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Evaluating IPV6 on
Windows and Solaris
IPv6 might solve several of IPv4’s shortcomings, but the

longer headers and address space add overhead that affects a

range of performance metrics for both TCP and UDP.

In addition to increasing the address
space, IPv6 was designed to address
some of IPv4’s other shortcomings,

including scalability and security.1,2 The
protocol also supports new Internet appli-
cations that require advanced features to
provide services like real-time audio and
video delivery. IPv6 is now maturing and
becoming more widespread, but few
researchers have empirically evaluated its
performance benefits and drawbacks.

IPv6 replaces IPv4’s 20-byte header
with a 40-byte header that allots four
times as many bits for addressing (128
bits for IPv6 versus 32 bits for IPv4). The
overall impact of this increase is 1.32 per-
cent higher overhead with IPv6 for an
Ethernet maximum transmission unit
(MTU) size of 1,514 bytes. Theoretically,
this performance overhead is minimal,
but our experimental results demonstrate
that the real difference between IPv4 and
IPv6 is much larger than predicted.

We established a test bed to compare

the two protocol stacks along a set of six
performance metrics. We also compared
two IPv6 implementations running on
Windows 2000 and Solaris 8 using iden-
tical hardware and settings. We per-
formed additional tests using different
configurations, including a pair of com-
mercial routers that support dual
IPv4–IPv6 stacks. While the majority of
those results are beyond this article’s
scope, some of our experiences with the
routers raised points that we address here.

Test Bed and
Measurement Procedures
Most of the metrics we used in our tests
characterize end-to-end application per-
formance, providing good comparisons
between IPv6-based applications and
their IPv4 counterparts.

Test Bed Configuration
To focus on the protocols’ behaviors on
different operating systems, we connect-



ed two identical workstations using a point-to-
point link, which let us eliminate most variables
from the experiments (router processing, for exam-
ple). Both workstations were equipped with Intel
Pentium III 500-MHz processors, 256 Mbytes of
SDRAM PC100, two 30-Gbyte IBM 7200 RPM IDE
hard drives, and 100 Mbit-per-second (Mbps) PCI
Ethernet network adapters. The workstations were
set with dual-boot configurations loaded with both
Windows 2000 Professional and Solaris 8.0 on two
separate, identical hard drives. To add IPv6 support
to Windows 2000’s standard IPv4 stack, we had
two add-on packages to choose from — both writ-
ten by Microsoft and both in beta testing. We chose
the newer release, Microsoft IPv6 Technology Pre-
view for Windows 2000 (www.microsoft.com/
windows2000/technologies/communications/ipv6/),
which is supported by Winsock 2 as its program-
ming API. 

Because we were investigating the performance
of IPv6 stacks at the end hosts, we initially exper-
imented with different packet sizes. During our
tests, we discovered that Microsoft’s IPv6 stack for
Windows 2000 could not handle fragmentation
well for user datagram protocol (UDP) messages
that were larger than the Ethernet MTU size of
1,514 bytes. With TCP, there was no such problem,
although the stack might have other deficiencies
that we did not uncover. A closer look at the prob-
lem — confirmed using the Windows 2000 Net-
work Monitor Tool to monitor network traffic —
revealed that no Ethernet frames were being deliv-
ered from the host to the wire for these large UDP
messages. We could not explain why the stack
was unable to handle the messages (partly because
the source code was unavailable for review), but
we plan to investigate this further. In contrast,
Solaris 8.0 came with a dual production-level
IPv4–IPv6 stack in which the IPv6 stack worked
fine for UDP messages that were greater than the
Ethernet MTU size.

Measurement Procedures
Because they have a direct impact on the ultimate
performance perceived by end user applications,
we used the following metrics in our tests: 

• throughput (measured in Mbps) is the rate at
which bulk data transfers can be transmitted
from one host to another over a sufficiently
long time period;

• round-trip time (measured in microseconds) is
how long it takes a packet to travel from the
sender to the receiver and back;

• CPU utilization (measured as a percentage) is
the amount of CPU processing resources con-
sumed by the host (sender);

• socket-creation time (measured in microsec-
onds) measures how long it takes an applica-
tion to create a socket;

• TCP-connection time (measured in microsec-
onds) measures how long it takes an applica-
tion to make a connection to a remote host
application for TCP; and 

• client-server interactions measures the number
of connections that can be performed per sec-
ond. For each test, the application created a
socket, set up a TCP connection, sent and re-
ceived a 1-byte message, and then tore down
the connection and destroyed the socket. 

