
Revision 16: 11/12/08 2:10 PM

Design and Evaluation of a Collective IO Model
for Loosely Coupled Petascale Programming

Zhao Zhang+, Allan Espinosa*, Kamil Iskra#, Ioan Raicu*, Ian Foster#*+, Michael Wilde#+
+Computation Institute, University of Chicago & Argonne National Laboratory, USA

*Department of Computer Science, University of Chicago, IL, USA
#Mathematics and Computer Science Division, Argonne National Laboratory, Argonne IL, USA

zhaozhang@uchicago.edu, aespinosa@cs.uchicago.edu, iskra@mcs.anl.gov, iraicu@cs.uchicago.edu, {foster,wilde}@mcs.anl.gov

Abstract
Loosely coupled programming is a powerful paradigm for

rapidly creating higher-level applications from scientific
programs on petascale systems, typically using scripting
languages. This paradigm is a form of many-task computing
(MTC) which focuses on the passing of data between
programs as ordinary files rather than messages. While it has
the significant benefits of decoupling producer and consumer
and allowing existing application programs to be executed in
parallel with no recoding, its typical implementation using
shared file systems places a high performance burden on the
overall system and on the user who will analyze and consume
the downstream data. Previous efforts have achieved great
speedups with loosely coupled programs, but have done so
with careful manual tuning of all shared file system access. In
this work, we evaluate a prototype collective IO model for file-
based MTC. The model enables efficient and easy distribution
of input data files to computing nodes and gathering of output
results from them. It eliminates the need for such manual
tuning and makes the programming of large-scale clusters
using a loosely coupled model easier. Our approach, inspired
by in-memory approaches to collective operations for parallel
programming, builds on fast local file systems to provide high-
speed local file caches for parallel scripts, uses a broadcast
approach to handle distribution of common input data, and
uses efficient scatter/gather and caching techniques for input
and output. We describe the design of the prototype model, its
implementation on the Blue Gene/P supercomputer, and
present preliminary measurements of its performance on
synthetic benchmarks and on a large-scale molecular
dynamics application.

1 Overview
We define “loosely coupled applications” as programs that

involve the sequenced execution of other programs. In this
programming model, programs exchange data via files; the
application typically involves a large number of invocations,
often of several different programs; and programs are typically
feature a high degree of inter-task parallelism, enabled by data
independence within the flow graph of files. Applications are
typically written in scripting languages (Perl, Python, Tcl, and
numerous “shells”) [Ousterhout1998], which facilitate both
the invocation of application programs and the passing and
manipulation of files for program inputs and outputs. This
style of programming is extensively employed in virtually

every domain of science. For example, biologists run PERL
scripts of BLAST and PFAM; neuroscientists run shell scripts
of AIR, AFNI and FSL; physicists analyze collision data with
scripts that execute analysis applications written in ROOT.

It is difficult to efficiently map this common and useful
programming model onto computing clusters of rapidly
increasing scale. We note that we are mainly concerned here
with applications running on what we term “petascale-
precursor” systems, where the sheer parallelism of the
computing nodes of the system can easily overwhelm a
traditional IO subsystem, and in particular, its shared file
systems. As clusters have grown larger, to tens or, recently,
hundreds of thousands of nodes, the IO strategies of loosely
coupled applications have become both a performance
bottleneck and a source of complexity. Significant manual
effort is needed to scale application performance as cluster
size grows.

The specific problem we address here is that as the number
of nodes in large-scale clusters contending for shared
resources grows large, the IO bandwidth, volume and/or file
management transaction rate exceeds some aggregate capacity
limit, bottlenecks arise and the system becomes unbalanced.
Thus, CPU cycles are wasted because the IO subsystem cannot
service the CPUs fast enough. (We are concerned here with
applications with high enough IO-to-compute ratios for IO to
become the primary obstacle to parallel speedup. Applications
that do relatively little IO while computing for long periods
typically perform well in loosely coupled settings without any
change to their IO strategy.)

While petascale systems have massive shared IO
subsystems, these subsystems often have vulnerabilities in
handling file management transactions (e.g., creating and
writing huge numbers of files at high rates) that are ill-
matched with the needs of loosely coupled programs. Our
work remedies this deficiency and makes petascale systems
attractive for this important and productive paradigm for
knitting existing scientific programs into powerful workflows.

Our strategy of collective IO is inspired by the collective
data operations employed by tightly coupled message passing
programming models. In these models, data is exchanged,
both between in-memory tasks and between tasks and files,
using operations such as scatter (often assisted by broadcast)
and gather. In our model:
• Input files are broadcast from shared file systems to local

file systems.

Revision 16: 11/12/08 2:10 PM

• Output files are locally batched up from applications and
efficiently transferred to shared persistent storage.

• Intermediate file systems are provided within the cluster
to aid in efficient input and output staging and to
overcome the limitations that large-scale clusters impose
on local file system capacity.

In the remainder of this paper we first present an abstract
model that maps collective IO concepts, previously applied in
message-passing and in-memory programming environments,
to the file-based MTC domain. We then review the
architecture of the IBM Blue Gene/P (BG/P) system, which
we use as an exemplar of large-scale clusters (and as a base for
our prototype and measurements), and describe prior work on
collective IO. We then describe a new collective model that
addresses the challenges described above, detail its
implementation, and present preliminary measurements of its
performance. We conclude with an outline of our plans to
extend and improve the model.

