 
of AIR, AFNI and FSL; physicists analyze collision data with 
scripts that execute analysis applications written in ROOT. 

It is difficult to efficiently map this common and useful 
programming model onto computing clusters of rapidly 
increasing scale. We note that we are mainly concerned here 
with applications running on what we term “petascale-
precursor” systems, where the sheer parallelism of the 
computing nodes of the system can easily overwhelm a 
traditional IO subsystem, and in particular, its shared file 
systems. As clusters have grown larger, to tens or, recently, 
hundreds of thousands of nodes, the IO strategies of loosely 
coupled applications have become both a performance 
bottleneck and a source of complexity. Significant manual 
effort is needed to scale application performance as cluster 
size grows. 

The specific problem we address here is that as the number 
of nodes in large-scale clusters contending for shared 
resources grows large, the IO bandwidth, volume and/or file 
management transaction rate exceeds some aggregate capacity 
limit, bottlenecks arise and the system becomes unbalanced. 
Thus, CPU cycles are wasted because the IO subsystem cannot 
service the CPUs fast enough. (We are concerned here with 
applications with high enough IO-to-compute ratios for IO to 
become the primary obstacle to parallel speedup. Applications 
that do relatively little IO while computing for long periods 
typically perform well in loosely coupled settings without any 
change to their IO strategy.) 

While petascale systems have massive shared IO 
subsystems, these subsystems often have vulnerabilities in 
handling file management transactions (e.g., creating and 
writing huge numbers of files at high rates) that are ill-
matched with the needs of loosely coupled programs. Our 
work remedies this deficiency and makes petascale systems 
attractive for this important and productive paradigm for 
knitting existing scientific programs into powerful workflows.  

Our strategy of collective IO is inspired by the collective 
data operations employed by tightly coupled message passing 
programming models. In these models, data is exchanged, 
both between in-memory tasks and between tasks and files, 
using operations such as scatter (often assisted by broadcast) 
and gather. In our model: 
• Input files are broadcast from shared file systems to local 

file systems. 
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• Output files are locally batched up from applications and 
efficiently transferred to shared persistent storage. 

• Intermediate file systems are provided within the cluster 
to aid in efficient input and output staging and to 
overcome the limitations that large-scale clusters impose 
on local file system capacity. 

In the remainder of this paper we first present an abstract 
model that maps collective IO concepts, previously applied in 
message-passing and in-memory programming environments, 
to the file-based MTC domain. We then review the 
architecture of the IBM Blue Gene/P (BG/P) system, which 
we use as an exemplar of large-scale clusters (and as a base for 
our prototype and measurements), and describe prior work on 
collective IO. We then describe a new collective model that 
addresses the challenges described above, detail its 
implementation, and present preliminary measurements of its 
performance. We conclude with an outline of our plans to 
extend and improve the model. 

2 Abstract Collective IO Model for File Objects 
Our abstract model, which is independent of specific cluster 

architectures, is based on the following elements. 
1) We have applications involving multiple tasks that can 

run concurrently, each reading zero or more named objects, 
performing some computation, and writing zero or more 
named objects. (These objects are typically files – a detail that 
will become important when we talk about implementation 
specifics). The length of individual tasks, and of the objects 
read and written, are typically not known ahead of time. 

2) We can distinguish between two principal input 
patterns: a) read-many, in which many or all tasks read the 
same object; b) read-few, in which the number of tasks 
reading a particular object is small – often only one. We 
assume that each object is written by just one task. 

 
Typically, we know the objects to be read by each application 
ahead of time, and thus assume that applications will not 
determine at run time which files to read. (This restriction can 
be relaxed for some files, which would be considered outside 
of, or an extension to, the model). We further assume that we 
know (typically, from dependency information) which objects 
are read-many. 

3) In the simplest form of these applications, the set of 
objects read and the set of objects written are disjoint. In more 
complex forms, one task may write an object that is then read 
by another. In that case, we assume dataflow synchronization 
between the writer and the reader, meaning that the reader can 
only execute when the writer completes execution (as below). 

 
4) We assume a computer system architecture in which (a) 

all processors can access a high capacity persistent shared 
storage system (shared-store), albeit with modest performance, 
and (b) each processor has some local object storage (memory 
or disk) of modest capacity, but offering high performance 
(local-store). When many processors access the shared file 
system concurrently, contention leads to degraded and often 
unpredictable performance. 