Most tests were executed for a period of about 60
seconds, which usually generated between
50,000 and one million packets, depending on
their size. We repeated each test three times
using packets ranging from 64 to 1,408 bytes
(typical for Internet traffic) to rule out any
inconsistencies. When the results of the three
tests were too inconsistent to form a valid con-
clusion, we performed the experiments several
more times.

Experimental Results
Our results illustrate IPv6’s impact on user appli-
cation performance. The comparison between the
Solaris and Windows IPv6 protocol stacks further
shows the state of IPv6 on popular commodity
operating systems. 

Throughput
Throughput is valuable in understanding a sys-
tem’s performance. In our tests, we measured
application-to-application throughput, which
demonstrates the end-to-end performance that can
be delivered to the end user over IPv4–IPv6 pro-
tocol stacks. As Figure 1 illustrates, Solaris shows
a significant difference between IP versions’
throughput for TCP messages of less than 256
bytes: IPv4 yields almost three times better per-
formance than IPv6. The differences decrease,
however, for messages of 1,024 bytes and greater.
The results are quite different for Windows 2000,
for which throughput is very similar for IPv4 and
IPv6 with small TCP messages. For messages of
more than 512 bytes, however, IPv4 yields about
11 percent higher throughput. 

We obtained quite different results for UDP
throughput. Figure 2 shows similar performance for

52 MAY • JUNE 2003     http://computer.org/internet/ IEEE INTERNET COMPUTING

IPv6



both IPv4 and IPv6 on Solaris — even for small
messages (less than 256 bytes). Similarly, Windows
2000 exhibited similar throughput for both IPv4
and IPv6 for small messages. As message size
increases, however, Windows yields lower through-
put for IPv6 — 25 percent lower than IPv4 for mes-
sages of more than 1 Kbyte.

We believe that the difference in throughput per-
formance between IPv4 and IPv6 is more pro-
nounced for small messages with TCP than UDP
mainly because of TCP optimizations such as the
Nagle algorithm6 and delayed acknowledgments.
With the Nagle algorithm, the stack waits for an

acknowledgment or more data from the application
before sending small amounts of data with high
header; with delayed acknowledgments, the stack
“piggybacks” acknowledgments, which can also cre-
ate sender-side delays. These optimizations affect
IPv6 packet performance more than IPv4 because of
the higher header overheads associated with IPv6. 

Round-Trip Latency
Latency is an important performance metric for many
network-based applications. Continuous media appli-
cations such as those involving audio and video are
particularly sensitive to delay. Transactional applica-
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Figure 1. TCP throughput for IPv4 and IPv6 over Windows 2000 and Solaris 8.0. For small messages,
IPv4 outperforms IPv6 by almost three times on Solaris.

0 128 256 384 512 640 768 896 1,024 1,152 1,280 1,408

UDP/IPv4 Windows UDP/IPv6 Windows

UDP/IPv4 Solaris UDP/IPv6 Solaris0

10

20

30

40

50

60

70

80

90

100

Packet size (bytes)

T
hr

ou
gh

pu
t 

(M
bp

s)

Figure 2. UDP throughput for IPv4 and IPv6 over Windows 2000 and Solaris 8.0. For small messages,
IPv6 outperforms IPv4 on Windows 2000.



tions (involving mostly request–reply operations),
such as HTTP and DNS implementations, are sensi-
tive to round-trip latency. In this context, we examine
the IPv6 and IPv4 stacks’ impact on end-to-end laten-
cy and application performance.

As Figure 3 shows, the TCP round-trip latency
with IPv6 is about 30 percent higher (worse) than
the IPv4 stack for messages up to 1 Kbyte on Win-
dows 2000. With Solaris, we observe a 5 percent
increase in latency for IPv6 compared to IPv4. For
packets larger than 1 Kbyte, we see an increase in
latency on both Solaris and Windows 2000 of
around 1 to 2 percent using IPv6 with TCP. This is

probably due to the amortization of overheads
associated with larger packet sizes (larger user
payloads).

The UDP results depicted in Figure 4 also show
about 30 percent higher latency with IPv6 than
IPv4 on Windows 2000 for messages up to 1
Kbyte. With increasing message sizes, the latency
difference between IPv4 and IPv6 packets decreas-
es. With Solaris, we again obtained about 5 per-
cent higher latency with IPv6 than with IPv4. It is
interesting to note that there were no significant
latency differences between TCP and UDP (at least
for the message sizes tested) for either operating
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Figure 3. TCP latency for IPv4 and IPv6 over Windows 2000 and Solaris 8.0. TCP latency differences
between IPv4 and IPv6 are higher on Windows 2000 than on Solaris.

