

Evaluating IPv4 to IPv6
Transition Mechanisms

Abstract
The next-generation Internet Protocol, initially known as
IP Next Generation (Ipng), and then later as IPv6, has
been developed by the Internet Engineering Task Force
(IETF) to replace the current Internet Protocol (also
known as IPv4). To enable the integration of IPv6 into
current networks, several transition mechanisms have
been proposed by the IETF IPng Transition Working
Group. This work examines and empirically evaluates two
transition mechanisms, namely 6-over-4, and IPv6 in
IPv4 tunneling, as they relate to the performance of IPv6.
We explore the impact of these approaches on end-to-end
user application performance using metrics such as
throughput, latency, host CPU utilization, TCP
connection time, and the number of TCP connections per
second that a client can establish with a remote server.
All experiments were conducted using two dual stack
(IPv4/IPv6) routers and two end-stations running
Windows 2000, loaded with a dual IPv4/IPv6 stack.

Keywords: IPv4, IPv6, 6-over-4, encapsulation,
tunneling, performance evaluation

1 INTRODUCTION

Over the last decade, IETF has been working on the
deployment of IPv6 [1, 2] to replace the current IPv4 [3]
protocol. The motivations behind IPv6 are briefly
discussed in the following section and are covered in the
literature [4, 5, 6, 7]. One of the biggest challenges in the
deployment of IPv6 is how to migrate IPv4-based
infrastructures to those supporting IPv6. It is impractical
and costly to replace existing IPv4-based networking
infrastructures with IPv6. To ensure a smooth and
successful integration of IPv6 into existing networks, the
IETF IPng Transition Working Group [1] has been
working on several transition strategies, tools, and

mechanisms. In general, these transition mechanisms
encapsulate IPv6 packets into IPv4 packets and transport
them over an IPv4 network infrastructure. We expect to
rely on these transition strategies as the Internet shifts
from the traditional IPv4 to an IPv6-based Internet while
retaining both IPv4 and IPv6 throughout the transition
phase.

The main goal of this work is to empirically evaluate two
transition mechanisms, namely 6-over-4 [8] and IPv6 in
IPv4 tunneling [9], and assess the impact of these
approaches on end-to-end application performance. We
evaluate the performance impact of these mechanisms in a
real world setting, which includes hosts and routers
supporting dual IPv4/IPv6 stacks. [10] The 6-over-4
mechanism performs the encapsulation of IPV6 into IPV4
packets at the host, and we will refer to it as host-to-host
encapsulation henceforth. The IPv6 in IPv4 tunneling
performs the encapsulation at the routers, and we will
refer to it as router-to-router tunneling throughout the
paper.

Section 2 covers background information about the
fundamental differences between IPv4 and IPv6 and some
related works. It also presents a brief overview of the
various transition mechanisms, including a significant
review of router-to-router tunneling and host-to-host
encapsulation. Section 3 describes the test-bed
configurations used and our measurement procedures.
Section 4 discusses our experimental results. Finally, in
section 5, we make some concluding remarks and discuss
future work.

2 BACKGROUND

2.1 IPv4 and IPv6 Architecture

Internet Protocol was first developed in the early 1980s.
In the early 1990s, it became pretty evident that if the
Internet will continue to grow at the rate it was growing,
the IPv4 address space would be depleted by the turn of
the millennium. Some temporary solutions were offered,
such as NAT (Network Address Translator) [11] or CIDR

__

* The work presented herein was completed by the
author while he was a graduate student in the
Department of Computer Science at Wayne State
University, Detroit, Michigan, USA.

*Ioan Raicu
Department of Computer Science

Purdue University
1398 Computer Science Building
West Lafayette, IN 47907, USA

iraicu@cs.purdue.edu

Sherali Zeadally
Department of Computer Science

Wayne State University
5143 Cass Ave., 454 State Hall

Detroit, MI 48202, USA
zeadally@cs.wayne.edu

0-7803-7661-7/03/$17.00©2003 IEEE

(Classless InterDomain Routing) [7], however work
began on a new Internet Protocol, namely IPv6.