5) An abstract cluster IO 
architecture is useful to 
define terminology. As 
shown in Figure 4, this model 
has three levels of file 
system: Global persistent 
shared file systems (GFS) are 
accessible from all compute 
nodes of a cluster, and are 
typically the persistent home 
of all data. Local file systems 
(LFS) are per-compute-node 
file systems, and are only 

directly accessible to tasks running on the processors of that 
compute node. As cluster size and density increases, the LFS 
may be implemented in RAM or FLASH memory, and is 
typically constrained in size between a few hundred 
megabytes and a few gigabytes. Intermediate file systems 
(IFS) are found, typically, only on the largest and most 
complex clusters, such as the IBM BGP. On the BGP, IFSs 
exist on the “IO node” processors (IONs); systems such as the 
SiCortex 5832 allow larger IFSs to be constructed by striping 
RAM-based LFSs. We use the acronyms GFS, LFS, and IFS 
throughout. 

Based on this abstract model, we employ two simple 
collective methods to improve IO performance: (a) routines to 
broadcast read-many objects to many processors; and (b) two-
stage IO operations to accelerate read-few and write 
operations, by staging objects between the many local-stores, 
an intermediate-store (created, for example, on a set of local-

 
Figure 2: Abstract application program IO profile 

 
Figure 3: Common Application Dataflow Pattern 

 
Figure 1: Abstract Cluster  
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stores), and the shared-store. We implement IFSs on LFSs 
using MosaStore [Al-Kiswany+2007] and Chirp 
[Thain+2008]. Our prototype of these methods was 
implemented on the BG/P and is described in Section 5. 

3 Blue Gene/P System Architecture 
The 163,834-processor IBM BG/P computer at the Argonne 

Leadership Computing Facility [ALCF] is at the time of 
writing the world’s largest open-science computing system 
[TOP500]. We view it as an exemplar of the coming wave of 
“petascale” systems, and we base the work described here on 
this system. 

We present here a brief overview of the characteristics of 
the GPFS distributed parallel file system that serves as the 
GFS for the ALCF BG/P. We then describe the ZeptoOS 
operating system environment that we employ for MTC 
programming of the BG/P, as this environment is critical to 
enabling the MTC model to be used on this machine, and 
because its BG/P implementation – some of which was 
influenced by the work described here – has not to date been 
published elsewhere. 

3.1 Characteristics of GPFS as a Global File system  
GPFS – the General Parallel File system [Schmuck+2002] – 

is configured on the ALCF BG/P with 24 IO servers, each 
with 20Gb/s network connectivity, and can sustain an 
aggregate IO rate of ~8GB/sec. 

GPFS is in general proficient at reading and writing large 
units, can handle vast numbers of files, and can maintain huge 
directories. It also excels at parallel IO operations from 
multiple client hosts, for which it maintains a sophisticated 
lock resolution protocol and heuristics. It has, however, two 
areas of weakness: it is relatively slow at creating new files, 
and can perform very poorly when multiple clients attempt to 
create files within the same parent directory (due to lock 
contention and its approach for maintaining global file system 
integrity in the face of metadata updates). These 
characteristics are typical for distributed parallel file systems 
which maintain local file system semantics in a distributed 
environment. However, they pose a challenge to MTC 
workloads, which can, if not carefully planned to avoid GFS 
weaknesses, perform exceedingly poorly. 

3.2 BG/P OS and IO Architecture to support MTC 
The ZeptoOS project [ZeptoOS] provides an open-source 

alternative to the proprietary software stacks available on 
contemporary massively parallel architectures. Its aim is to 
make petascale architectures more productive for the scientific 
user community, to enhance community collaboration and to 
enable computer science research on these architectures. 
ZeptoOS uses the Linux kernel to create an alternative, fully 
open software stack on large-scale parallel systems. 

The project currently focuses on the IBM BG/P 
architecture. These machines normally run a limited 
microkernel on the compute nodes. While the default compute 
node kernel is highly scalable, it lacks many capabilities that 
MTC jobs expect, such as the ability to execute sub-processes 

or run shell scripts. ZeptoOS replaces that kernel with a 
Linux-based ZeptoOS compute node kernel, which lifts those 
limitations. 

The default IBM BG/P microkernel forwards all file and 
socket IO calls to the IO nodes, which run Linux. IO nodes run 
a daemon that receives IO requests from the compute nodes 
and replays them against the Linux kernel. IO nodes also run 
file system clients for remote file systems such as NFS, GPFS, 
or PVFS, which handle the actual file IO.  