0 128 256 384 512 640 768 896 1,024 1,152 1,280 1,408
Packet size (bytes)

La
te

nc
y 

(m
ic

ro
se

co
nd

s)

UDP/IPv4 Windows UDP/IPv6 Windows

UDP/IPv4 Solaris UDP/IPv6 Solaris

0

100

200

300

400

500

600

700

Figure 4. UDP latency for IPv4 and IPv6 over Windows 2000 and Solaris 8.0. UDP latency differences
between IPv4 and IPv6 are higher on Windows 2000 than on Solaris.



system, despite the fact that TCP has greater over-
head than UDP.

CPU Utilization
CPU availability is an important resource at the end
system. We measured CPU usage at the sending
host during our throughput experiments, using the
Windows 2000 Task Manager’s performance mon-
itor tool. We observed that for similar throughput
results (nearly 90 Mbps over the 100-Mbps Ether-
net local area network), TCP over IPv6 used about
20 percent more CPU resources than TCP over IPv4. 

Socket-Creation Time 
and TCP-Connection Time
From Table 1, it is clear that Solaris 8.0 outper-
forms Windows 2000 for both TCP and UDP sock-
et-creation time and TCP-connection time. Sock-
et-creation time did not change significantly
between IPv4 and IPv6 under Solaris (a 7 percent
increase for both TCP and UDP); under Windows
2000, however, IPv6 socket-creation times
increased by 31 percent for TCP and 13 percent for
UDP. A closer look at the steps involved during
socket creation helps explain the bigger difference
for an IPv6 socket than for an IPv4 socket, and for
Windows 2000 compared to Solaris. 

On Solaris, when a user application makes the
socket() call, control passes to the socket library,
which then makes one or more calls to the underly-
ing operating system. On Windows 2000, the
Winsock 2 library (actually known as ws2_32.dll)
provides the bridge between applications and under-
lying transport service providers, which implement
actual transport-protocol functions. When a socket
is created, the ws2_32.dll selects the appropriate
service provider, based on the protocol description
parameter; it also forwards application procedure

calls involving the socket to the appropriate service
provider that controls that socket. 

Given that the IPv6 socket address size is con-
stant, we hypothesize that differences in how Win-
dows 2000 and Solaris implement sockets are pri-
marily responsible for the large performance
differences. Solaris probably has a more efficient
socket layer than the ws2_32.dll, faster user and
kernel switches during system calls, and better
protocol stack implementations. These factors also
likely explain Solaris’s three to four times better
performance for socket creation (regardless of IPv4
or IPv6). We plan to conduct more tests in the
future to confirm these explanations.

TCP connection times are higher with IPv6 than
IPv4 for both Solaris and Windows 2000. Table 1
reveals that Solaris yields a 6 percent increase in
connection time, whereas Windows 2000 shows a
50 percent increase. The increased connection time
with IPv6 is again likely due to the overhead from
the increased header and address sizes. UDP does
not use a connection mechanism like TCP, so we
did not measure the connection time.

Web Client-Server Simulation 
Over the past few years, we have witnessed the
proliferation of Web servers that handle numerous
transactions per second. These transactions are
typically of short duration and involve operations
that are mostly request–reply in nature. Each of
these operations basically requires a connection
set up, data transfer, and a closing of the connec-
tion. The performance delivered to Web clients
therefore depends in part on how fast servers can
execute these operations. Given that many Web
servers will soon support dual stacks, we were
interested in the performance penalty, if any, that
IPv6 clients would incur compared to IPv4 clients.
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Table 1. UDP and TCP socket-creation time and TCP-connection time for IPv4 and IPv6.

Operating Transport IP version Socket-creation time Connection time
system protocol (microseconds) (microseconds)

Solaris 8.0 TCP IPv4 1,622.51 576.86
IPv6 1,736.45 611.55

UDP IPv4 1,908.21 N/A
IPv6 2,041.74 N/A

Windows 2000 TCP IPv4 6,128.74 675.93
IPv6 8,006.51 1,012.13

UDP IPv4 6,002.74 N/A
IPv6 6,812.13 N/A



In our testing, we obtained 430 connections per
second for IPv4 and 404 connections per second
for IPv6 on Solaris 8.0, a 6 percent drop. On Win-
dows 2000, we obtained 147 and 115 connections
per second for IPv4 and IPv6, respectively, which
represents a 22 percent drop. The decrease in the
number of connections with IPv6 is mainly due to
the rather large increase in socket-creation and
connection time. It is interesting to note, howev-
er, that Solaris significantly outperforms Windows
2000 — by almost four times — and demonstrates
its potential superiority for Web servers support-
ing dual IPv4–IPv6 stacks.