The main reason for a new version of the Internet
Protocol was to increase the address space; IPv6 was
designed with a 128 bit address scheme, enough to label
every molecule on the surface of the earth with a unique
address [7]. Furthermore, the only kind of traffic that
existed on the internet twenty years ago was elastic
traffic, such as emails or file transfers. These kinds of
traffic were very flexible regardless of the network
conditions; on the other hand, inelastic traffic requires a
certain level of guaranteed performance, which if not met,
the application does not have the same usefulness. IPv6
was designed for efficiently supporting both elastic and
inelastic traffic.

The goals of IPv6 were to support scalability, security,
and multimedia transmissions. First, the address space is
increased from 32 bits to 128 bits. Unlike IPv4, IPSec
[12] support has become a requirement in the IPv6
header. Payload identification for QoS handling by
routers is now supported by the Flow Label field in the
IPv6 packet header. Fragmentation support has been
moved from routers to the sending hosts. The IPv6
header does not include a checksum and has no options
included in the header, but rather introduces extension
headers. Finally, IPv6 requires no manual configuration
or DHCP (Dynamic Host Configuration Protocol), which
will become important as the number of nodes increases.
Overall, IPv6 was carefully thought out and was designed
with future applications in mind. [7]

The main difference in the packet layout between IPv4
and IPv6 is that IPv4 has a 20 byte header while IPv6 has
a 40 byte header. Although the address space in IPv6 is
four times the size of its counterpart, IPv6 has reduced the
number of required fields and made them optional as
extension headers. Since the Ethernet MTU size is 1514
bytes, the additional 20 bytes of header information only
incurs an additional 1.3% overhead; an additional 20
bytes of header information when an IPv6 packet is
encapsulated in an IPv4 packet raises the overall overhead
to 2.6%. In theory, this performance overhead between
these two protocols is minimal.

2.2 IPv4 to IPv6 Transition Mechanisms

Some currently available transition mechanisms are: Dual
Stacks [10], DTI & Bump-in-dual-stack, NAT Protocol
Translator [13], Stateless IP/ ICMP Translator (SIIT),
Assignment of IPv4 Global Addresses to IPv6 Hosts
(AIIH), Tunnel Broker [14], 6-to-4 Mechanism [15], 6-
over-4 Mechanism [8], and IPv6 in IPv4 tunneling [9].
Dual Stacks are easiest to implement, however
complexity increases at the hosts due to both
infrastructures and the cost is higher due to a more

complex technology stack. NAT Protocol Translator has
scaling and DNS issues, and has single point of failure
disadvantage. The Tunnel Broker dynamically gains
access to tunnel servers, but has authentication and
scaling issues. 6-to-4 mechanism creates dynamic
stateless tunnels over IPv4 infrastructure to connect 6-to-4
domains. 6-over-4 mechanism allows the interconnection
of isolated IPv6 hosts to connect over the IPv4
infrastructure without requiring IPv6 enabled routers or
explicit tunnels. IPv6 in IPv4 tunneling allows existing
infrastructure to be utilized via manually configured
tunnels.

We chose to pursue the IPv6 in IPv4 tunneling and 6-
over-4 as a transition mechanism. 6-over-4 mechanism
performs the encapsulation at the host, and therefore we
will refer to it as host-to-host encapsulation throughout
the paper. The IPv6 in IPv4 tunneling performs the
encapsulation at the routers, and hence we will refer to it
as router-to-router tunneling. The router-to-router
tunneling enables two entire LANs to be upgraded to IPv6
while maintaining connectivity to the rest of the Internet.
Host-to-host encapsulation is also addressed mainly
because of its simplicity of implementation, and offers
another method of making the transition from IPv4 to
IPv6 as smooth as possible.

Encapsulation of IPv6 packets within IPv4 packets allows
two IPv6 hosts/networks to be connected with each other
while running on existing IPv4 networks. IPv6 packets
are encapsulated in IPv4 packets and then are transmitted
over IPv4 networks like ordinary IPv4 packets. At the
destination, these packets are de-capsulated to the original
IPv6 packets. It should be noted that encapsulation of
IPv6 packets in IPv4 packets, only IPv4 routing properties
will be utilized and hence the IPv6 packet will lose any
special IPv6 features until it is de-capsulated at the
receiving host/router. It requires a hole in a firewall to
allow protocol 41 (IP in IP encapsulation, or in our case,
IPv6 in IPv4) passage.