ZeptoOS also uses a similar, but more general, forwarding 
architecture for IO requests. ZOID, the ZeptoOS IO Daemon 
[Iskra+2008], is a replacement IO daemon running on the IO 
nodes, used to communicate with the compute nodes when 
they are running Linux. ZOID provides a generic, high-
performance function-forwarding infrastructure for compute 
nodes. This infrastructure is extensible through the use of 
plug-ins: users can define their own API and have data 
efficiently forwarded between the applications running on the 
compute nodes and the implementation code running on IO 
nodes. Generic plug-ins for POSIX file and socket IO are 
available which standard applications can take advantage of. 
ZOID also performs job management and IP packet 
forwarding between IO nodes and compute nodes (allowing 
users to, e.g., perform interactive debugging sessions on the 
compute nodes over telnet). 

Figure 5 and Figure 6 present in more detail the hardware 
and software components of the ZeptoOS environment on the 
BG/P. The ratio of compute nodes to IO nodes for a given 
BG/P installation can vary from 16:1 to 128:1 depending on 
the machine configuration; the ratio on the Argonne machine 
is fixed at 64:1. Compute nodes communicate with the IO 
nodes over a custom “collective” (also known as “tree”) 
network, with a bandwidth of 6.8 Gb/s (850 MB/s). Once 
protocol overheads are considered, the maximum throughput 
that ZOID can achieve over this network is around 760 MB/s. 
However, such throughput is only achievable when processes 
on the compute nodes communicate with ZOID directly.  A 
modified GNU libc library that enables this direct 
communication is in progress but is currently incomplete. 

A solution available to processes on the compute nodes 
through standard kernel interfaces would be far more 
desirable. Since our communication stack is in user space, we 
need mechanisms to forward data between the user and kernel 
space. The Linux kernel does offer easy to use interfaces for 
such purposes, in the form of FUSE and TUN. FUSE [FUSE] 
is a pseudo-file system that performs callbacks from the kernel 
VFS layer to a user-space daemon, which provides the 
implementation of file IO operations. TUN [TUN] simulates a 
network-layer device, allowing one to forward IP packets 
between a user-space process and the kernel’s TCP/IP stack. 

The problem is that neither of these solutions is particularly 
fast. Their designs (particularly that of FUSE) are simple and 
focused on flexibility, not high performance. 
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The overheads they introduce are considerable. FUSE can 

read data in chunks of 128 KB, but writes are performed in 
chunks no larger than a single memory page. With a page size 
of 64 KB on the compute nodes we get at most 230 MB/s on 
input and 180 MB/s on output. (These are raw transfer speeds; 
if we include file system overhead, then even in the case of 
local RAM disk on the IO nodes, the read speed is reduced to 
180 MB/s and the write speed to 130 MB/s). 

The situation with TUN is even worse, because the data is 
transferred in individual IP packets of no more than 1500 
bytes. As a result, we only achieve ~180 Mb/s (22 MB/s) 
between compute nodes and IO nodes. IP communication 
works between compute nodes as well, but for simplicity this 
is implemented in ZeptoOS by sending the packets to the IO 
node and letting it forward the data to the intended destination. 
Consequently, as the number of communicating compute node 
processes increases, the fraction of throughput available to 
each goes down. 

The collective network is not the only one available on 
BG/P: the primary network for point-to-point communication 
between compute nodes is the 3-D torus. Every compute node 
has torus links to six neighbors, each with a bandwidth of 3.4 
Gb/s (425 MB/s). Until recently, the torus network was not 
accessible when running under ZeptoOS, because the torus 
network’s DMA engine lacks scatter/gather capability and 
thus requires large, continuous areas of physical memory, 
normally unavailable under Linux. 

To enable use of the torus network under ZeptoOS, we 
modified the Linux kernel to reserve a considerable “flat” 
segment of memory at boot time. A process wishing to 
communicate over the torus is mapped into this memory 
region, so that the DMA engine can operate on its memory 
buffers. While this capability is still under development, we 
have implemented IP forwarding over MPI (which uses the 
torus), again using the TUN device. We measured peak torus 
point-to-point throughput of around 1.15 Gb/s (140 MB/s). 
This throughput is an order of magnitude higher than over the 
collective network, for several reasons, the most significant 
being that we have increased the maximum transmission unit 
(MTU) of the TUN network device to 65535 bytes (the 

maximum value allowed with IPv4). While we would have 
liked to do the same with the TUN device operating over the 
collective network, the older version of the Linux kernel used 
on the IO nodes does not allow an increase in the MTU of the 
TUN device. We are currently prevented from upgrading that 
kernel version because the GPFS kernel module depends on it. 

