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Abstract. Running workloads in a grid environment is often a challenging 
problem due the scale of the environment, and to the resource partitioning based 
on various sharing strategies. A resource may be taken down during a job 
execution, be improperly setup or just fail job execution. Such elements have to 
be taken in account whenever targeting a grid environment for execution. In this 
paper we explore these issues on a real grid, Grid3, by means of a specific 
workload, the BLAST workload, and a specific scheduling framework, 
GRUBER - an architecture and toolkit for resource usage service level 
agreement (SLA) specification and enforcement. The paper provides extensive 
experimental results. We address in high detail the performance of different site 
selection strategies of GRUBER and the overall performance in scheduling 
workloads in Grid3 with workload sizes ranging from 10 to 10,000 jobs.  

 

1   Introduction 

Grid3 represents a multi-virtual organization that sustains production level 
services required by various physics experiments. The infrastructure is composed of 
more than 30 sites and 4500 CPUs, over 1300 simultaneous jobs and more than 
2TB/day. The participating sites are the main resource providers under various 
conditions. We consider in this paper that all these sites are governed by various usage 
SLAs [3]. We distinguish here between “resource usage policies” (or SLAs) and 
“resource access policies.” Resource access policies typically enforce authorization 
rules. In contrast, resource usage SLAs govern the sharing of specific resources 
among multiple groups of users. Once a user is permitted to access a resource via a 
resource access policy, then the resource usage policy steps in to govern how much of 
the resource the user is permitted to consume. GRUBER focuses on computing 
resources such as computers, storage, and networks; owners may be either individual 
scientists or sites; and VOs are collaborative groups, such as scientific collaborations.  

In this paper, we focus on the problems that can occur in Grid3, because various 
elements affect workload execution times. We measure the impact by means of 
average resource utilization, average response time, average job completion, average 
job re-planning (Replan), workload completion time (Time), and job completion gain 
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(Speedup) [1]. We present our detailed results for scheduling BLAST workloads over 
one of the largest US grid, the Grid3 [3] environment. 

2   Goals  

Running various size workloads over Grid3 can become a challenging problem 
when resources are shared by a large user community. For most environments, even 
short periods of overloading can decrease the performance the users get from the 
system. In any grid context, such overloading scenarios can be only partial as a grid is 
a large composition of resources spread in various administrative domains. Here we 
try to identify some of the main challenges users may face when submitting 
workloads in such environments and to provide also some simple means for 
improving their achieved performance. We assume in our scenario that various sites 
are used at particular times and we are interested in measure how well the overall 
performance maintains over larger time intervals.  

2.1   Resource Providers and Consumers 

Grid3 is composed of resources provided based on various usage SLA [1],[17]. 
Further, resources are aggregated at the VO level and provided on similar usage SLA 
means to groups and users. Our usage SLA scheduling framework, GRUBER, deals 
with two classes of entities: resource providers and resource consumers. A physical 
site is a resource provider; a VO is a consumer (consuming resources provided by a 
site) and a provider (providing resources to users, groups or workload types). We 
assume that each provider-consumer relationship is governed by an appropriate SLA.  

2.2   Usage SLA-based Resource Sharing  

The entire grid environment is described as follows: 
• A grid consists of a set of resource provider sites and a set of submit hosts. 
• Each site contains a number of processors and some amount of disk space. 
• A three-level hierarchy of users, groups, and VOs is defined, such that, each user 

is a member of one group, and each group is a member of one VO. 
• Users submit jobs for execution at submit hosts. A job is specified by four 

attributes: VO, Group, Required-Processor-Time, Required-Disk-space. 
• A site policy statement defines site usage SLAs by specifying the number of 

processors and amount of disk space that the site makes available to each VOs. 
• A VO policy statement defines VO usage SLAs by specifying the fraction of the 

VO’s total processor and disk resources (i.e., the aggregate of contributions to 
that VO from all sites) that the VO makes available to different groups. 

We note that this model is one of resource sub-allocation: resources are owned by 
sites, which apportion them to VOs. VOs in turn apportion their “virtual” resources to 
groups. Groups could, conceptually, apportion their sub-allocation further, among 
specific users. Without loss of generality, we simplify both this discussion and our 
implementation by sub-allocating no further than from VOs to groups.  
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3   Environment Settings   

The execution environment is based on the VDS toolkit developed in the GriPhyN 
project context. The specific technicalities are as follows.  

