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Abstract 
The next-generation Internet Protocol, initially known as 
IP Next Generation (Ipng), and then later as IPv6, has 
been developed by the Internet Engineering Task Force 
(IETF) to replace the current Internet Protocol (also 
known as IPv4). To enable the integration of IPv6 into 
current networks, several transition mechanisms have 
been proposed by the IETF IPng Transition Working 
Group. This work examines and empirically evaluates two 
transition mechanisms, namely 6-over-4, and IPv6 in 
IPv4 tunneling, as they relate to the performance of IPv6.  
We explore the impact of these approaches on end-to-end 
user application performance using metrics such as 
throughput, latency, host CPU utilization, TCP 
connection time, and the number of TCP connections per 
second that a client can establish with a remote server.  
All experiments were conducted using two dual stack 
(IPv4/IPv6) routers and two end-stations running 
Windows 2000, loaded with a dual IPv4/IPv6 stack.   

Keywords: IPv4, IPv6, 6-over-4, encapsulation, 
tunneling, performance evaluation  

1 INTRODUCTION 

Over the last decade, IETF has been working on the 
deployment of IPv6 [1, 2] to replace the current IPv4 [3] 
protocol. The motivations behind IPv6 are briefly 
discussed in the following section and are covered in the 
literature [4, 5, 6, 7]. One of the biggest challenges in the 
deployment of IPv6 is how to migrate IPv4-based 
infrastructures to those supporting IPv6. It is impractical 
and costly to replace existing IPv4-based networking 
infrastructures with IPv6. To ensure a smooth and 
successful integration of IPv6 into existing networks, the 
IETF IPng Transition Working Group [1] has been 
working on several transition strategies, tools, and 

mechanisms.  In general, these transition mechanisms 
encapsulate IPv6 packets into IPv4 packets and transport 
them over an IPv4 network infrastructure.  We expect to 
rely on these transition strategies as the Internet shifts 
from the traditional IPv4 to an IPv6-based Internet while 
retaining both IPv4 and IPv6 throughout the transition 
phase.  

The main goal of this work is to empirically evaluate two 
transition mechanisms, namely 6-over-4 [8] and IPv6 in 
IPv4 tunneling [9], and assess the impact of these 
approaches on end-to-end application performance. We 
evaluate the performance impact of these mechanisms in a 
real world setting, which includes hosts and routers 
supporting dual IPv4/IPv6 stacks. [10] The 6-over-4 
mechanism performs the encapsulation of IPV6 into IPV4 
packets at the host, and we will refer to it as host-to-host 
encapsulation henceforth.  The IPv6 in IPv4 tunneling 
performs the encapsulation at the routers, and we will 
refer to it as router-to-router tunneling throughout the 
paper.   

Section 2 covers background information about the 
fundamental differences between IPv4 and IPv6 and some 
related works.  It also presents a brief overview of the 
various transition mechanisms, including a significant 
review of router-to-router tunneling and host-to-host 
encapsulation.  Section 3 describes the test-bed 
configurations used and our measurement procedures.  
Section 4 discusses our experimental results.  Finally, in 
section 5, we make some concluding remarks and discuss 
future work. 

2 BACKGROUND  

2.1 IPv4 and IPv6 Architecture 

Internet Protocol was first developed in the early 1980s.  
In the early 1990s, it became pretty evident that if the 
Internet will continue to grow at the rate it was growing, 
the IPv4 address space would be depleted by the turn of 
the millennium.  Some temporary solutions were offered, 
such as NAT (Network Address Translator) [11] or CIDR 
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(Classless InterDomain Routing) [7], however work 
began on a new Internet Protocol, namely IPv6. 

The main reason for a new version of the Internet 
Protocol was to increase the address space; IPv6 was 
designed with a 128 bit address scheme, enough to label 
every molecule on the surface of the earth with a unique 
address [7].  Furthermore, the only kind of traffic that 
existed on the internet twenty years ago was elastic 
traffic, such as emails or file transfers.  These kinds of 
traffic were very flexible regardless of the network 
conditions; on the other hand, inelastic traffic requires a 
certain level of guaranteed performance, which if not met, 
the application does not have the same usefulness.  IPv6 
was designed for efficiently supporting both elastic and 
inelastic traffic. 