 
4 Prior work 

There has been much research on collective operations in 
the context of the message passing programming paradigm. 
These operations allow a group of processes to perform a 
common, pre-defined operation “collectively” on a set of data. 
For example, the MPI standard [MPI] offers a large number of 
such operations, from a basic broadcast (delivering an 
identical copy of data from one source to many destinations), 
through scatter (delivering a different part of input data from 
one source to each destination) and its opposite, gather 
(assembling the result at one destination from its parts 
available on multiple sources), to reduction operations (like 
gather, but instead of assembling, the parts of the result are 
combined). These operations are considered so crucial for the 
performance of message passing programs that the BG/P 
provides the separate collective tree network to perform them 
efficiently in hardware [BGP]. 

Similarly, collective IO is not a new concept in parallel 
computing. It is employed, e.g., by ROMIO [Thakur+1999], 
the most popular MPI-IO implementation, in its generalized 
two-phase IO implementation. When compute tasks want to 
perform IO, they first exchange information about their 
intentions, in an attempt to coalesce many small requests into 
fewer larger ones (an assumption being that the processes 
access the same file). When reading, in the first phase the 
processes issue large read requests, and in the second phase, 
they exchange parts of their read buffers with one another, 
using efficient MPI communication primitives so that each 
process ends up with the data it was interested it. For writing, 
the two phases are reversed. 

MPI collective communication and IO operations require 
applications to be at least loosely synchronous, in that progress 

 
Figure 5: ZOID and ZeptoOS 

 
Figure 6: ZOID/ZeptoOS and BG/P Torus Network 
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must be made in globally synchronized phases, and that all 
processes participate in a collective operation. These 
conditions restrict the use of standard collective operations in 
loosely coupled, uncoordinated scenarios, limiting them to 
initialization time (before any individual tasks start running), 
and possibly termination time (once all individual tasks have 
completed). 

Until recently, such uncoordinated jobs were primarily run 
on moderate scale clusters or on distributed (“grid”) resources. 
Most clusters were not large enough to encounter IO 
contention problems such as those described here. 
Furthermore, cluster nodes generally have considerable local 
disks suitable for storing large input and output data. The 
primary problem on such systems has thus been mainly to 
efficiently stage data and schedule jobs so that they can best 
benefit from the staged data [Khanna+2006; Khanna+2007]. 

File IO is a more significant problem with distributed 
resources. Condor provides a remote IO library that forwards 
system calls to a shadow process running on the “home” 
machine where the files actually reside. Global Access to 
Secondary Storage (GASS [Bester+1999]) available in Globus 
takes a different approach, transparently providing a 
temporary replica cache for input and output files. Our 
collective IO goes beyond these approaches to intelligently 
utilize local filesystems, and to provide intermediate file 
systems, broadcasting of input files, and batching of output 
files. Unlike Condor remote IO, our approach does not require 
relinking. Our approach makes it practical for tens to hundreds 
of thousands of processor cores now (and in a few years, a 
million cores) to perform concurrent, asynchronous IO 
operations. These numbers are easily an order of magnitude 
greater than what has been addressed in any previous 
implementation. 

5 Design and Implementation 
The requirements described to this point translate into a 

straightforward design for handling collective IO, which 
consists of three main components: 1) one or more 
intermediate file systems (IFSs) enabling data to be placed and 
cached closer to the computation (from an access-latency and 
bandwidth perspective) while overcoming the size limitation 
of the typical RAM-based local file systems that are prevalent 
in petascale-precursor systems; 2) a data distributor, which 
replicates sufficiently large common input datasets to 
intermediate file systems; and 3) a data collector mechanism, 
which collects output datasets on IFSs and efficiently writes 
the collected data to large archive files on the GFS.  

Our implementation of this design, which we have 
prototyped for performance evaluation, uses simple scripts to 
coordinate “off the shelf” data management components. All 
of our prototypes and measurements to date have been done on 
the Argonne BG/P systems (Surveyor, 4096 processors, and 
Intrepid, 163,840 processors). Not all of the design aspects 
described below exist yet in the prototype. These are indicated 
in the description. We executed all of our compute tasks under 
the Falkon lightweight task scheduler [Raicu+2007; 
Raicu+2008] running under ZeptoOS [ZeptoOS2008]. 

The structure of the system is shown in overview in Figure 
7, and in more detail in Figure 9, which depicts the flow of 
input and output data in our BG/P-based prototype. Within the 
BG/P testbed, the RAM-based file system of the local node, 
which contains about 1GB of free space, is used as the LFS. 
For input staging, the LFS of one or more compute nodes is 
set aside as a “file server” and is dedicated as an IFS for a set 
of compute nodes.  