3.1   Euryale as Concrete Planner  

Euryale [9] is a complex system aimed at running jobs over a grid, and in special 
over Grid3 [3]. The approach used by Euryale is to rely on the Condor-G capabilities 
to submit and monitor jobs at sites. It takes a late binding approach in assigning such 
jobs to sites. In addition, Euryale allows a simple mechanism for fault tolerance by 
means of job re-planning when a failure is discovered.  

During a workload execution, DagMan executes the Euryale’s pre- and post- 
scripts, the heart of Euryale concrete planner, which also contain the Euryale’s 
execution logic. The prescript calls out to the external site selector, rewrites the job 
submit file, transfers necessary input files to that site, registers transferred files with 
the replica mechanism, and deals with re-planning.  The postscript file transfers 
output files to the collection area, registers produced files, checks on successful job 
execution, and updates file popularity. To run things in the grid, Euryale needs 
knowledge about the available resources, or sites. An important feature of Euryale is 
its capacity to invoke external site selectors in job scheduling, such as our resource 
broker, GRUBER [18].  

3.2   GRUBER as Resource Broker   

GRUBER is the main component that we used for the site selection. It is 
composed of four principal components, as we now outline [18]. The GRUBER 
engine represents the main component of the architecture. It implements various 
algorithms for detecting available resources and maintains a generic view of resource 
allocations and utilizations.  

 
Fig. 1: GRUBER Architecture 

The GRUBER site monitoring component is one of the data providers for the 
GRUBER engine. This component is optional and can be replaced with various other 
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grid monitoring components that will provide similar information, such as MonaLisa 
[10] or Grid Catalog [3]. So far, we are unaware of any complete replacement. 
GRUBER site selectors are tools that communicate with the GRUBER engine and 
provide answers to the question: “which is the best site at which I can run this job?”. 
Site selectors can implement various task assignment policies, such as random 
assignment (G-RA), round robin (G-RR), least used (G-LU), or last recently used (G-
LRU) task assignment policies. We note that one can use just the GRUBER engine 
and site selectors, without the GRUBER queue manager. This option makes 
GRUBER only a site recommender, without having the capacity to enforce any usage 
SLA expressed at the VO level, while enforcing the usage SLA at the site level by 
means of removing a site for an already over-quota VO user at that site.  

3.3   Disk Space Considerations  

Disk space management introduces additional complexities in comparison to job 
management [18]. For the experiments in this paper, we have extended GRUBER to 
deal with multiple resource issues and describe here in more detail our work. If an 
entitled-to-resources job becomes available, it is usually possible to delay scheduling 
other jobs, or to preempt them if they are already running. In contrast, a file that has 
been staged to a site cannot be “delayed,” it can only be deleted. Yet deleting a file 
that has been staged for a job can result in livelock, if a job’s files are repeatedly 
deleted before the job runs. As a consequence, a different approach has been devised. 
As a concrete example, a site can become heavily loaded with a one VO jobs and 
because of which other jobs are either in the local queue in an idle state waiting for 
their turn. But this does not stop the submission of more jobs. As a result, there may 
be lots of other input data on the site and the disk used space will keep on growing. 
On the other hand, the other jobs are not getting their turn to actually finish and delete 
their files. The rate of input data being copied over to the site is higher than the rate of 
completion of jobs, making the disk space to get full.  

So far, we have considered a UNIX quota-like approach. Usually, quotas just 
prevent one user on a static basis from using more than his hard limit. There is no 
adaptation to make efficient use of disk in the way a site CPU resource manager 
adapts to make efficient use of CPU (by implementing more advanced disk space 
management techniques). More precisely, for scheduling decisions a list of site 
candidates that are available for use by a VO i for a job with disk requirements J, in 
terms of provided disk space, is built by executing the following logic. 

 

1. for each site s in site list G do  
2.    # Case 1: over-used site by VOi 
3.    if IAi > IPi for VO i at site s 
4.      next  
5.    # Case 2: un-allocated site  
6.    else  
7.      if Σk(IAk) < s.TOTAL - J && 
     IAi + J < IPi then   
8.        add (s, S) 
9. return S 
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with the following definitions:  
 

S    = Site Set 
k    = index for any VO != VOi 
IPi   = Instantaneous Usage SLA for VOi 
IAi  = Instantaneous Resource Usage for VOi 
TOTAL = upper limit allocation on the site 

 

The set of disk-available site candidates is combined with the set of CPU-available 
site candidates and the intersection of the two sets is used for further scheduling 
decisions.  