2 Abstract Collective IO Model for File Objects
Our abstract model, which is independent of specific cluster

architectures, is based on the following elements.
1) We have applications involving multiple tasks that can

run concurrently, each reading zero or more named objects,
performing some computation, and writing zero or more
named objects. (These objects are typically files – a detail that
will become important when we talk about implementation
specifics). The length of individual tasks, and of the objects
read and written, are typically not known ahead of time.

2) We can distinguish between two principal input
patterns: a) read-many, in which many or all tasks read the
same object; b) read-few, in which the number of tasks
reading a particular object is small – often only one. We
assume that each object is written by just one task.

Typically, we know the objects to be read by each application
ahead of time, and thus assume that applications will not
determine at run time which files to read. (This restriction can
be relaxed for some files, which would be considered outside
of, or an extension to, the model). We further assume that we
know (typically, from dependency information) which objects
are read-many.

3) In the simplest form of these applications, the set of
objects read and the set of objects written are disjoint. In more
complex forms, one task may write an object that is then read
by another. In that case, we assume dataflow synchronization
between the writer and the reader, meaning that the reader can
only execute when the writer completes execution (as below).

4) We assume a computer system architecture in which (a)

all processors can access a high capacity persistent shared
storage system (shared-store), albeit with modest performance,
and (b) each processor has some local object storage (memory
or disk) of modest capacity, but offering high performance
(local-store). When many processors access the shared file
system concurrently, contention leads to degraded and often
unpredictable performance.

5) An abstract cluster IO
architecture is useful to
define terminology. As
shown in Figure 4, this model
has three levels of file
system: Global persistent
shared file systems (GFS) are
accessible from all compute
nodes of a cluster, and are
typically the persistent home
of all data. Local file systems
(LFS) are per-compute-node
file systems, and are only

directly accessible to tasks running on the processors of that
compute node. As cluster size and density increases, the LFS
may be implemented in RAM or FLASH memory, and is
typically constrained in size between a few hundred
megabytes and a few gigabytes. Intermediate file systems
(IFS) are found, typically, only on the largest and most
complex clusters, such as the IBM BGP. On the BGP, IFSs
exist on the “IO node” processors (IONs); systems such as the
SiCortex 5832 allow larger IFSs to be constructed by striping
RAM-based LFSs. We use the acronyms GFS, LFS, and IFS
throughout.

Based on this abstract model, we employ two simple
collective methods to improve IO performance: (a) routines to
broadcast read-many objects to many processors; and (b) two-
stage IO operations to accelerate read-few and write
operations, by staging objects between the many local-stores,
an intermediate-store (created, for example, on a set of local-

Figure 2: Abstract application program IO profile

Figure 3: Common Application Dataflow Pattern

Figure 1: Abstract Cluster

Revision 16: 11/12/08 2:10 PM

stores), and the shared-store. We implement IFSs on LFSs
using MosaStore [Al-Kiswany+2007] and Chirp
[Thain+2008]. Our prototype of these methods was
implemented on the BG/P and is described in Section 5.

3 Blue Gene/P System Architecture
The 163,834-processor IBM BG/P computer at the Argonne

Leadership Computing Facility [ALCF] is at the time of
writing the world’s largest open-science computing system
[TOP500]. We view it as an exemplar of the coming wave of
“petascale” systems, and we base the work described here on
this system.

We present here a brief overview of the characteristics of
the GPFS distributed parallel file system that serves as the
GFS for the ALCF BG/P. We then describe the ZeptoOS
operating system environment that we employ for MTC
programming of the BG/P, as this environment is critical to
enabling the MTC model to be used on this machine, and
because its BG/P implementation – some of which was
influenced by the work described here – has not to date been
published elsewhere.

3.1 Characteristics of GPFS as a Global File system
GPFS – the General Parallel File system [Schmuck+2002] –

is configured on the ALCF BG/P with 24 IO servers, each
with 20Gb/s network connectivity, and can sustain an
aggregate IO rate of ~8GB/sec.

GPFS is in general proficient at reading and writing large
units, can handle vast numbers of files, and can maintain huge
directories. It also excels at parallel IO operations from
multiple client hosts, for which it maintains a sophisticated
lock resolution protocol and heuristics. It has, however, two
areas of weakness: it is relatively slow at creating new files,
and can perform very poorly when multiple clients attempt to
create files within the same parent directory (due to lock
contention and its approach for maintaining global file system
integrity in the face of metadata updates). These
characteristics are typical for distributed parallel file systems
which maintain local file system semantics in a distributed
environment. However, they pose a challenge to MTC
workloads, which can, if not carefully planned to avoid GFS
weaknesses, perform exceedingly poorly.

3.2 BG/P OS and IO Architecture to support MTC
The ZeptoOS project [ZeptoOS] provides an open-source

alternative to the proprietary software stacks available on
contemporary massively parallel architectures. Its aim is to
make petascale architectures more productive for the scientific
user community, to enhance community collaboration and to
enable computer science research on these architectures.
ZeptoOS uses the Linux kernel to create an alternative, fully
open software stack on large-scale parallel systems.

The project currently focuses on the IBM BG/P
architecture. These machines normally run a limited
microkernel on the compute nodes. While the default compute
node kernel is highly scalable, it lacks many capabilities that
MTC jobs expect, such as the ability to execute sub-processes

or run shell scripts. ZeptoOS replaces that kernel with a
Linux-based ZeptoOS compute node kernel, which lifts those
limitations.