 

 
We create large IFSs from fast LFSs by striping IFS 

contents over several LFS file systems, using the MosaStore 
file IO service [Al-Kiswany+2007]. Compute nodes access the 
IFS using the BG/P torus network [BGP]. The creation of the 
IFS and the partitioning of compute nodes between IFS 
functions and computing can be done on a per-workload basis, 
and can vary from workload to workload. In the same manner 
that compute node and IO node operating systems are booted 
when a BG/P job is started, the creation of the IFSs and the 
CN-to-IFS mapping can be performed as a per-workload setup 
task performed when compute nodes are provisioned by 
Falkon [Raicu+2007; Raicu+2008]. This enables the CN-to- 
IFS ratio to be tailored to the disk space and bandwidth needs 
of the workflow (Figure 8). 

 
Figure 7: Logical Distributor/Collector Design 

 
Figure 8: Allocation and mapping of compute nodes to IFS 
servers: 2:64 ratio (top) and 4:64 ratio (bottom) 
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5.1 Input Distribution 
The input distributor stages common input data efficiently 

to LFS or IFS. This mechanism is used to cache files that will 
be frequently re-read, or that will be read in inefficient buffer 
lengths, closer to the compute nodes. The key to this operation 
is to use broadcast or multicast methods, where available, to 
move common data from global to local or intermediate file 
systems. For accessing input data, we stage input datasets as 
follows: 
• Small input datasets are staged from GFS to the LFS of 

the compute nodes which read them. 
• Datasets read by only one task but that are too large to be 

staged to an LFS are staged to an IFS of sufficient size. 
• All large datasets that are read by multiple tasks are 

replicated to all IFSs that serve the set of compute nodes 
involved in a computation. 

In our prototype implementation, data is replicated from  
GFS to multiple IFSs by the Chirp replicate command 
[Thain+2008]. (Steps 1 and 2 in Figure 7.) We employ two 
functions: the first identifies if a given compute node is a data-
serving or application-executing node. The second maps 
executor compute nodes to its IFS data server. The decision of 
whether to place an input file on LFS or IFS is made explicitly 
(i.e., hard-coded in our prototype). Each IFS is mounted on all 
associated compute nodes, and accessed via FUSE.  

5.2 Output Collection 
The output collector gathers (small) output data files from 

multiple processors and aggregates them into efficient units 
for transfer to GFS. In this way, we reduce greatly the number 
of files created on the GFS (which reduces the number of 
costly file creation operations) and also increase the size of 
those files (which permits data to be written to GFS in larger, 
more efficient block sizes and write buffer lengths). The use of 
the output collector also enables data to be cached on LFS or 
IFS for later analysis or reprocessing. 

Our goal is that files which can fit on the LFS can be 
written there by the application program, while larger output 
files can be written directly to IFS, and output files too large to 
fit on the LFS or IFS are written directly to GFS. (This 
differentiation is not implemented in the prototype). In this 
way, we can optimize the performance of output operations 
such as file and directory creation and small write operations.  

The collector operates as follows. When application 
programs complete, any output data on the LFS is copied to an 
IFS (Figure 7, Step 3). When the copy is complete, the data is 
atomically moved to a staging directory, where the following 
algorithm (Step 4) is used: 

 
while workload is running 
  if time since last write > maxDelay 
     or data buffered > maxData 
     or free space on IFS < minFreeSpace 
  then write archive to GFS from staging dir 
 

One consequence of this design is that short tasks can 
complete quicker, without having each task remain on a 
compute node waiting for its data to be written to GFS, as the 
staging of data from IFS to GFS is handled asynchronously by 

the collector, as 
shown in Figure 
10. In our 
prototype, the IO 
node (ION) file 
system serves as 
the IFS, and data 
moving relies on 
POSIX atomicity 
semantics for data 
integrity. Files are 
moved from LFS 
to IFS via tar, and 
are then 
transferred to GFS 
using dd with a 
large efficient 
blocksize. 

In our 
prototype, the LFS and IFS file systems are both RAM-based, 
and behave somewhat like an in-memory message exchange 
system, in which messages are moved by read() and write() 
from one namespace (file server) to another. While these 
“messages” may be more expensive than MPI messages (the 
difference remains to be measured), this approach lets users 
integrate existing application programs into larger application 
workflows without requiring disk IO.  