IPv6 Router Performance
Although space constraints limit this article’s scope
to the performance comparison we obtained using
a point-to-point configuration, we have also repeat-
ed all the experiments using other network config-
urations involving two commercial routers between
the sender and receiver hosts. Both routers — the
Ericsson AXI 462 router and the IBM 2216 Nways
Multiaccess Connector Model 400 — support a dual
IPv4–IPv6 stack. The use of hardware routers also
differentiates our efforts from others, which have
primarily used software-based routers3,4 (see the
sidebar on “Related Work in IPv6 Performance”).
The cost of hardware-based dual-stack routers — the
two routers we used totaled US$60,000, for example

— prohibits most researchers from testing IPv6’s
performance with real routers. Another possible rea-
son for the dearth of IPv4-versus-IPv6 performance
comparisons might be that many router vendors are
still implementing IPv6 support in their “fast” for-
warding architectures. Until they complete these
efforts, most routers are likely to treat IPv6 packets
in the “slow” path.

Our experimental results with the two routers
were inconsistent, as the Ericsson router far out-
performed the IBM. The IBM router’s TCP
throughput performance, for example, was about
30 percent worse than the Ericsson router’s for
message sizes similar to those used in this work
(that is, up to 1,408 bytes). TCP–IPv6 round-trip
latency was also 250 to 380 percent higher
(worse) with the IBM router for similar packet
sizes. We witnessed fairly similar performance
degradation with both routers for TCP-over-IPv6
throughput and latency results on both operat-
ing systems. 

We speculate that the IBM router probably
included an early implementation of IPv6, which
would explain its poor performance compared to
the more mature Ericsson IPv6 router implementa-
tion, which was 1.5 years newer. Nonetheless, the
experimental results obtained with these routers
show that commercial router implementations with
IPv6 forwarding code are not yet mature.
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Related Work in IPv6 Performance

The main motivation behind our work
was the lack of performance compar-

isons between IPv4 and IPv6 protocol
stacks at the end system. Unlike previous
efforts, we performed an empirical evalua-
tion covering the full range of basic perfor-
mance metrics and both major transport
protocols for two different IPv6 protocol
stack implementations.

Draves and colleagues made the first
attempt at developing an IPv6 protocol stack
for Windows NT,but they evaluated perfor-
mance only for throughput.1 In other efforts,
Xie evaluated the beta version of Microsoft
Research’s IPv6 protocol stack for Windows
NT 4.0.2 He measured performance by ana-
lyzing network latency, throughput, and pro-
cessing overheads on a test bed comprising
two Pentium machines with 100-Mbps fast
Ethernet connected via an unloaded switch.
However,he did not compare the Windows

NT implementation with other IPv6 imple-
mentations,other operating systems,or IPv4.

Ariga and colleagues evaluated data-
transmission performance over IPv4 and IPv6
using various security protocols.3They used
end hosts with the FreeBSD 2.2.8 operating
system and KAME IPv6 protocol stack, but
they did not perform detailed testing based
on the broad set of metrics we employ.

Ettikan and colleagues compared IPv6 to
IPv4 using the ping utility (to find latency)
and an FTP application (to find throughput)
with the dual-stack implementation of
KAME over FreeBSD.4,5They did not exper-
iment with parameters such as packet size,
connection time, or protocol type. (They
could not perform UDP tests due to the
nature of FTP.)
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Future Work
We hope our performance results and experiences
can provide insight for network, protocol, and
application designers regarding the impact IPv6
protocol stacks will have on end-to-end perfor-
mance in the deployment of current and future
IPv6 applications. Given Linux’s wide popularity
and usage, we plan to conduct similar performance
tests to compare its IPv6 stack with the results
we’ve obtained so far. 

Other areas we want to investigate include
IPv4-to-IPv6 transition mechanisms,5 which con-
stitute a necessary step toward IPv6’s full deploy-
ment, and various encapsulation methods used by
IPv4 and IPv6 networks. Finally, we intend to
exploit IPv6 features (such as the flow label field
in the header) to investigate end-to-end QoS sup-
port over IP-based networks.
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