The default IBM BG/P microkernel forwards all file and
socket IO calls to the IO nodes, which run Linux. IO nodes run
a daemon that receives IO requests from the compute nodes
and replays them against the Linux kernel. IO nodes also run
file system clients for remote file systems such as NFS, GPFS,
or PVFS, which handle the actual file IO.

ZeptoOS also uses a similar, but more general, forwarding
architecture for IO requests. ZOID, the ZeptoOS IO Daemon
[Iskra+2008], is a replacement IO daemon running on the IO
nodes, used to communicate with the compute nodes when
they are running Linux. ZOID provides a generic, high-
performance function-forwarding infrastructure for compute
nodes. This infrastructure is extensible through the use of
plug-ins: users can define their own API and have data
efficiently forwarded between the applications running on the
compute nodes and the implementation code running on IO
nodes. Generic plug-ins for POSIX file and socket IO are
available which standard applications can take advantage of.
ZOID also performs job management and IP packet
forwarding between IO nodes and compute nodes (allowing
users to, e.g., perform interactive debugging sessions on the
compute nodes over telnet).

Figure 5 and Figure 6 present in more detail the hardware
and software components of the ZeptoOS environment on the
BG/P. The ratio of compute nodes to IO nodes for a given
BG/P installation can vary from 16:1 to 128:1 depending on
the machine configuration; the ratio on the Argonne machine
is fixed at 64:1. Compute nodes communicate with the IO
nodes over a custom “collective” (also known as “tree”)
network, with a bandwidth of 6.8 Gb/s (850 MB/s). Once
protocol overheads are considered, the maximum throughput
that ZOID can achieve over this network is around 760 MB/s.
However, such throughput is only achievable when processes
on the compute nodes communicate with ZOID directly. A
modified GNU libc library that enables this direct
communication is in progress but is currently incomplete.

A solution available to processes on the compute nodes
through standard kernel interfaces would be far more
desirable. Since our communication stack is in user space, we
need mechanisms to forward data between the user and kernel
space. The Linux kernel does offer easy to use interfaces for
such purposes, in the form of FUSE and TUN. FUSE [FUSE]
is a pseudo-file system that performs callbacks from the kernel
VFS layer to a user-space daemon, which provides the
implementation of file IO operations. TUN [TUN] simulates a
network-layer device, allowing one to forward IP packets
between a user-space process and the kernel’s TCP/IP stack.

The problem is that neither of these solutions is particularly
fast. Their designs (particularly that of FUSE) are simple and
focused on flexibility, not high performance.

Revision 16: 11/12/08 2:10 PM

The overheads they introduce are considerable. FUSE can

read data in chunks of 128 KB, but writes are performed in
chunks no larger than a single memory page. With a page size
of 64 KB on the compute nodes we get at most 230 MB/s on
input and 180 MB/s on output. (These are raw transfer speeds;
if we include file system overhead, then even in the case of
local RAM disk on the IO nodes, the read speed is reduced to
180 MB/s and the write speed to 130 MB/s).

The situation with TUN is even worse, because the data is
transferred in individual IP packets of no more than 1500
bytes. As a result, we only achieve ~180 Mb/s (22 MB/s)
between compute nodes and IO nodes. IP communication
works between compute nodes as well, but for simplicity this
is implemented in ZeptoOS by sending the packets to the IO
node and letting it forward the data to the intended destination.
Consequently, as the number of communicating compute node
processes increases, the fraction of throughput available to
each goes down.

The collective network is not the only one available on
BG/P: the primary network for point-to-point communication
between compute nodes is the 3-D torus. Every compute node
has torus links to six neighbors, each with a bandwidth of 3.4
Gb/s (425 MB/s). Until recently, the torus network was not
accessible when running under ZeptoOS, because the torus
network’s DMA engine lacks scatter/gather capability and
thus requires large, continuous areas of physical memory,
normally unavailable under Linux.

To enable use of the torus network under ZeptoOS, we
modified the Linux kernel to reserve a considerable “flat”
segment of memory at boot time. A process wishing to
communicate over the torus is mapped into this memory
region, so that the DMA engine can operate on its memory
buffers. While this capability is still under development, we
have implemented IP forwarding over MPI (which uses the
torus), again using the TUN device. We measured peak torus
point-to-point throughput of around 1.15 Gb/s (140 MB/s).
This throughput is an order of magnitude higher than over the
collective network, for several reasons, the most significant
being that we have increased the maximum transmission unit
(MTU) of the TUN network device to 65535 bytes (the

maximum value allowed with IPv4). While we would have
liked to do the same with the TUN device operating over the
collective network, the older version of the Linux kernel used
on the IO nodes does not allow an increase in the MTU of the
TUN device. We are currently prevented from upgrading that
kernel version because the GPFS kernel module depends on it.

4 Prior work

There has been much research on collective operations in
the context of the message passing programming paradigm.
These operations allow a group of processes to perform a
common, pre-defined operation “collectively” on a set of data.
For example, the MPI standard [MPI] offers a large number of
such operations, from a basic broadcast (delivering an
identical copy of data from one source to many destinations),
through scatter (delivering a different part of input data from
one source to each destination) and its opposite, gather
(assembling the result at one destination from its parts
available on multiple sources), to reduction operations (like
gather, but instead of assembling, the parts of the result are
combined). These operations are considered so crucial for the
performance of message passing programs that the BG/P
provides the separate collective tree network to perform them
efficiently in hardware [BGP].