 

5.3 Downstream data processing 
The fact that data managed by the output collector on LFSs 

or IFSs can be retained for subsequent processing makes it 
possible to re-process the output data of one stage of a 
workflow far more efficiently than if the data had to be 
retrieved from GFS. When previously written output does 
need to be retrieved from GFS, the ability to access files in 
parallel from a randomly accessible archive (as described 
below) further improves performance. And intermediate 
output data that doesn’t need to be retained persistently can be 
left on LFS or IFS storage without moving it to GFS at all. 

To facilitate multi-stage workflows, in which the output of 
one stage of a parallel computation is consumed by the next, 
we incorporate two capabilities in our design: 1) the use of an 
archive format for collective output that can be efficiently re-
processed in parallel, and 2) the ability to cache intermediate 
results on LFS and/or IFS file systems. 

We base our output collector design on the use of a 
relatively new archive utility xar [XAR], which unlike 
traditional tar (and similar) archive formats includes an 
updateable XML directory containing the byte offset of each 

 
Figure 10: Output staging: synchronous, top, without collector; 
asynchronous, bottom with collector. 

 
Figure 9: Data flow on BG/P 
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archive member. This directory enables files to be extracted 
via random access, and hence xar (unlike tar) archives can be 
processed efficiently in parallel in later stages or a workflow. 
In the future, it is likely that we can implement parallel IO to 
an xar archive from multiple compute nodes, thus enhancing 
write performance potential even further. To enable testing of 
such re-processing of derived data from LFS, we employ a 
prototype of a new primitive collective execution operation  
“run task x on all compute nodes” which enables all previous 
outputs on LFS to be processed. Our prototype does not yet 
use xar, but rather tar, which has a similar interface. 

6 Performance Evaluation 
We present measurements from the Argonne ALCF BG/P, 

running under ZeptoOS and Falkon. We have evaluated 
various features on up to 98,304 (out of 163,840) processors. 
Dedicated test time on the entire facility is rare, so all tests 
below were done with the background noise of activity from 
other jobs running on other processors. Nonetheless, the trends 
indicated are fairly clear, and we expect that they will be 
verifiable in future tests in a controlled, dedicated 
environment. We have made measurements in both areas of 
the proposed collective IO primitives (denoted as CIO 
throughout this section), such as input data distribution, and 
output data collection. We also applied the collective IO 
primitives to a molecular dynamics docking application at up 
to 96K processors.  

6.1 Input Data Distribution 
Our first set of results investigated how effectively 

compute nodes can read data from the IFSs (over the torus 
network), examining various data volumes and various 
IFS/LFS ratios. We used the lightweight Chirp file system 
[Thain+2008] and the Fuse interface to read files from IFS to 
LFS. Figure 11 shows higher aggregate performance with 
larger files, and with higher ratios, with the best IFS 
performance reaching 162 MB/s for 100 MB files and a 256:1 
ratio. However, as the bandwidth is split between 256 clients, 
the per-node throughput is only 0.6 MB/s. Computing the per-
node throughput for the 64:1 ratio yields 2.3 MB/s, a 
significant increase. Thus, we conclude that a 64:1 ratio is 
good when trying to maximize the bandwidth per node. Larger 
ratios reduce the number of IFSs that need to be managed; 
however, there are practical limits that prohibit these ratios 
from being extremely large. In the case of a 512:1 ratio and 
100 MB files, our benchmarks failed due to memory 
exhaustion when 512 compute nodes simultaneously 
connected to 1 compute node to transfer the 100 MB file. This 
needs further analysis. 

Our next set of experiments used the lightweight 
MosaStore file system [Al-Kiswany+2007] to explore how 
effectively we can stripe LFSs to form a larger IFS. Our 
preliminary results in Figure 12 show that as we increase the 
degree of striping we get significant increases in aggregate 
throughput, up from 158 MB/s to 831 MB/s. 

 
Figure 11: Read performance while varying the ratio of LFS to 
IFS from 64:1 to 512:1 using the Torus network. 

The best performing configuration was 32 compute nodes 
aggregating their 2GB-per-node LFSs into a 64 GB IFS. This 
aggregation not only increases performance, but also allows 
compute nodes to keep their IO relatively local when working 
with large files that do not fit in a single compute node 2GB 
RAM-based LSF. 

Our final experiment for the input data distribution section 
focused on how quickly we can distribute data from GFS to a 
set of IFSs, or potentially to LFSs. As in our previous 
experiment, we use Chirp (see Figure 13). Chirp has a native 
operation that allows a file (or set of files) to be distributed to 
a set of nodes over a spanning tree of copy operations. The 
spanning tree has the benefit of requiring fewer data transfers: 
log(n) instead of n, where n is the number of nodes.  