2.2.1 Host-to-Host Encapsulation

In the host-to-host encapsulation method, the
encapsulation is done at the source host and the de-
capsulation is done at the destination host. The
encapsulated datagrams are sent through a native IPv4
network that has no knowledge of the IPv6 network
protocol. Figure 1 illustrates two hosts, each with dual
IPv4/IPv6 stacks which encapsulate the packets of IPv6 in
IPv4 packets and transmit over the network as an IPv4
packet. With this transition mechanism, it is possible to
support IPv6 simply by upgrading the end hosts protocol
stacks to IPv6 while leaving the IPv4 infrastructure
unchanged.

Figure 2 depicts an IPv6 packet encapsulated in an IPv4
packet. All the various header fields (IP version, Flow
Label, Next Header, etc) are clearly visible just as we had
described them in the earlier section.

Figure 1: Host-to-Host tunneling

Figure 2: IPv6 packet encapsulated in an IPv4 packet

depicted by the Microsoft Network Monitor

2.2.2 Router-to-Router Tunneling

In router-to-router tunneling mechanism, encapsulation is
done at the edge router of the originating host and de-
capsulation is done at the edge router of the destination
host.

The tunnel is created between the two edge routers
supporting both IPv4 and IPv6 stacks. Therefore, the end
hosts can support native IPv6 protocol stack while the
edge routers create the tunnels and handle the
encapsulation and de-capsulation of IPv6 packets over the
existing IPv4 infrastructure.

Figure 3 shows a tunnel established between two dual
stack edge routers. The IPv6 packets are forwarded from
host to edge routers while encapsulation takes place at the
router level; similarly at the other end, the reverse process
takes place. In this method, both edge routers need to

support dual stacks and established a tunnel prior to
transmission. Note that other transition mechanisms
exists that dynamically establish the tunnels as needed.

Figure 3: Router-to-Router Tunneling

2.3 Related Work

It is important to point out that our work was driven by
the fact that there is no empirical performance
experimentation to evaluate any of the transition
mechanisms that currently exist to assist in the
deployment of IPv6 networks. This work extends our
previous work [16] where we compared the IPv4 protocol
and the IPv6 protocol under various operating systems
and testbed configurations.

Most of the industry wide routers implement their
functionality in hardware and are therefore we believe
that hardware based routers are more efficient than a
software-based router implementation. The reason few
researchers tested IPv6’s performance using hardware-
based routers supporting dual stack IPv4/IPv6 are
relatively expensive; as an example, the two routers we
used for our experiments cost a total of US $60,000. As a
result, most of the work done in the research community
has been performed using software-based routers utilizing
off-the-shelf PCs. Various works have been attempted
[17, 18, 19, 20, 21] which evaluated the IPv6 protocol
stack, however none of them used hardware-based
routers, had such a wide range of metrics, and none
investigated transition mechanisms.

3 EXPERIMENTAL TESTBED AND
MEASUREMENT PROCEDURES

3.1 Testbed Configuration

Our testbed consisted of two dual stack (IPv4/IPv6)
routers: an Ericsson AXI 462, and an IBM 2216 Nways
Multiaccess Connector Model 400. In addition, two
identical workstations were connected directly to the
routers and were configured to be on separate networks.