4   Experimental Results    

We first introduce the metrics [18] that we used to evaluate the alternative 
strategies, and then introduce our experimental environment, and finally present and 
discuss our results. 

4.1   Metrics  

We use five metrics to evaluate the effectiveness of workload performance 
execution.  

• Comp: the percentage of jobs that complete successfully.  

Comp = (Completed Jobs) / #jobs * 100.00 

• Replan: the number of performed replanning operations. 

• Util: average resource utilization, the ratio of the per-job CPU resources 
consumed (ETi) to the total CPU resources available as a percentage:  

Util = Σ i=1..N ETi / (#cpus * ∆t) * 100.00 

• Delay: average time per job (DTi) that elapses from when the job arrives in a 
resource provider queue until it starts: 

Delay = Σi=1..N DTi / #jobs  

• Time: the total execution time for the workload. 

• Speedup: the serial execution time to the grid execution time for a workload.  

• Spdup75: the serial execution time to the grid execution time for 75% of the 
workload.  

All metrics are important: an adequate environment will both maximize delivered 
resources and meet owner intents. For example, Table 1 presents a simple case 
scenario in which several VOs have various SLAs, resource requests, and resource 
utilizations at a particular resource provider. The column names have the following 
meanings: 
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• Target: the usage SLA for the consumer at the resource provider, as a percentage 
of site capacity. 

• Current: the current utilization for the consumer at the provider, as a percentage. 
• Demand: the current resource demand from the consumer for the provider, as a 

percentage (it cannot be less than Current). 
• Level: how our criteria is met (OK when Current = MIN (Target, Demand)). 

Table 1. Usage SLAs in our Scenario 
VO Target Current Demand Level 

USCMS 60 50 50 OK 
USATLAS 20 15 30 Under 

IVDGL 10 10 100 OK 
LIGO 5 3 3 OK 
SDSS 5 22 50 Over 

4.2   Experiment Settings  

We used a single job type in all our experiments, the sequence analysis program 
BLAST. A single BLAST job has an execution time of about 40 minutes (the exact 
duration depends on the CPU), reads about 10-33 kilobytes of input, and generates 
about 0.7-1.5 megabytes of output: i.e., an insignificant amount of I/O. We used these 
BLAST workloads in three different sets of workload configuration: (1) small 
workloads of 10, 50, and 100 jobs that get scheduled at once; (2) medium workloads 
of 500 to 1000 jobs that are submitted in several steps in order to honor the VO usage 
SLAs; and (3) large workloads of 10k jobs.  

Table 2. Grid3 CPU Allocations on July 9, 2004 
VO Allocations (in %) Site Name # of 

CPUs iVDGL Atlas USCMS 
T2cms0.sdsc.edu 76 0.62 24.74 0.40 
nest.phys.uwm.edu 305 0.00 7.28 0.00 
uscmsb0.ucsd.edu 3 11.68 11.68 11.68 
xena.hamptonu.edu 1 25.00 25.00 25.00 
garlic.hep.wisc.edu 101 3.01 3.01 3.01 

 

We performed all experiments on Grid3, which comprises around 30 sites across 
the U.S., of which we used 15. Each site is autonomous and managed by different 
local resource managers, such as Condor, PBS, or LSF. Each site enforces different 
usage policies which are collected by the GRUBER site monitor. For example, Table 
1 gives CPU allocations per VO on five Grid3 sites on July 9, 2004 as collected 
through the GRUBER site monitor. We submitted all jobs within the iVDGL VO, 
under a VO usage policy that allows a maximum of 600 CPUs. Furthermore, we 
submitted each individual workload under a separate iVDGL group, with the 
constraint than no one group can get more than 25% of iVDGL CPUs, i.e., 150. 

We also configured GRUBER to employ a replanning policy, by which a starving 
job was removed after a predefined time interval (20 minutes here) and resubmitted 
for rescheduling. If a job was submitted unsuccessfully 10 times or it was reported as 
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application level “failure” by a site, then it is considered a failure. All submissions 
were performed without withholding or setting any special priorities at sites, 
practically GRUBER had to find resources while all workloads ran in parallel. The 
VO usage SLA limited the submitting group to approximately 150 jobs at a time.  