The goals of IPv6 were to support scalability, security, 
and multimedia transmissions.  First, the address space is 
increased from 32 bits to 128 bits.  Unlike IPv4, IPSec 
[12] support has become a requirement in the IPv6 
header.  Payload identification for QoS handling by 
routers is now supported by the Flow Label field in the 
IPv6 packet header.  Fragmentation support has been 
moved from routers to the sending hosts.  The IPv6 
header does not include a checksum and has no options 
included in the header, but rather introduces extension 
headers.  Finally, IPv6 requires no manual configuration 
or DHCP (Dynamic Host Configuration Protocol), which 
will become important as the number of nodes increases.  
Overall, IPv6 was carefully thought out and was designed 
with future applications in mind. [7] 

The main difference in the packet layout between IPv4 
and IPv6 is that IPv4 has a 20 byte header while IPv6 has 
a 40 byte header.  Although the address space in IPv6 is 
four times the size of its counterpart, IPv6 has reduced the 
number of required fields and made them optional as 
extension headers.  Since the Ethernet MTU size is 1514 
bytes, the additional 20 bytes of header information only 
incurs an additional 1.3% overhead; an additional 20 
bytes of header information when an IPv6 packet is 
encapsulated in an IPv4 packet raises the overall overhead 
to 2.6%.  In theory, this performance overhead between 
these two protocols is minimal.   

2.2 IPv4 to IPv6 Transition Mechanisms 

Some currently available transition mechanisms are: Dual 
Stacks [10], DTI & Bump-in-dual-stack, NAT Protocol 
Translator [13], Stateless IP/ ICMP Translator (SIIT), 
Assignment of IPv4 Global Addresses to IPv6 Hosts 
(AIIH), Tunnel Broker [14], 6-to-4 Mechanism [15], 6-
over-4 Mechanism [8], and IPv6 in IPv4 tunneling [9].  
Dual Stacks are easiest to implement, however 
complexity increases at the hosts due to both 
infrastructures and the cost is higher due to a more 

complex technology stack.  NAT Protocol Translator has 
scaling and DNS issues, and has single point of failure 
disadvantage.  The Tunnel Broker dynamically gains 
access to tunnel servers, but has authentication and 
scaling issues.  6-to-4 mechanism creates dynamic 
stateless tunnels over IPv4 infrastructure to connect 6-to-4 
domains.  6-over-4 mechanism allows the interconnection 
of isolated IPv6 hosts to connect over the IPv4 
infrastructure without requiring IPv6 enabled routers or 
explicit tunnels.  IPv6 in IPv4 tunneling allows existing 
infrastructure to be utilized via manually configured 
tunnels.  

We chose to pursue the IPv6 in IPv4 tunneling and 6-
over-4 as a transition mechanism.  6-over-4 mechanism 
performs the encapsulation at the host, and therefore we 
will refer to it as host-to-host encapsulation throughout 
the paper.  The IPv6 in IPv4 tunneling performs the 
encapsulation at the routers, and hence we will refer to it 
as router-to-router tunneling.  The router-to-router 
tunneling enables two entire LANs to be upgraded to IPv6 
while maintaining connectivity to the rest of the Internet.  
Host-to-host encapsulation is also addressed mainly 
because of its simplicity of implementation, and offers 
another method of making the transition from IPv4 to 
IPv6 as smooth as possible.   

Encapsulation of IPv6 packets within IPv4 packets allows 
two IPv6 hosts/networks to be connected with each other 
while running on existing IPv4 networks.  IPv6 packets 
are encapsulated in IPv4 packets and then are transmitted 
over IPv4 networks like ordinary IPv4 packets.  At the 
destination, these packets are de-capsulated to the original 
IPv6 packets.  It should be noted that encapsulation of 
IPv6 packets in IPv4 packets, only IPv4 routing properties 
will be utilized and hence the IPv6 packet will lose any 
special IPv6 features until it is de-capsulated at the 
receiving host/router.  It requires a hole in a firewall to 
allow protocol 41 (IP in IP encapsulation, or in our case, 
IPv6 in IPv4) passage. 

2.2.1 Host-to-Host Encapsulation 

In the host-to-host encapsulation method, the 
encapsulation is done at the source host and the de-
capsulation is done at the destination host.  The 
encapsulated datagrams are sent through a native IPv4 
network that has no knowledge of the IPv6 network 
protocol.  Figure 1 illustrates two hosts, each with dual 
IPv4/IPv6 stacks which encapsulate the packets of IPv6 in 
IPv4 packets and transmit over the network as an IPv4 
packet.  With this transition mechanism, it is possible to 
support IPv6 simply by upgrading the end hosts protocol 
stacks to IPv6 while leaving the IPv4 infrastructure 
unchanged.   



 

Figure 2 depicts an IPv6 packet encapsulated in an IPv4 
packet.  All the various header fields (IP version, Flow 
Label, Next Header, etc) are clearly visible just as we had 
described them in the earlier section. 