Ericsson AXI 462 Router

PC SZ06
IPv4 - 141.217.17.26/24
IPv6 - 4:4:4:4:4:4:4:2/64

PC SZ07
IPv4 - 172.17.0.27/24

IPv6 - 8:8:8:8:8:8:8:2/64

* R3 IPv4 10/100 - 10.0.0.1/8
* R3 IPv6 10/100 - 3:3:3:3:3:3:3:1/64
* R4 IPv4 10/100 - 141.217.17.49/24
* R4 IPv6 10/100 - 4:4:4:4:4:4:4:1/64
* R5 - N/A
* R6 - N/A

* R1 - N/A
* R2 - N/A
* R3 - N/A
* R4 IPv4 10/100 - 10.0.0.3/8
* R4 IPv6 10/100 - 3:3:3:3:3:3:3:3/64
* R5 - N/A
* R6 - N/A
* R7 - N/A
* R8 IPv4 10/100 - 172.17.0.1/24
* R8 IPv6 10/100 - 8:8:8:8:8:8:8:1/64

*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*

IBM AS/400 Router

Figure 4: IBM-Ericsson Testbed architecture; two routers
are depicted, an IBM 2216 Nways Multiaccess Connector

Model 400 and an Ericsson AXI 462

Both workstations used were equipped with Intel Pentium
III 500 MHz processors, 256 megabytes of SDRAM
PC100, 30GB IBM 7200 RPM IDE hard drive, and COM
10/100 PCI network adapters. The workstations were
loaded with Windows 2000 Professional. Windows 2000
had the IPv4 stack as a standard protocol; however in
order to get IPv6 support, an add-on package was
installed. There were two add-on package choices to
choose from, both written by Microsoft and in Beta
testing. We chose the newer release of the two,
“Microsoft IPv6 Technology Preview for Windows 2000”
[22] which is supported by Winsock 2.

Our testbed configuration shown in Figure 4 a depicts the
entire testbed utilizing two routers in between the two end
hosts connected via a 100 Mbit/s link. Note that the IP
addresses of the end hosts are not on the same network,
and hence we have the routers to allow communication
between the two distinct networks. In the Ericsson router,
R3 through R6 are the various network cards available;
each interface card has both an IPv4 and an IPv6 address.
Similarly, on the IBM router, R1 through R8 are the
various network cards that are available; each interface
card has both an IPv4 and an IPv6 address.

3.2 Measurement Procedures

The majority of the tests were done for a sufficiently long
period of time and resulted in the exchange of 50,000
packets to 1,000,000 packets, depending on the size of the
packets sent and the corresponding test. We conducted an
empirical measurement based on the following
performance metrics: throughput, latency, CPU
utilization, TCP connection time, and the number of TCP
connections per second. All the performance
measurement software was written in C++.

• Throughput:
The rate at which bulk data transfers can be
transmitted from one host to another over a
sufficiently long period of time; the performance is
measured in Mbit/s

• Latency
Latency, also known as RTT (round trip time), is the
amount of time it takes one packet to travel from one
host to another and back to the originating host; the
performance is measured in microseconds per RTT

• CPU Utilization
This metric was measured only for Windows 2000
using the Windows Task Manager under the
performance tab; the average CPU utilization was
recorded throughout each corresponding experiment;
the performance is measured in percentage of
utilization

• TCP Connection Time
This metric measured the amount of time it took to
establish a TCP connection between the client and
the server; the performance is measured in
microseconds per TCP connection

• Web Client/Server Simulation
This simulation investigated the maximum number of
tests that could be performed per second by the
client/server applications; the test comprised of:
create a socket, make a TCP connection, send a 1-
byte message, receive a 1-byte message, tear down
the connection, and destroy the socket; the
performance is measured in number of tests per
second

We conducted three basic performance comparison tests
over the TCP transport protocol under the Windows 2000
operating system:

• Homogeneous IPv6 Network (Figure 5) is referred to
as TCP/IPv6 Stack Test Name in Figure 8 through
Figure 11

• Heterogeneous IPv4 and IPv6 Network (Figure 6),
known as IPv6 in IPv4 Tunneling, is referred to as
TCP/IPv6 Stack Test Name (Router-to-router
Tunneling) in Figure 8 through Figure 11

• Heterogeneous IPv4 and IPv6 Network (Figure 7),
known as 6-over-4, is referred to as TCP/IPv6 Stack
Test Name (Host-to-host Encapsulation) in Figure 8
through Figure 11