Regarding the site selectors, they were already introduced by Dumitrescu et al. 
[18] and used in a similar fashion. In a nutshell, G-RA represents GRUBER random 
assignment site strategy, G-RR represents GRUBER round robin site strategy, G-LU 
represents GRUBER least used site assignment strategy, and G-LRU represents least 
recently used site strategy [18].  

4.3   Small Workload Results  

Table 3 shows the results for the 1x10 jobs workloads. In the ideal case, these 
values are: Comp=100, Replan=0, Util=1.25, Delay=0, Time=3000, and Speedup=10. 
As can be seen, the speedup is 2.5 to 3.5 times smaller due to the probability of a jobs 
ending on sites with a local resource manager that do not behave as expected. The job 
starvation was “detected” after a time interval comparable with the execution time (20 
minutes vs. 40 minutes). However, 75% of the jobs do complete in a time interval 
closer to the ideal case of a speedup of 10.  

Table 3. Results and 90% Confidence Intervals of Four Policies for 1x10 workloads 
 G-RA G-RR G-LU G-LRU 

Comp(%)  100  100 100  100  
Replan 34.1 ±  5.51 47.5 ± 9.26 8.6 ± 1.83 13.6 ± 2.18 

Util (%) 0.36 ± 0.05 0.31 ± 0.07 0.55± 0.10 0.50 ± 0.04 
Delay (s) 3262 ± 548 4351 ± 824 1162 ± 376 801 ± 313 
Time (s) 12436 ± 1191.4 13966 ± 2208.8 8787±158 7653 ± 205.9 
Speedup 2.33 ± 0.25 2.21 ± 0.35 3.6 ± 0.6 3.46 ± 0.45 
Spdup75 3.72 ± 0.59 3.46 ± 0.51 5.32± 0.67 5.66 ± 0.55 
 

Table 4 shows the results for the 1x50 jobs workloads. In the ideal case, these 
values are: Comp=100, Replan=0, Util=6.25, Delay=0, Time=3000, and Speedup=50. 
The same situation as before was encountered in this set of experiments: several jobs 
starved and their execution time affected the overall speedup. The speedup of 75% of 
the jobs instead is more than the half of the ideal speedup, proving that most of the 
jobs do complete close to the optimal time.  

Table 4. Results and 90% Confidence Intervals of Four Policies for 1x50 workloads 
 G-RA G-RR G-LU G-LRU 

Comp(%) 100 100 100  100 
Replan 35 ± 14 51.1 ± 28 48.8 ±10.8 78.8 ± 9.51 

Util (%) 1.18 ± 0.25 1.44 ± 0.27 1.89 ±0.43 1.76 ± 0.18 
Delay (s) 1420 ± 713 583 ± 140.4 653.8 ±202 1260 ± 528.7 
Time (s) 8035 ± 990.4 9654 ± 603.5 8549 ±898 9702 ± 1247.3 
Speedup 16.35 ± 1.17 14.12 ± 0.90 15.16  ±2.42 12.76 ± 0.71  
Spdup75 30.84 ± 5.70 35.36  ± 2.79 35.41 ±2.48 24.36 ± 2.28 
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Table 5 shows the results for the 1x100 jobs workloads. In the ideal case, these 
values are: Comp=100, Replan=0, Util=12.50, Delay=0, Time=3000, and 
Speedup=100. Again, similarly to the 1x50 workloads, the execution performance is 
half for 75% of the workloads and drops for the entire workload.  

Table 5. Results and 90% Confidence Intervals of Four Policies for 1x100 workloads 
 G-RA G-RR G-LU G-LRU 

Comp(%) 100 100 100 100 
Replan 228.7 ± 21 39.9 ± 13.8 124.7 ± 17 230 ± 20.3 

Util (%) 2.86 ± 0.30 3.48 ± 0.59 3.51 ± 0.7 1.87 ± 0.46 
Delay (s) 1691 ± 198 529 ± 92.67 640 ± 93.4  1244 ± 387.9 
Time (s) 10350 ± 565.9 9013 ± 1025.1 9716±1130 7507 ± 2325.1 
Speedup 22.43 ± 1.55 30.15 ± 3.43  28.02 ± 5.4 19.24 ± 1.56 
Spdup75 47.38 ± 3.24 77.19 ± 3.26 73.54 ± 2.0 35.86 ± 3.72 

4.4   Medium Workload Results  

Table 6 shows the results for the 1x500 jobs workloads. Here, in the ideal case, the 
values are: Comp=100, Replan=0, Util=25.00, Delay=3600, Time=3000, and 
Speedup=150. The size of the workloads makes the execution performance to 
increase, and practically almost match the ideal speedup for the 75% of the workload 
and be only half for the overall workload. 