 
Figure 1: Host-to-Host tunneling 

 
Figure 2: IPv6 packet encapsulated in an IPv4 packet 

depicted by the Microsoft Network Monitor 

2.2.2 Router-to-Router Tunneling 

In router-to-router tunneling mechanism, encapsulation is 
done at the edge router of the originating host and de-
capsulation is done at the edge router of the destination 
host.   

The tunnel is created between the two edge routers 
supporting both IPv4 and IPv6 stacks.  Therefore, the end 
hosts can support native IPv6 protocol stack while the 
edge routers create the tunnels and handle the 
encapsulation and de-capsulation of IPv6 packets over the 
existing IPv4 infrastructure. 

Figure 3 shows a tunnel established between two dual 
stack edge routers. The IPv6 packets are forwarded from 
host to edge routers while encapsulation takes place at the 
router level; similarly at the other end, the reverse process 
takes place.  In this method, both edge routers need to 

support dual stacks and established a tunnel prior to 
transmission.  Note that other transition mechanisms 
exists that dynamically establish the tunnels as needed. 

 
Figure 3: Router-to-Router Tunneling 

2.3 Related Work 

It is important to point out that our work was driven by 
the fact that there is no empirical performance 
experimentation to evaluate any of the transition 
mechanisms that currently exist to assist in the 
deployment of IPv6 networks.  This work extends our 
previous work [16] where we compared the IPv4 protocol 
and the IPv6 protocol under various operating systems 
and testbed configurations.     

Most of the industry wide routers implement their 
functionality in hardware and are therefore we believe 
that hardware based routers are more efficient than a 
software-based router implementation.  The reason few 
researchers tested IPv6’s performance using hardware-
based routers supporting dual stack IPv4/IPv6 are 
relatively expensive; as an example, the two routers we 
used for our experiments cost a total of US $60,000.  As a 
result, most of the work done in the research community 
has been performed using software-based routers utilizing 
off-the-shelf PCs.  Various works have been attempted 
[17, 18, 19, 20, 21] which evaluated the IPv6 protocol 
stack, however none of them used hardware-based 
routers, had such a wide range of metrics, and none 
investigated transition mechanisms.      

3 EXPERIMENTAL TESTBED AND 
MEASUREMENT PROCEDURES  

3.1 Testbed Configuration 

Our testbed consisted of two dual stack (IPv4/IPv6) 
routers: an Ericsson AXI 462, and an IBM 2216 Nways 
Multiaccess Connector Model 400.  In addition, two 
identical workstations were connected directly to the 
routers and were configured to be on separate networks.     



 

Ericsson AXI 462 Router

PC SZ06
IPv4 - 141.217.17.26/24
IPv6 - 4:4:4:4:4:4:4:2/64

PC SZ07
IPv4 - 172.17.0.27/24

IPv6 - 8:8:8:8:8:8:8:2/64

* R3 IPv4 10/100 - 10.0.0.1/8
* R3 IPv6 10/100 - 3:3:3:3:3:3:3:1/64
* R4 IPv4 10/100 - 141.217.17.49/24
* R4 IPv6 10/100 - 4:4:4:4:4:4:4:1/64
* R5 - N/A
* R6 - N/A

* R1 - N/A
* R2 - N/A
* R3 - N/A
* R4 IPv4 10/100 - 10.0.0.3/8
* R4 IPv6 10/100 - 3:3:3:3:3:3:3:3/64
* R5 - N/A
* R6 - N/A
* R7 - N/A
* R8 IPv4 10/100 - 172.17.0.1/24
* R8 IPv6 10/100 - 8:8:8:8:8:8:8:1/64

*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*

IBM AS/400 Router

Figure 4: IBM-Ericsson Testbed architecture; two routers 
are depicted, an IBM 2216 Nways Multiaccess Connector 

Model 400 and an Ericsson AXI 462 

Both workstations used were equipped with Intel Pentium 
III 500 MHz processors, 256 megabytes of SDRAM 
PC100, 30GB IBM 7200 RPM IDE hard drive, and COM 
10/100 PCI network adapters.  The workstations were 
loaded with Windows 2000 Professional.  Windows 2000 
had the IPv4 stack as a standard protocol; however in 
order to get IPv6 support, an add-on package was 
installed.  There were two add-on package choices to 
choose from, both written by Microsoft and in Beta 
testing.  We chose the newer release of the two, 
“Microsoft IPv6 Technology Preview for Windows 2000” 
[22] which is supported by Winsock 2.   