IPv6
Router

IPv6
Protocol

Stack
IPv6

Infrastructure
IPv6

Application IPv6
Router

IPv6
Protocol

Stack
IPv6

Application

Figure 5: IPv6 Homogeneous Network

IPv4
Router

IPv4/IPv6
Protocol

Stack
IPv4

Infrastructure
IPv6

Application IPv4
Router

IPv4/IPv6
Protocol

Stack
IPv6

Application

Figure 6: Router-to-router Tunneling IPv4/IPv6 Heterogeneous Network

IPv4/IPv6
Router

IPv6
Protocol

Stack
IPv4

Infrastructure
IPv6

Application IPv4/IPv6
Router

IPv6
Protocol

Stack
IPv6

Application

Figure 7: Host-to-host Encapsulation IPv4/IPv6 Heterogeneous Network

Note that all the basic configurations above all have IPv6-
based applications, and the major difference between the
various configurations is the infrastructure that is required
for two end applications to communicate.

4 EXPERIMENTAL RESULTS

4.1 Throughput

As Figure 8 indicates, every layer of complexity adds
additional overheads for all packet sizes.

0

5

10

15

20

25

30

35

40

45

50

0 8192 16384 24576 32768 40960 49152 57344 65536

Packet Size (bytes)

Th
ro

ug
hp

ut
 (M

bi
ts

/s
)

TCP/IPv6 Stack Throughput (Host-to-host Encapsulation)

TCP/IPv6 Stack Throughput (Router-to-router Tunneling)

TCP/IPv6 Stack Throughput

Figure 8: TCP throughput results for IPv6, and transition
mechanisms with packet size ranging from 64 bytes to 64
Kbytes

Router-to-router tunneling seems to have very little
overhead on top of the IPv6 protocol stack. Specifically,
it incurs about 1% to 7% overhead. On the other hand,

the host-to-host encapsulation performed surprisingly
better than IPv6; this may seem counter intuitive,
however the better performance can be justified to the
better performance of the IPv4 infrastructure [16]. Once a
packet is encapsulated at the host, it will traverse the
entire network as an IPv4 packet, and only at the
receiving host will the packet be de-capsulated. As for
the CPU utilization depicted in Figure 9, the host-to-host
encapsulation incurred the most CPU overhead at the
host. This was expected since the end host had to
encapsulate and de-capsulate (at the host where the CPU
utilization measurements were taken) every single packet
that was transmitted or received, while the other two tests
simply sent and received IPv6 packets.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 8192 16384 24576 32768 40960 49152 57344 65536

Packet Size (bytes)

C
PU

 U
til

iz
at

io
n

%

TCP/IPv6 Stack Throughput CPU
Utilization (Host-to-host Encapsulation)

TCP/IPv6 Stack Throughput CPU Utilization TCP/IPv6 Stack Throughput CPU
Utilization (Router-to-router Tunneling)

Figure 9: CPU utilization for TCP throughput results for
IPv6, and IPv4-IPv6 transition mechanisms with packet
size ranging from 64 bytes to 64 Kbytes

4.2 Latency

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 8192 16384 24576 32768 40960 49152 57344 65536

Packet Size (bytes)

La
te

nc
y

- R
TT

 (M
ic

ro
se

co
nd

s)

TCP/IPv6 Stack Latency
(Host-to-host Encapsulation)

TCP/IPv6 Stack Latency
(Router-to-router Tunneling)

TCP/IPv6
Stack Latency

Figure 10: TCP latency results for IPv6, and transition
mechanisms with packet size ranging from 64 bytes to 64
Kbytes

For the 64 Kbyte packets, IPv6 has a latency of about 40
ms while the host-to-host encapsulation were 30 ms. The
router-to-router tunneling experienced similar trends as
IPv6 with RTTs as high as 42 ms for 64 Kbyte packets.
Again, the host-to-host encapsulation RTT seems to be
counter intuitive to be less than that of IPv6 with no
encapsulation mechanism; however the better
performance can be justified to the lower latency of the
IPv4 infrastructure [16]. Once a packet is encapsulated at
the host, it will traverse the entire network as an IPv4
packet, and only at the receiving host will the packet be
de-capsulated.