In the case of a naïve data distribution in which compute 
nodes read data directly from GFS (GPFS in our case as noted 
in the figure), computing the aggregate throughput is 
straightforward: throughput = nodes*dataSize/workloadTime. 
For the spanning tree distribution, computing the actual 
throughput is problematic since the number of transfers is 
lower than in the naïve method. To make the comparison fair, 
we compute throughput for the spanning tree distribution with 
the same formula as for the naïve data distribution, although 
the actual network traffic would have been significantly less. 
We believe this is the correct way to compare the two 
approaches, as it emphasizes the time to complete the 
workload. On up to 4K processors, GPFS achieves 2.4 GB/s at 
the largest scale (2.4 MB/s per node). This is the peak rated 
performance for the file system we tested (/home). However, 
the spanning tree approach achieves an equivalent of 12.5 
GB/s on 4K processors. We plan to explore the performance 
of the spanning tree distribution at larger scales to find the 
torus network saturation point. We expect to achieve at least 
one order of magnitude better performance (for distributing a 
set of files to many compute nodes) at large scales when using 
the spanning tree approach as opposed to the naïve approach 
which reads each file from GPFS directly.  
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Figure 12: Read performance, varying the degree of striping of 
data across multiple nodes from 1 to 32 using the torus network 

  
Figure 13: CIO distribution via spanning tree over Torus 
network vs. GPFS over Ethernet & Tree networks 

6.2 Output Data Collection 
Our second goal for the collective IO primitives was to 

support the aggregation and transfer of many files from 
multiple LFSs or IFSs to the GFS. When writing from many 
compute nodes directly to GPFS (the GFS on the BG/P), care 
must be taken to avoid locking contention on metadata. One 
way to avoid this problem is to ensure that each compute node 
writes files to a unique directory. It is desirable to have as few 
clients as possible writing to GFS concurrently to limit any 
locking contention, and to allow the largest buffer sizes and 
aggregation and potentially small files into larger ones. It is 
also desirable to make write operations as asynchronous as 
possible to allow the overlap of computing and data transfer 
from the compute node. To achieve all these desirable 
features, we have implemented an output data collector (CIO, 
which we previously discussed) that resides on an IFS and acts 
as an intermediate buffer space for output generated on 
compute nodes. We use a ratio of 64:1 IFS to LFS, which 
significantly reduces the number of clients that write to GFS.  

Our measurements (see Figure 14 and Figure 15) show that 
the CIO collector strategy yields close to the ideal efficiency 
when compared to compute tasks of the same length with no 
IO. For example, in Figure 14 we show the efficiency 

achieved with short tasks (4 seconds) that produce output files 
with sizes ranging from 1KB to 1MB. We see that CIO (the 
dotted lines) is able to achieve > 90% efficiency in most cases, 
and almost 80% in the worst case with larger files. In contrast, 
the same workload achieved only 10% to < 50% efficiency 
when using GPFS. We also observed an anomaly: a slight 
efficiency increase at the largest scale of 32K processors. One 
possible cause of this is that we reached the limit of Falkon 
dispatch throughput.  

 
Figure 14: CIO vs. GFS efficiency for 4 second tasks, varying 
data size (1KB to 1MB) on 256 to 32K processors 

 
Figure 15: CIO vs GPFS efficiency for 32 second tasks, varying 
data size (1KB to 1MB) for 256 to 96K processors. 

Figure 15 is similar to Figure 14, but uses 32 second tasks. 
We see a similar pattern, in which CIO achieves 90% 
efficiency, while GPFS achieves almost 90% efficiency with 
256 processors but less than 10% on 96K processors.  

We also extract from these experiments the achieved 
aggregate throughput (shown in Figure 16). We limit this plot 
to the 1 MB case for readability. Notice the extremely poor 
GPFS write performance as the number of processors 
increases, peaking at only 250 MB/s. The CIO throughput is 
almost an order of magnitude higher, peaking at 2100 MB/s, 
and is within a few percent of the ideal case (tasks with the 
same duration, but with only local IO to RAM-based LFS, 
labeled 4sec+RAM and 32sec+RAM).   



Revision 16: 11/12/08 2:10 PM 

 
Figure 16: CIO collection write performance compared to GPFS 
write performance on up to 96K processors 

6.3 Application Evaluation 
We have shown significant performance and scalability 

improvements for synthetic data-intensive workloads. To 
determine how these improvements translate into real 
application performance, we evaluated the utility of collective 
IO on a molecular dynamics workflow which screens 
candidate drug compounds against metabolic protein targets 
using the DOCK6 application [DOCK] to simulate the 
“docking” of small molecules to the “active sites” of large 
macromolecules. A compound that interacts strongly with a 
receptor, such as a protein molecule, associated with a disease, 
may inhibit its function and thus act as a beneficial drug. In 
this application run, a database of 15,351 compounds was 
screened against nine proteins that perform key enzymatic 
functions in the metabolism of bacteria and humans. 