Similarly, collective IO is not a new concept in parallel
computing. It is employed, e.g., by ROMIO [Thakur+1999],
the most popular MPI-IO implementation, in its generalized
two-phase IO implementation. When compute tasks want to
perform IO, they first exchange information about their
intentions, in an attempt to coalesce many small requests into
fewer larger ones (an assumption being that the processes
access the same file). When reading, in the first phase the
processes issue large read requests, and in the second phase,
they exchange parts of their read buffers with one another,
using efficient MPI communication primitives so that each
process ends up with the data it was interested it. For writing,
the two phases are reversed.

MPI collective communication and IO operations require
applications to be at least loosely synchronous, in that progress

Figure 5: ZOID and ZeptoOS

Figure 6: ZOID/ZeptoOS and BG/P Torus Network

Revision 16: 11/12/08 2:10 PM

must be made in globally synchronized phases, and that all
processes participate in a collective operation. These
conditions restrict the use of standard collective operations in
loosely coupled, uncoordinated scenarios, limiting them to
initialization time (before any individual tasks start running),
and possibly termination time (once all individual tasks have
completed).

Until recently, such uncoordinated jobs were primarily run
on moderate scale clusters or on distributed (“grid”) resources.
Most clusters were not large enough to encounter IO
contention problems such as those described here.
Furthermore, cluster nodes generally have considerable local
disks suitable for storing large input and output data. The
primary problem on such systems has thus been mainly to
efficiently stage data and schedule jobs so that they can best
benefit from the staged data [Khanna+2006; Khanna+2007].

File IO is a more significant problem with distributed
resources. Condor provides a remote IO library that forwards
system calls to a shadow process running on the “home”
machine where the files actually reside. Global Access to
Secondary Storage (GASS [Bester+1999]) available in Globus
takes a different approach, transparently providing a
temporary replica cache for input and output files. Our
collective IO goes beyond these approaches to intelligently
utilize local filesystems, and to provide intermediate file
systems, broadcasting of input files, and batching of output
files. Unlike Condor remote IO, our approach does not require
relinking. Our approach makes it practical for tens to hundreds
of thousands of processor cores now (and in a few years, a
million cores) to perform concurrent, asynchronous IO
operations. These numbers are easily an order of magnitude
greater than what has been addressed in any previous
implementation.

5 Design and Implementation
The requirements described to this point translate into a

straightforward design for handling collective IO, which
consists of three main components: 1) one or more
intermediate file systems (IFSs) enabling data to be placed and
cached closer to the computation (from an access-latency and
bandwidth perspective) while overcoming the size limitation
of the typical RAM-based local file systems that are prevalent
in petascale-precursor systems; 2) a data distributor, which
replicates sufficiently large common input datasets to
intermediate file systems; and 3) a data collector mechanism,
which collects output datasets on IFSs and efficiently writes
the collected data to large archive files on the GFS.

Our implementation of this design, which we have
prototyped for performance evaluation, uses simple scripts to
coordinate “off the shelf” data management components. All
of our prototypes and measurements to date have been done on
the Argonne BG/P systems (Surveyor, 4096 processors, and
Intrepid, 163,840 processors). Not all of the design aspects
described below exist yet in the prototype. These are indicated
in the description. We executed all of our compute tasks under
the Falkon lightweight task scheduler [Raicu+2007;
Raicu+2008] running under ZeptoOS [ZeptoOS2008].

The structure of the system is shown in overview in Figure
7, and in more detail in Figure 9, which depicts the flow of
input and output data in our BG/P-based prototype. Within the
BG/P testbed, the RAM-based file system of the local node,
which contains about 1GB of free space, is used as the LFS.
For input staging, the LFS of one or more compute nodes is
set aside as a “file server” and is dedicated as an IFS for a set
of compute nodes.

We create large IFSs from fast LFSs by striping IFS

contents over several LFS file systems, using the MosaStore
file IO service [Al-Kiswany+2007]. Compute nodes access the
IFS using the BG/P torus network [BGP]. The creation of the
IFS and the partitioning of compute nodes between IFS
functions and computing can be done on a per-workload basis,
and can vary from workload to workload. In the same manner
that compute node and IO node operating systems are booted
when a BG/P job is started, the creation of the IFSs and the
CN-to-IFS mapping can be performed as a per-workload setup
task performed when compute nodes are provisioned by
Falkon [Raicu+2007; Raicu+2008]. This enables the CN-to-
IFS ratio to be tailored to the disk space and bandwidth needs
of the workflow (Figure 8).

Figure 7: Logical Distributor/Collector Design

Figure 8: Allocation and mapping of compute nodes to IFS
servers: 2:64 ratio (top) and 4:64 ratio (bottom)

Revision 16: 11/12/08 2:10 PM

5.1 Input Distribution
The input distributor stages common input data efficiently

to LFS or IFS. This mechanism is used to cache files that will
be frequently re-read, or that will be read in inefficient buffer
lengths, closer to the compute nodes. The key to this operation
is to use broadcast or multicast methods, where available, to
move common data from global to local or intermediate file
systems. For accessing input data, we stage input datasets as
follows:
• Small input datasets are staged from GFS to the LFS of

the compute nodes which read them.
• Datasets read by only one task but that are too large to be

staged to an LFS are staged to an IFS of sufficient size.
• All large datasets that are read by multiple tasks are

replicated to all IFSs that serve the set of compute nodes
involved in a computation.