Our testbed configuration shown in Figure 4 a depicts the 
entire testbed utilizing two routers in between the two end 
hosts connected via a 100 Mbit/s link.  Note that the IP 
addresses of the end hosts are not on the same network, 
and hence we have the routers to allow communication 
between the two distinct networks.  In the Ericsson router, 
R3 through R6 are the various network cards available; 
each interface card has both an IPv4 and an IPv6 address.  
Similarly, on the IBM router, R1 through R8 are the 
various network cards that are available; each interface 
card has both an IPv4 and an IPv6 address. 

3.2 Measurement Procedures 

The majority of the tests were done for a sufficiently long 
period of time and resulted in the exchange of 50,000 
packets to 1,000,000 packets, depending on the size of the 
packets sent and the corresponding test.  We conducted an 
empirical measurement based on the following 
performance metrics: throughput, latency, CPU 
utilization, TCP connection time, and the number of TCP 
connections per second.  All the performance 
measurement software was written in C++. 

• Throughput:   
The rate at which bulk data transfers can be 
transmitted from one host to another over a 
sufficiently long period of time; the performance is 
measured in Mbit/s 

• Latency 
Latency, also known as RTT (round trip time), is the 
amount of time it takes one packet to travel from one 
host to another and back to the originating host; the 
performance is measured in microseconds per RTT 

• CPU Utilization 
This metric was measured only for Windows 2000 
using the Windows Task Manager under the 
performance tab; the average CPU utilization was 
recorded throughout each corresponding experiment; 
the performance is measured in percentage of 
utilization   

• TCP Connection Time 
This metric measured the amount of time it took to 
establish a TCP connection between the client and 
the server; the performance is measured in 
microseconds per TCP connection 

• Web Client/Server Simulation 
This simulation investigated the maximum number of 
tests that could be performed per second by the 
client/server applications; the test comprised of: 
create a socket, make a TCP connection, send a 1-
byte message, receive a 1-byte message, tear down 
the connection, and destroy the socket; the 
performance is measured in number of tests per 
second  

We conducted three basic performance comparison tests 
over the TCP transport protocol under the Windows 2000 
operating system: 

• Homogeneous IPv6 Network (Figure 5) is referred to 
as TCP/IPv6 Stack Test Name in Figure 8 through 
Figure 11 

• Heterogeneous IPv4 and IPv6 Network (Figure 6), 
known as IPv6 in IPv4 Tunneling, is referred to as 
TCP/IPv6 Stack Test Name (Router-to-router 
Tunneling) in Figure 8 through Figure 11 

• Heterogeneous IPv4 and IPv6 Network (Figure 7), 
known as 6-over-4, is referred to as TCP/IPv6 Stack 
Test Name (Host-to-host Encapsulation) in Figure 8 
through Figure 11 
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Figure 5: IPv6 Homogeneous Network 
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Figure 6: Router-to-router Tunneling IPv4/IPv6 Heterogeneous Network 
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Figure 7: Host-to-host Encapsulation IPv4/IPv6 Heterogeneous Network 

Note that all the basic configurations above all have IPv6-
based applications, and the major difference between the 
various configurations is the infrastructure that is required 
for two end applications to communicate.  

4 EXPERIMENTAL RESULTS 

4.1 Throughput 

As Figure 8 indicates, every layer of complexity adds 
additional overheads for all packet sizes.   
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Figure 8: TCP throughput results for IPv6, and transition 
mechanisms with packet size ranging from 64 bytes to 64 
Kbytes 

Router-to-router tunneling seems to have very little 
overhead on top of the IPv6 protocol stack.  Specifically, 
it incurs about 1% to 7% overhead.  On the other hand, 

the host-to-host encapsulation performed surprisingly 
better than IPv6; this may seem counter intuitive, 
however the better performance can be justified to the 
better performance of the IPv4 infrastructure [16].  Once a 
packet is encapsulated at the host, it will traverse the 
entire network as an IPv4 packet, and only at the 
receiving host will the packet be de-capsulated.  As for 
the CPU utilization depicted in Figure 9, the host-to-host 
encapsulation incurred the most CPU overhead at the 
host.  This was expected since the end host had to 
encapsulate and de-capsulate (at the host where the CPU 
utilization measurements were taken) every single packet 
that was transmitted or received, while the other two tests 
simply sent and received IPv6 packets. 
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Figure 9: CPU utilization for TCP throughput results for 
IPv6, and IPv4-IPv6 transition mechanisms with packet 
size ranging from 64 bytes to 64 Kbytes 

 

 



 

4.2 Latency 
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Figure 10: TCP latency results for IPv6, and transition 
mechanisms with packet size ranging from 64 bytes to 64 
Kbytes 