2300

2500

2700

2900

3100

3300

3500

3700

3900

0 128 256 384 512 640 768 896 1024 1152 1280 1408

Packet Size (bytes)

La
te

nc
y

- R
TT

 (M
ic

ro
se

co
nd

s)

TCP/IPv6 Stack Latency
(Host-to-host Encapsulation)

TCP/IPv6 Stack Latency
(Router-to-router Tunneling)

TCP/IPv6 Stack Latency

Figure 11: TCP latency results for IPv6, and transition
mechanisms with packet size ranging from 64 bytes to
1408 bytes

As Figure 11 indicates, the router-to-router tunneling
incurs a relatively high performance overhead on top of
all the other experiments. When the packet sizes are

small, the routers take a relative constant amount of time
in order to process each encapsulation and de-capsulation,
and therefore we see the large increase in RTT’s for small
packet sizes. The difference is amortized as the packet
size is larger and eventually the router-to-router tunneling
performance overhead is minimized for larger packet
sizes.

4.3 TCP Connection Time

Table 1 shows that various connection times in each
experiment conducted for the TCP protocol. The host-to-
host encapsulation had the fastest connection time. The
next best was the native IPv6 network protocol and the
worst was the router-to-router tunneling. These numbers
represent performance overhead of 6% to 17% between
IPv6 and the two transition mechanisms. This metric is
important for applications that have many TCP
connections they must perform in relatively small lengths
of time.

IP Version Connection Time
(microseconds)

IPv6 2959.13
Host-to-host Encapsulation 2784.42
Router-to-router Tunneling 3261.58

Table 1: TCP connection time in microseconds for IPv6,
and the transition mechanisms

4.4 Web Client/Server Simulation

The results from Table 2 shows that the order of the
results is really the same as it was in the previous
subsection with the connection times for the TCP
transport protocol. These experiments depend on the time
it takes to set up a socket and the time it takes to perform
a connect operation. Note that this experiment also
transmits a 1-byte message and waits to receive a 1-byte
message. This metric can be relevant for web servers and
the World Wide Web due to their strong presence in
today’s Internet. The results depicted indicate that both
transition mechanisms will have relatively good
performance for web services.

Table 2: The number of Web Client/Server Simulation
tests per second performed over IPv6, and the transition
mechanisms

IP Version Number of
Connections

IPv6 79
Host-to-host Encapsulation 80
Router-to-router Tunneling 76

5 CONCLUSIONS AND FUTURE WORK

In this paper, we presented an unbiased empirical
performance evaluation of IPv6, and two transition
mechanisms, namely host-to-host encapsulation (6-over-
4), and router-to-router tunneling (IPv6 in IPv4
tunneling), over a local area network testbed.

We summarize our major results presented in this work
below.
• The Host-to-host encapsulation transition mechanism

experienced as much as 66% increase in CPU
utilization at the end hosts when compared to either
IPv6 or the router-to-router tunneling.

• The router-to-router tunneling had very little
overhead compared to the IPv6 protocol stack. There
is no guarantee that as the IPv6 stack matures and its
performance improves, that the overhead of the
router-to-router tunneling will remain small. As
transmission speeds increase, processing becomes a
bottleneck, and the overhead of the router-to-router
tunneling might widen its gap as the performance of
IPv6 improves.

• The host-to-host encapsulation transition mechanism
performed slightly better than the native IPv6
protocol stack or the router-to-router tunneling. Note
that once the host has converted the IPv6 packet to an
IPv4 packet, the packet is transmitted over the IPv4
infrastructure that yields relatively better
performance [16] than that of IPv6; the relatively
poor performance of the host-to-host encapsulation is
due to the processing limitation of the host as it
encapsulates/de-capsulates each packet in software.
Most likely, as processing power increases on the end
hosts, we will see an improvement in the
performance of this transition mechanism.

Future work will continue our evaluation with more
transition mechanisms in the hopes to eventually
empirically evaluate all the available transition
mechanisms. We also intend to investigate the
performance of IPv6 when exploiting IPv6 features (such
as the flow label field in the IPv6 header) to investigate
end-to-end QoS support in IPv6 over IP-based networks.

REFERENCES

[1] IETF IPv6 Transition Working Group,
http://www.6bone.net/ngtrans.