In our prototype implementation, data is replicated from
GFS to multiple IFSs by the Chirp replicate command
[Thain+2008]. (Steps 1 and 2 in Figure 7.) We employ two
functions: the first identifies if a given compute node is a data-
serving or application-executing node. The second maps
executor compute nodes to its IFS data server. The decision of
whether to place an input file on LFS or IFS is made explicitly
(i.e., hard-coded in our prototype). Each IFS is mounted on all
associated compute nodes, and accessed via FUSE.

5.2 Output Collection
The output collector gathers (small) output data files from

multiple processors and aggregates them into efficient units
for transfer to GFS. In this way, we reduce greatly the number
of files created on the GFS (which reduces the number of
costly file creation operations) and also increase the size of
those files (which permits data to be written to GFS in larger,
more efficient block sizes and write buffer lengths). The use of
the output collector also enables data to be cached on LFS or
IFS for later analysis or reprocessing.

Our goal is that files which can fit on the LFS can be
written there by the application program, while larger output
files can be written directly to IFS, and output files too large to
fit on the LFS or IFS are written directly to GFS. (This
differentiation is not implemented in the prototype). In this
way, we can optimize the performance of output operations
such as file and directory creation and small write operations.

The collector operates as follows. When application
programs complete, any output data on the LFS is copied to an
IFS (Figure 7, Step 3). When the copy is complete, the data is
atomically moved to a staging directory, where the following
algorithm (Step 4) is used:

while workload is running
 if time since last write > maxDelay
 or data buffered > maxData
 or free space on IFS < minFreeSpace
 then write archive to GFS from staging dir

One consequence of this design is that short tasks can
complete quicker, without having each task remain on a
compute node waiting for its data to be written to GFS, as the
staging of data from IFS to GFS is handled asynchronously by

the collector, as
shown in Figure
10. In our
prototype, the IO
node (ION) file
system serves as
the IFS, and data
moving relies on
POSIX atomicity
semantics for data
integrity. Files are
moved from LFS
to IFS via tar, and
are then
transferred to GFS
using dd with a
large efficient
blocksize.

In our
prototype, the LFS and IFS file systems are both RAM-based,
and behave somewhat like an in-memory message exchange
system, in which messages are moved by read() and write()
from one namespace (file server) to another. While these
“messages” may be more expensive than MPI messages (the
difference remains to be measured), this approach lets users
integrate existing application programs into larger application
workflows without requiring disk IO.

5.3 Downstream data processing
The fact that data managed by the output collector on LFSs

or IFSs can be retained for subsequent processing makes it
possible to re-process the output data of one stage of a
workflow far more efficiently than if the data had to be
retrieved from GFS. When previously written output does
need to be retrieved from GFS, the ability to access files in
parallel from a randomly accessible archive (as described
below) further improves performance. And intermediate
output data that doesn’t need to be retained persistently can be
left on LFS or IFS storage without moving it to GFS at all.

To facilitate multi-stage workflows, in which the output of
one stage of a parallel computation is consumed by the next,
we incorporate two capabilities in our design: 1) the use of an
archive format for collective output that can be efficiently re-
processed in parallel, and 2) the ability to cache intermediate
results on LFS and/or IFS file systems.

We base our output collector design on the use of a
relatively new archive utility xar [XAR], which unlike
traditional tar (and similar) archive formats includes an
updateable XML directory containing the byte offset of each

Figure 10: Output staging: synchronous, top, without collector;
asynchronous, bottom with collector.

Figure 9: Data flow on BG/P

Revision 16: 11/12/08 2:10 PM

archive member. This directory enables files to be extracted
via random access, and hence xar (unlike tar) archives can be
processed efficiently in parallel in later stages or a workflow.
In the future, it is likely that we can implement parallel IO to
an xar archive from multiple compute nodes, thus enhancing
write performance potential even further. To enable testing of
such re-processing of derived data from LFS, we employ a
prototype of a new primitive collective execution operation
“run task x on all compute nodes” which enables all previous
outputs on LFS to be processed. Our prototype does not yet
use xar, but rather tar, which has a similar interface.

6 Performance Evaluation
We present measurements from the Argonne ALCF BG/P,

running under ZeptoOS and Falkon. We have evaluated
various features on up to 98,304 (out of 163,840) processors.
Dedicated test time on the entire facility is rare, so all tests
below were done with the background noise of activity from
other jobs running on other processors. Nonetheless, the trends
indicated are fairly clear, and we expect that they will be
verifiable in future tests in a controlled, dedicated
environment. We have made measurements in both areas of
the proposed collective IO primitives (denoted as CIO
throughout this section), such as input data distribution, and
output data collection. We also applied the collective IO
primitives to a molecular dynamics docking application at up
to 96K processors.