For the 64 Kbyte packets, IPv6 has a latency of about 40 
ms while the host-to-host encapsulation were 30 ms.  The 
router-to-router tunneling experienced similar trends as 
IPv6 with RTTs as high as 42 ms for 64 Kbyte packets.  
Again, the host-to-host encapsulation RTT seems to be 
counter intuitive to be less than that of IPv6 with no 
encapsulation mechanism; however the better 
performance can be justified to the lower latency of the 
IPv4 infrastructure [16].  Once a packet is encapsulated at 
the host, it will traverse the entire network as an IPv4 
packet, and only at the receiving host will the packet be 
de-capsulated.   
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Figure 11: TCP latency results for IPv6, and transition 
mechanisms with packet size ranging from 64 bytes to 
1408 bytes 

As Figure 11 indicates, the router-to-router tunneling 
incurs a relatively high performance overhead on top of 
all the other experiments.  When the packet sizes are 

small, the routers take a relative constant amount of time 
in order to process each encapsulation and de-capsulation, 
and therefore we see the large increase in RTT’s for small 
packet sizes.  The difference is amortized as the packet 
size is larger and eventually the router-to-router tunneling 
performance overhead is minimized for larger packet 
sizes. 

4.3 TCP Connection Time 

Table 1 shows that various connection times in each 
experiment conducted for the TCP protocol.  The host-to-
host encapsulation had the fastest connection time.  The 
next best was the native IPv6 network protocol and the 
worst was the router-to-router tunneling.  These numbers 
represent performance overhead of 6% to 17% between 
IPv6 and the two transition mechanisms.  This metric is 
important for applications that have many TCP 
connections they must perform in relatively small lengths 
of time.  

IP Version Connection Time 
(microseconds) 

IPv6 2959.13 
Host-to-host Encapsulation 2784.42 
Router-to-router Tunneling 3261.58 

Table 1: TCP connection time in microseconds for IPv6, 
and the transition mechanisms 

4.4 Web Client/Server Simulation 

The results from Table 2 shows that the order of the 
results is really the same as it was in the previous 
subsection with the connection times for the TCP 
transport protocol.  These experiments depend on the time 
it takes to set up a socket and the time it takes to perform 
a connect operation.  Note that this experiment also 
transmits a 1-byte message and waits to receive a 1-byte 
message.  This metric can be relevant for web servers and 
the World Wide Web due to their strong presence in 
today’s Internet.  The results depicted indicate that both 
transition mechanisms will have relatively good 
performance for web services.  

 
Table 2: The number of Web Client/Server Simulation 
tests per second performed over IPv6, and the transition 
mechanisms 

 

IP Version Number of 
Connections 

IPv6 79 
Host-to-host Encapsulation 80 
Router-to-router Tunneling 76 



 

5 CONCLUSIONS AND FUTURE WORK 

In this paper, we presented an unbiased empirical 
performance evaluation of IPv6, and two transition 
mechanisms, namely host-to-host encapsulation (6-over-
4), and router-to-router tunneling (IPv6 in IPv4 
tunneling), over a local area network testbed.   

We summarize our major results presented in this work 
below. 
• The Host-to-host encapsulation transition mechanism 

experienced as much as 66% increase in CPU 
utilization at the end hosts when compared to either 
IPv6 or the router-to-router tunneling. 

• The router-to-router tunneling had very little 
overhead compared to the IPv6 protocol stack.  There 
is no guarantee that as the IPv6 stack matures and its 
performance improves, that the overhead of the 
router-to-router tunneling will remain small.  As 
transmission speeds increase, processing becomes a 
bottleneck, and the overhead of the router-to-router 
tunneling might widen its gap as the performance of 
IPv6 improves.   

• The host-to-host encapsulation transition mechanism 
performed slightly better than the native IPv6 
protocol stack or the router-to-router tunneling.  Note 
that once the host has converted the IPv6 packet to an 
IPv4 packet, the packet is transmitted over the IPv4 
infrastructure that yields relatively better 
performance [16] than that of IPv6; the relatively 
poor performance of the host-to-host encapsulation is 
due to the processing limitation of the host as it 
encapsulates/de-capsulates each packet in software.  
Most likely, as processing power increases on the end 
hosts, we will see an improvement in the 
performance of this transition mechanism. 

Future work will continue our evaluation with more 
transition mechanisms in the hopes to eventually 
empirically evaluate all the available transition 
mechanisms.  We also intend to investigate the 
performance of IPv6 when exploiting IPv6 features (such 
as the flow label field in the IPv6 header) to investigate 
end-to-end QoS support in IPv6 over IP-based networks.    
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