[2] I. Raicu. “An Empirical Analysis of Internet
Protocol version 6 (IPv6)”, Master Thesis,
Wayne State University, 2002.

[3] Information Sciences Institute, University of
Southern California, “Internet Protocol,” Request

for Comments 791, Internet Engineering Task
Force, September 1981

[4] S. Bradner, A. Mankin, “IP: Next Generation
(IPng) White Paper Solicitation,” Request for
Comments 1550, Internet Engineering Task
Force, December 1993

[5] S. Deering, R. Hinden, “Internet Protocol,
Version 6 (IPv6) Specification,” Request for
Comments 1883, Internet Engineering Task
Force, December 1995

[6] S. King, et al. “The Case for IPv6”, Internet
Draft draft-ietf-iab-case-for-ipv6-06.txt, Internet
Architecture Board of Internet Engineering Task
Force, December 1999,
http://www.6bone.net/misc/case-for-ipv6.html.

[7] A. S. Tanenbaum, Computer Networks, Third
Edition, Prentice Hall Inc., 1996, pp. 686, 413-
436, 437-449

[8] B. Carpenter, C. Jung, “Transmission of IPv6
over IPv4 Domains without Explicit Tunnels,”
Request for Comments 2529, Internet
Engineering Task Force, March 1999.

[9] A. Conta, S. Deering, “Generic Packet Tunneling
in IPv6 Specification,” Request for Comments
2473, Internet Engineering Task Force,
December 1998

[10] R. Gilligan, E. Nordmark, “Transition
Mechanisms for IPv6 Hosts and Routers,”
Request for Comments 1933, Internet
Engineering Task Force, April 1996

[11] P. Srisuresh, M. Holdrege, “IP Network Address
Translator (NAT) Terminology and
Considerations,” Request for Comments 2663,
Internet Engineering Task Force, August 1999

[12] S. Kent, R. Atkinson. “Security Architecture for
the Internet Protocol”, Request for Comments
2401, Internet Engineering Task Force,
November 1998

[13] G. Tsirtsis, P. Srisuresh, “Network Address
Translation - Protocol Translation (NAT-PT),“
Request for Comments 2766, Internet
Engineering Task Force, February 2000.

[14] A. Durand, P. Fasano, I. Guardini, D. Lento,
“IPv6 Tunnel Broker, ” Request for Comments
3053, Internet Engineering Task Force, January
2001.

[15] B. Carpenter, K. Moore, “Connection of IPv6
Domains via IPv4 Clouds,” Request for

Comments 3056, Internet Engineering Task
Force, February 2001.

[16] I. Raicu, S. Zeadally. “Impact of IPv6 on End-
user Applications”, to appear at 10th
International Conference on
Telecommunications, ICT'2003, Tahiti Papeete,
French Polynesia, February 23, 2003.

[17] R. P. Draves, et al. “Implementing IPv6 for
Windows NT”. Proceedings of the 2nd USENIX
Windows NT Symposium, Seattle, WA, August
3-4, 1998.

[18] P. P. Xie. “Network Protocol Performance
Evaluation of IPv6 for Windows NT”, Master
Thesis, California Polytechnic State University,
San Luis Obispo, June 1999.

[19] S. Ariga, K. Nagahashi, A. Minami, H. Esaki, J.
Murai. “Performance Evaluation of Data
Transmission Using IPSec over IPv6 Networks”,
INET 2000 Proceedings, Japan, July 18th, 2000

[20] K. K. Ettikan. “IPv6 Dual Stack Transition
Technique Performance Analysis: KAME on
FreeBSD as the Case”, Faculty of Information
Technology, Multimedia University, Jalan
Multimedia, October 2000

[21] K. K., Ettikan, et al. “Application Performance
Analysis in Transition Mechanism from IPv4 to
IPv6”. Research & Business Development
Department, Faculty of Information Technology,
Multimedia University (MMU), Jalan
Multimedia, June 2001.

[22] Microsoft Corporation, “Microsoft IPv6
Technology Preview for Windows 2000,”
December 12, 2000,
http://www.microsoft.com/windows2000/technol
ogies/communications/ipv6/default.asp