6.1 Input Data Distribution
Our first set of results investigated how effectively

compute nodes can read data from the IFSs (over the torus
network), examining various data volumes and various
IFS/LFS ratios. We used the lightweight Chirp file system
[Thain+2008] and the Fuse interface to read files from IFS to
LFS. Figure 11 shows higher aggregate performance with
larger files, and with higher ratios, with the best IFS
performance reaching 162 MB/s for 100 MB files and a 256:1
ratio. However, as the bandwidth is split between 256 clients,
the per-node throughput is only 0.6 MB/s. Computing the per-
node throughput for the 64:1 ratio yields 2.3 MB/s, a
significant increase. Thus, we conclude that a 64:1 ratio is
good when trying to maximize the bandwidth per node. Larger
ratios reduce the number of IFSs that need to be managed;
however, there are practical limits that prohibit these ratios
from being extremely large. In the case of a 512:1 ratio and
100 MB files, our benchmarks failed due to memory
exhaustion when 512 compute nodes simultaneously
connected to 1 compute node to transfer the 100 MB file. This
needs further analysis.

Our next set of experiments used the lightweight
MosaStore file system [Al-Kiswany+2007] to explore how
effectively we can stripe LFSs to form a larger IFS. Our
preliminary results in Figure 12 show that as we increase the
degree of striping we get significant increases in aggregate
throughput, up from 158 MB/s to 831 MB/s.

Figure 11: Read performance while varying the ratio of LFS to
IFS from 64:1 to 512:1 using the Torus network.

The best performing configuration was 32 compute nodes
aggregating their 2GB-per-node LFSs into a 64 GB IFS. This
aggregation not only increases performance, but also allows
compute nodes to keep their IO relatively local when working
with large files that do not fit in a single compute node 2GB
RAM-based LSF.

Our final experiment for the input data distribution section
focused on how quickly we can distribute data from GFS to a
set of IFSs, or potentially to LFSs. As in our previous
experiment, we use Chirp (see Figure 13). Chirp has a native
operation that allows a file (or set of files) to be distributed to
a set of nodes over a spanning tree of copy operations. The
spanning tree has the benefit of requiring fewer data transfers:
log(n) instead of n, where n is the number of nodes.

In the case of a naïve data distribution in which compute
nodes read data directly from GFS (GPFS in our case as noted
in the figure), computing the aggregate throughput is
straightforward: throughput = nodes*dataSize/workloadTime.
For the spanning tree distribution, computing the actual
throughput is problematic since the number of transfers is
lower than in the naïve method. To make the comparison fair,
we compute throughput for the spanning tree distribution with
the same formula as for the naïve data distribution, although
the actual network traffic would have been significantly less.
We believe this is the correct way to compare the two
approaches, as it emphasizes the time to complete the
workload. On up to 4K processors, GPFS achieves 2.4 GB/s at
the largest scale (2.4 MB/s per node). This is the peak rated
performance for the file system we tested (/home). However,
the spanning tree approach achieves an equivalent of 12.5
GB/s on 4K processors. We plan to explore the performance
of the spanning tree distribution at larger scales to find the
torus network saturation point. We expect to achieve at least
one order of magnitude better performance (for distributing a
set of files to many compute nodes) at large scales when using
the spanning tree approach as opposed to the naïve approach
which reads each file from GPFS directly.

Revision 16: 11/12/08 2:10 PM

Figure 12: Read performance, varying the degree of striping of
data across multiple nodes from 1 to 32 using the torus network

Figure 13: CIO distribution via spanning tree over Torus
network vs. GPFS over Ethernet & Tree networks

6.2 Output Data Collection
Our second goal for the collective IO primitives was to

support the aggregation and transfer of many files from
multiple LFSs or IFSs to the GFS. When writing from many
compute nodes directly to GPFS (the GFS on the BG/P), care
must be taken to avoid locking contention on metadata. One
way to avoid this problem is to ensure that each compute node
writes files to a unique directory. It is desirable to have as few
clients as possible writing to GFS concurrently to limit any
locking contention, and to allow the largest buffer sizes and
aggregation and potentially small files into larger ones. It is
also desirable to make write operations as asynchronous as
possible to allow the overlap of computing and data transfer
from the compute node. To achieve all these desirable
features, we have implemented an output data collector (CIO,
which we previously discussed) that resides on an IFS and acts
as an intermediate buffer space for output generated on
compute nodes. We use a ratio of 64:1 IFS to LFS, which
significantly reduces the number of clients that write to GFS.

Our measurements (see Figure 14 and Figure 15) show that
the CIO collector strategy yields close to the ideal efficiency
when compared to compute tasks of the same length with no
IO. For example, in Figure 14 we show the efficiency

achieved with short tasks (4 seconds) that produce output files
with sizes ranging from 1KB to 1MB. We see that CIO (the
dotted lines) is able to achieve > 90% efficiency in most cases,
and almost 80% in the worst case with larger files. In contrast,
the same workload achieved only 10% to < 50% efficiency
when using GPFS. We also observed an anomaly: a slight
efficiency increase at the largest scale of 32K processors. One
possible cause of this is that we reached the limit of Falkon
dispatch throughput.

Figure 14: CIO vs. GFS efficiency for 4 second tasks, varying
data size (1KB to 1MB) on 256 to 32K processors

Figure 15: CIO vs GPFS efficiency for 32 second tasks, varying
data size (1KB to 1MB) for 256 to 96K processors.

Figure 15 is similar to Figure 14, but uses 32 second tasks.
We see a similar pattern, in which CIO achieves 90%
efficiency, while GPFS achieves almost 90% efficiency with
256 processors but less than 10% on 96K processors.