Table 6. Results and 90% Confidence Intervals of Four Policies for 1x500 workloads  
 G-RA G-RR G-LU G-LRU 

Comp(%) 100 100  100 100 
Replan 925 ± 103.5 816 ± 245.6 680 ± 139.3 1024 ± 154.2 

Util (%) 34.04 ± 4.55 33.19 ± 2.39 30.3 ± 4.7 25.41 ± 5.6 
Delay (s) 9202 ± 1716.8 6700 ± 816.6 6169 ± 407 9125 ± 6117.8 
Time (s) 28116 ± 2881 24225 ± 035.9 21362 ±1250 20434 ± 4100 
Speedup 67.32 ± 5.6 60.22 ± 3.26 63.12 ±3.41 51.77 ± 5.94 
Spdup75 98.43 ± 8.7 111.69 ± 9.81 113.2 ±8.82 101.48 ± 10.05 

4.5   Large Workload Results  

Next, we report on previous results were we used a more aggressive scheduling 
approach. In this approach, the number of retries was limited to five versus ten job 
retries. Also, in these measurements some of the sites were not properly configured 
and jobs failed immediately. These workloads provide also insights about GRUBER’s 
scalability. Our results are captured in Table 7. Round-robin and random-assignment 
prove to achieve the best performance. The lower completion rates are explained by 
the number of low number of retries (5) and the missing of BLAST environment 
configuration at a few sites.  All these factors are also an explanation for the lower 
performance achieved in these cases.  
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Table 7. Results of Four GRUBER Strategies for 1x1k workloads  

 G-RA G-RR G-LU G-LRU 
Comp(%) 97 96.7 99.3 85.6 

Replan 1396 1679 1326 1440 
Util (%) 12.85 12.28 14.56 10.63 
Delay (s) 49.07 53.75 50.50 54.69 
Time (s) 29484 37620 33300 80028 
Speedup 140.3+ 113.1+ 122+ 101.4+ 
Spdup75 173.5 159.3 161.4 127.8 

 

Further, in the 10k workloads, the completion rates drop even more, as the 
probability of failures increases linearly with the number of jobs (GRUBER maintains 
a constant load on the available sites).   

Table 8. Results of Four GRUBER Strategies for 1x10K workloads 
 G-RA G-RR G-LU G-LRU 
Comp(%) 91.75 91.88 77.88 73.58 

Replan  18000 23900 27718 24350 
Util (%) 24.3 23.3 20.0 17.6 
Delay (s) 86.63 85.17 89.01 90.45 
Time (s) 226k 260k 295k 349k 
Speedup 137+ 145.4+ 134+ 98.3+ 
Spdup75 156.2 163 139.6 98.3+ 

 

The results in Table 9 are the means across the four submitters. We see some 
interesting differences from Table 7. G-LU’s completion rate drops precipitously, 
presumably for some reason relating to greater contention. The total execution times 
for G-RA and G-LU increase, although more runs are required to determine the 
significance of these results. 

Table 9. Results of Four GRUBER Strategies for 4x1K workloads 
 G-RA G-RR G-LU G-LRU 
Comp(%) 98.2 98.7 91.7 87.9 

Replan 1815 1789 2409 1421 
Util (%) 13.51 14.02 11.52 11.05 
Delay (s) 66.62 64.41 63.96 68.97 
Time (s) 40356 37800 48564 48636 
Speedup 77.3+ 74.1+ 71+ 60+ 
Spdup75 105.6 102.9 93.8 82.4 

4.6   Failure Analysis   

While for the small and medium workloads the number of failures was null, for 
large workloads the completion rates vary as can be observed from the tables in 

                                                            
+ Results for incomplete workloads.  
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subsection 0. The motivations for these failures are in most cases the small number of 
retries used during these tests (5 instead of 10), the temporary failure of the RLS 
server used to stage in and out data (overloading issues), in a few cases due to 
DagMan failure in managing jobs (application bugs), and gatekeepers overloading. 
Most of these errors were reported and fixes were performed or are expected in the 
future for the signaled problems.  