The molecular dynamics docking workflow has 3 stages: 1) 
read input, compute the docking, and write output; 2) 
summarize, sort, and select results; and 3) archive results. In 
out tests, the DOCK6 invocations averaged 10KB of output 
every 550 seconds. 

In the simple case where we use GFS, the input data of 
stage 1 is read from GFS to LFS, the application reads from 
LFS and writes its output to LFS, and finally the output is 
synchronously copied back to GFS. Stage 1 is parallelized to 
process each DOCK invocation on a separate processor core. 
Both stage 2 and stage 3 were originally a single process 
application that would run on a login node and access input 
data directly from GFS. In the case of using CIO, the stages 
are a bit different: stage 1 writes the output data from LFS to 
IFS asynchronously; stage 2 is parallelized across all 
processors and works on IFS; stage 3 copies the data from IFS 
to GFS. Figure 17 shows the breakdown of the 3 stages, and 
where time was being spent, for a total of 1412 seconds for 
CIO and 2140 seconds for GPFS. The first stage is negligibly  
faster with CIO (1.06X), and the third stage is 1.5X faster, but 
the second stage is 11.7X faster with 694 seconds being 
reduced down to 59 seconds. Stage 2 summarizes, sorts and 
filters the results, which CIO can handle much better in a 
distributed fashion (as opposed to the centralized GFS 
solution) with data accesses localized to IFS instead of GFS.  

 
Figure 17: DOCK6 application summary with 15K tasks on 8K 
processor comparing CIO with GPFS 

In order to see the effects of CIO at larger scale, we also 
ran the DOCK6 stage 1 with 135K tasks on 96K processors. 
The net result was a 1.12X speedup using CIO (1772 seconds) 
as compared to GPFS (1981 seconds) – a negligible speedup, 
as we expected for this compute-bound workload. 

7 Future Work 
The prototype implementation we describe here, while in its 

early stages of development, has been sufficient to make a 
reasonable assessment of the performance and usability 
potential of a file-based collective IO model that can handle at 
least O(100K) BG/P processors. Our next major focus will be 
to integrate the model into the Swift parallel programming 
environment [Zhao+2007], so that BG/P users can benefit 
from this higher-level programming model without explicitly 
programming the collective IO operations. 

We intend to investigate algorithmic questions and 
enhancements, such as determining the optimal ratio of IFS 
nodes to compute nodes for various workloads; determining 
when we can effectively use the compute nodes of IFS data 
hosts for computing in addition to file serving; automatically 
optimizing input data placement on LFSs vs. IFSs; 
determining if we can learn from the IO patterns of previous 
runs where best to locate a given input or output file; finding 
algorithms for automating output data caching in IFSs and 
LFSs for re-processing by subsequent workflow stages; and 
determining when data on IFSs/LFSs can be removed. 

Lower-level implementation issues we intend to explore 
include the use of the tree network to enhance the performance 
of input broadcast, and comparing the performance and 
reliability benefits of MosaStore, Chirp, and native Linux 
approaches to IFS striping. We also intend to explore how the 
random access capabilities of archive formats such as xar can 
enable parallel reading and parallel archive creation, and what 
role compression should play in the output process. 

We will continue to drive this work with an expanding 
measurement effort, on both synthetic and actual applications. 
We are particularly interested in measuring the behavior of 
applications (such as BLAST runs on large databases) that will 
benefit greatly from striped IFS capabilities. 
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8 Conclusion 
We have identified, characterized, and started to address a 

critical problem for enabling the use of petascale 
supercomputers by a far larger community of scientific 
applications and users: how to enable efficient file-based IO 
by large numbers of independent parallel tasks, as required by 
many-task computing applications involved in loosely coupled 
parallel programming.  

Our results indicate that it is possible to adapt principles of 
collective data operations to the world of parallel scripting 
linked by file interchange. While our results are preliminary, 
and are based on simple prototypes, they suggest that 
collective IO primitives, when effectively integrated into 
parallel scripting programming systems and languages (such 
as Falkon and Swift) can yield excellent performance on 
100,000 processors – and likely well beyond – while greatly 
enhancing scientific programming productivity. 
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