We also extract from these experiments the achieved
aggregate throughput (shown in Figure 16). We limit this plot
to the 1 MB case for readability. Notice the extremely poor
GPFS write performance as the number of processors
increases, peaking at only 250 MB/s. The CIO throughput is
almost an order of magnitude higher, peaking at 2100 MB/s,
and is within a few percent of the ideal case (tasks with the
same duration, but with only local IO to RAM-based LFS,
labeled 4sec+RAM and 32sec+RAM).

Revision 16: 11/12/08 2:10 PM

Figure 16: CIO collection write performance compared to GPFS
write performance on up to 96K processors

6.3 Application Evaluation
We have shown significant performance and scalability

improvements for synthetic data-intensive workloads. To
determine how these improvements translate into real
application performance, we evaluated the utility of collective
IO on a molecular dynamics workflow which screens
candidate drug compounds against metabolic protein targets
using the DOCK6 application [DOCK] to simulate the
“docking” of small molecules to the “active sites” of large
macromolecules. A compound that interacts strongly with a
receptor, such as a protein molecule, associated with a disease,
may inhibit its function and thus act as a beneficial drug. In
this application run, a database of 15,351 compounds was
screened against nine proteins that perform key enzymatic
functions in the metabolism of bacteria and humans.

The molecular dynamics docking workflow has 3 stages: 1)
read input, compute the docking, and write output; 2)
summarize, sort, and select results; and 3) archive results. In
out tests, the DOCK6 invocations averaged 10KB of output
every 550 seconds.

In the simple case where we use GFS, the input data of
stage 1 is read from GFS to LFS, the application reads from
LFS and writes its output to LFS, and finally the output is
synchronously copied back to GFS. Stage 1 is parallelized to
process each DOCK invocation on a separate processor core.
Both stage 2 and stage 3 were originally a single process
application that would run on a login node and access input
data directly from GFS. In the case of using CIO, the stages
are a bit different: stage 1 writes the output data from LFS to
IFS asynchronously; stage 2 is parallelized across all
processors and works on IFS; stage 3 copies the data from IFS
to GFS. Figure 17 shows the breakdown of the 3 stages, and
where time was being spent, for a total of 1412 seconds for
CIO and 2140 seconds for GPFS. The first stage is negligibly
faster with CIO (1.06X), and the third stage is 1.5X faster, but
the second stage is 11.7X faster with 694 seconds being
reduced down to 59 seconds. Stage 2 summarizes, sorts and
filters the results, which CIO can handle much better in a
distributed fashion (as opposed to the centralized GFS
solution) with data accesses localized to IFS instead of GFS.

Figure 17: DOCK6 application summary with 15K tasks on 8K
processor comparing CIO with GPFS

In order to see the effects of CIO at larger scale, we also
ran the DOCK6 stage 1 with 135K tasks on 96K processors.
The net result was a 1.12X speedup using CIO (1772 seconds)
as compared to GPFS (1981 seconds) – a negligible speedup,
as we expected for this compute-bound workload.

7 Future Work
The prototype implementation we describe here, while in its

early stages of development, has been sufficient to make a
reasonable assessment of the performance and usability
potential of a file-based collective IO model that can handle at
least O(100K) BG/P processors. Our next major focus will be
to integrate the model into the Swift parallel programming
environment [Zhao+2007], so that BG/P users can benefit
from this higher-level programming model without explicitly
programming the collective IO operations.

We intend to investigate algorithmic questions and
enhancements, such as determining the optimal ratio of IFS
nodes to compute nodes for various workloads; determining
when we can effectively use the compute nodes of IFS data
hosts for computing in addition to file serving; automatically
optimizing input data placement on LFSs vs. IFSs;
determining if we can learn from the IO patterns of previous
runs where best to locate a given input or output file; finding
algorithms for automating output data caching in IFSs and
LFSs for re-processing by subsequent workflow stages; and
determining when data on IFSs/LFSs can be removed.

Lower-level implementation issues we intend to explore
include the use of the tree network to enhance the performance
of input broadcast, and comparing the performance and
reliability benefits of MosaStore, Chirp, and native Linux
approaches to IFS striping. We also intend to explore how the
random access capabilities of archive formats such as xar can
enable parallel reading and parallel archive creation, and what
role compression should play in the output process.

We will continue to drive this work with an expanding
measurement effort, on both synthetic and actual applications.
We are particularly interested in measuring the behavior of
applications (such as BLAST runs on large databases) that will
benefit greatly from striped IFS capabilities.

Revision 16: 11/12/08 2:10 PM

8 Conclusion
We have identified, characterized, and started to address a

critical problem for enabling the use of petascale
supercomputers by a far larger community of scientific
applications and users: how to enable efficient file-based IO
by large numbers of independent parallel tasks, as required by
many-task computing applications involved in loosely coupled
parallel programming.

Our results indicate that it is possible to adapt principles of
collective data operations to the world of parallel scripting
linked by file interchange. While our results are preliminary,
and are based on simple prototypes, they suggest that
collective IO primitives, when effectively integrated into
parallel scripting programming systems and languages (such
as Falkon and Swift) can yield excellent performance on
100,000 processors – and likely well beyond – while greatly
enhancing scientific programming productivity.