Also, we have to note that Grid3 performance in executing BLAST workloads has 
already increased between the first set of experiments (large workloads) and the 
second ones (small and medium workloads). Either individual sites had undergone 
hardware upgrades or the job assignment policies to individual computing nodes 
became more job requirements aware (avoiding node overloads).  

5   Statistical Analysis  

While previous results provide useful insight about how Grid3 performs in 
executing workloads when GRUBER is the steering mechanism, further analysis is 
required to identify how the scheduling strategies have performed comparatively. Fig. 
2 presents the speedup performance over all runs and the confidence intervals at 90%.  
Note the small confidence intervals for all runs, which express low standard deviation 
and the strength of our results across the runs and configurations.   
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Fig. 2. Speedup Comparisons among Workloads 

Further, we use the T-test to correlate the results of these experiments. The T-test 
is usually used for comparing the results of two alternative approaches with the claim 
that the results are significantly different.  For comparison means, we use tournament 
trees and T-tests as comparison operator. These results are captured in Table 10. The 
null hypothesis and alternative hypothesis that we set up to conduct the t-test are:  
• H0 (null hypothesis): any given two runs have comparable performance;  
• Ha (alt. hypothesis): prove H0 is false; two runs do not have same performance.  

The null hypothesis is the one that we want to reject as not being true, while the 
alternative hypothesis is the one that we want to accept as being true.  Our alternative 
hypothesis is two sided since we test that the runs are just different, which implies 
either < or >; we essentially test 2 * P (t > critical_value) to be less than 0.05.  The 
goal is to obtain a probability that the t value will be greater or less than the critical 
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value.  The p value needs to be less than 0.05 for the results to be statistically 
significant, which implies that Ha is true with 95% confidence for the corresponding 
comparisons; the lower the p value, the better the confidence.  If a p value cannot be 
found that is less than 0.05, then the sample space is not statistically significant, and 
hence more samples must be obtained. 

Table 10. Tournament Tree (T-tests) Results 
 G-RA vs. G-RR G-LU vs. G-LRU G-RA vs. G-LU 

1x10 0.09 (?) 0.17 (?) 0.0005 (T) 
1x50 0.0005 (T) 0.0005 (T) 0.0005 (T) 

1x100 0.0005 (T) 0.0005 (T) 0.0005 (T) 
1x500 0.0005 (T) 0.0005 (T) 0.0005 (T) 

The results from Table 10 show that for all workloads other than the smallest one, 
the results are statistically significant with at least a 99.95% confidence.  Regarding 
the smallest workload of 1x10 (for which we had 10 sample runs), the number of 
samples in our experiment do not seem to be enough, and hence more experiments 
would have to be performed for the 1x10 workload. 

6   Related Work   

There are several other production workloads running over Grid3, such as the 
QuarkNet Project, SDSSCoAdd, GADU, or fMRIDC. While these workloads are 
important from the GriPhyN project point of view, they offer little elements for 
comparisons with the work described here. Firstly, these workloads are run mostly for 
their results and not for measuring various Grid3 execution capacities. The closest one 
is the SDSS/CoAdd workload in scope; however we do not have information to date 
about various metrics [20]. Besides the iVDGL workloads running over Grid3, there 
are other challenge problems solved. For example, the ATLAS “VO” and applications 
focus on Monte Carlo simulation of the physics processes that will occur in high 
energy proton collision at LHC;  SDSS runs various problems related to galaxy 
clusters identification or pixel-level analysis of astronomical data, etc. [3].  

7   Conclusions  

Running workloads in grid environments is often a challenging problem due the 
scale of the environment and to the resource participation based on various sharing 
strategies. A resource may be taken down during job execution, be improperly setup 
or just fail job execution. Such elements have to be taken in account when targeting a 
grid environment.  

In this paper we explored some of the issues that occur on a real grid, namely 
Grid3, by means of a specific workload, the BLAST workload, and a specific 
scheduling framework, GRUBER - an architecture and toolkit for resource usage 
service level agreement (SLA) specification and enforcement. During these 
experiments we faced various problems as described above, as well as quantified what 
performance a grid user should expect. In addition, we observed for our brokering 
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mechanism that for medium workloads, G-RA performs best with a 90% confidence 
interval, while G-LU performed best for smaller workloads. We also note that G-LRU 
performed worst for all tested workloads.  
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