ACKNOWLEGEMENTS

This work was supported in part by the National Science
Foundation under Grant OCI-0721939, by NASA Ames
Research Center GSRP Grant Number NNA06CB89H, and by
the Mathematical, Information, and Computational Sciences
Division subprogram of the Office of Advanced Scientific
Computing Research, Office of Science, U.S. Dept. of Energy,
under Contract DE-AC02-06CH11357.

The authors would like to thank Samer Al-Kiswany of the
University of British Columbia for assistance with MosaStore,
Kazutomo Yoshii of Argonne National Laboratory for
assistance with ZeptoOS, the Argonne Leadership Computing
Facility team for their tremendous support in our use of the
Intrepid BG/P, and Mike Kubal of the Computation Institute
for providing and explaining the molecular docking workflow.

REFERENCES

[ALCF] Argonne Leadership Computing Facility,

http://www.alcf.anl.gov
[Al-Kiswany+2007] S. Al-Kiswany, M. Ripeanu, S.

Vazhkudai, “A Checkpoint Storage System for Desktop
Grid Computing”, Networked Systems Lab, U. of British
Columbia, Tech Report NetSysLab-TR-2007-04, 2007.

[Bester+1999] J. Bester, I. Foster, C. Kesselman, J. Tedesco,
and S. Tuecke, “GASS: A data movement and access
service for wide area computing systems”, IOPADS 99:
Proceedings of the Sixth Workshop on IO in Parallel and
Distributed Systems, Atlanta, GA, pp 78-88, 1999.

[BGP] IBM Blue Gene team, “Overview of the IBM Blue
Gene/P Project”. IBM Journal of Research and
Development, vol. 52, no. 1/2, pp. 199-220, Jan/Mar 2008.

[DOCK] Overview of DOCK,
http://dock.compbio.ucsf.edu/Overview_of_DOCK/index.htm

[FUSE] FUSE: File System in Userspace.
http://fuse.sourceforge.net/

[Iskra+2008] K. Iskra, J. W. Romein, K. Yoshii, and P.
Beckman. “ZOID: IO-forwarding infrastructure for
petascale architectures”. 13th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, pp.
153-162, Salt Lake City, UT, Feb. 2008.

[Khanna+2006] G. Khanna, N. Vydyanathan, U. V.
Catalyurek, T. M. Kurc, S. Krishnamoorthy, P. Sadayappan,
J. H. Saltz, “Task Scheduling and File Replication for Data-
Intensive Jobs with Batch-shared IO”, Proceedings of the
15th IEEE International Symposium on High-Performance
Distributed Computing (HPDC-15) pp. 241-252, June 2006.

[Khanna+2007] G. Khanna, U. V. Catalyurek, T. M. Kurc, P.
Sadayappan, J. H. Saltz, “Scheduling File Transfers for
Data-Intensive Jobs on Heterogeneous Clusters”,
Proceedings of Euro-Par 2007 Parallel Processing, pp. 214-
223, August, 2007.

[MPI] Message Passing Interface Forum, “MPI-2: Extensions
to the Message-Passing Interface”, http://www.mpi-
forum.org/docs/mpi-20-html/mpi2-report.html

[MPI-IO] K. Coloma, A. Ching, A. Choudhary, W. Liao R.
Ross, R. Thakur, L. Ward, “A New Flexible MPI Collective
IO Implementation”, International Conference on Cluster
Computing, 2006.

[NBD] Network Block Device. http://nbd.sourceforge.net/
[Ousterhout1998] J. Ousterhout, “Scripting: Higher-level

programming for the 21st century”, IEEE Computer Mar.
1998.

[Raicu+2007] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, M.
Wilde. “Falkon: a Fast and Light-weight tasK executiON
framework”, IEEE/ACM Supercomputing 2007.

[Raicu+2008] I. Raicu, Z. Zhang, M. Wilde, I. Foster, P.
Beckman, K. Iskra, B. Clifford. “Toward Loosely Coupled
Programming on Petascale Systems”, to appear,
IEEE/ACM Supercomputing 2008.

[Schmuck+2002] F. Schmuck, R. Haskin, GPFS: A Shared-
Disk File System for Large Computing Clusters,
Proceedings of the USENIX FAST02 Conference on File
and Storage Technologies, Monterey, California, 2002.

[Thain+2005] D. Thain, T. Tannenbaum, and M. Livny,
“Distributed Computing in Practice: The Condor
Experience” Concurrency and Computation: Practice and
Experience, vol. 17, no. 2-4, pp. 323-356, Feb-Apr 2005.

[Thain+2008] D. Thain, C. Moretti, and J. Hemmes, Chirp: A
Practical Global File system for Cluster and Grid
Computing, Journal of Grid Computing, Springer, accepted
for publication in 2008.

[Thakur+1999] R. Thakur, W. Gropp, E. Lusk. Data Sieving
and Collective IO in ROMIO, 7th Symposium on the
Frontiers of Massively Parallel Computation, 1999.

[TUN] Universal TUN/TAP Driver.
http://vtun.sourceforge.net/tun

[XAR] XAR – eXtensible ARchiver Project home page,
http://code.google.com/p/xar/

[TOP500] http://www.top500.org/system/9158
[ZeptoOS] The ZeptoOS Project. http://www.zeptoos.org/
[Zhao+2007] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G.

vonLaszewski, I. Raicu, T. Stef-Praun, M. Wilde, “Swift:
Fast, Reliable, Loosely Coupled Parallel Computation”
IEEE Workshop on Scientific Workflows 2007

