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ABSTRACT
As the core counts of computing platforms continue to rise, parallel
runtime systems with support for very fine-grained tasks become
increasingly necessary to fully utilize the available resources. A
critical feature of such task-based parallel runtime systems is the
ability to balance work evenly and quickly across available cores.
We highlight this by studying XTask, a custom parallel runtime
system based on XQueue, which is a novel lock-less concurrent
queuing system with relaxed ordering semantics that is geared to
realizing scalability to hundreds of concurrent threads. We demon-
strate the lack of adequate load balancing in the original XQueue
design and present several solutions for improving load balancing.
We also evaluate the corresponding improvements in performance
on two sample workloads, computation of Fibonacci numbers and
computation of Cholesky factorization. Finally, we compare the
performance of several versions of XTask along with several imple-
mentations of the popular OpenMP runtime system.

KEYWORDS
concurrent data structures; fine-grained parallelism; lock-free; lock-
less; queues; nonblocking; parallel runtime; tasks

1 INTRODUCTION
Modern computer systems are composed of many smaller comput-
ing devices. Efficient use of such systems is therefore contingent
on a program’s ability to use parallelism across many computing
devices. Under task-based parallelism, themultiple cores in a shared-
memory system are utilized by decomposing a computation into
many shorter computations called tasks, which can be distributed
to different cores, run in parallel, and recombined to produce the
final result. Typically, a set of worker threads is spawned across the
available cores. Workers retrieve and insert tasks into a concurrent
queuing system, executing until the full computation is completed.
Implementations of the task-based parallelism model also typically
offer support for inter-task dependencies. Dependencies between
tasks impose restrictions on the order in which tasks must be ex-
ecuted, yielding a partial order on the tasks, often encoded as a
directed acyclic graph.
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2 MOTIVATION
Fine-grained parallelism: This term refers to task-based decom-
position of a job, in which the tasks are relatively short. Fine-grained
tasks are desirable because they allow for a more balanced dis-
tribution of the workload across workers. However, workloads
composed of many fine-grained tasks typically require more de-
tailed task management and therefore place more emphasis on
overheads present in the runtime system. This project is motivated
by observations of poor performance of the GNU OpenMP imple-
mentation on fine-grained workloads. The overarching goal is to
obtain improved performance on extremely fine-grained workloads
by reducing overheads in the concurrent queuing system, com-
pared to standard work stealing-based approaches. Prior work by
the advisors explored lock-less, highly efficient, and scalable data
structures (XQueue) that can increase the level of parallelism on
modern architectures thereby improving performance.

Implicit Parallelism: Swift/T[3] is a parallel programming lan-
guage designed for extreme scale, decentralized execution on a
single, very large (exascale) system. Swift/T is implicitly parallel
and the compiler can generate extreme parallelism based on the
program and data flow. This idea is powerful, however since Swift/T
uses MPI for intranode parallelism, the performance on single node
is significantly degraded. A task-based runtime Xtask is under
development by the Advisors and is aimed at enabling extreme
fine-grained task execution on modern many core architectures
while exploring the possibility of implicit parallelism using the
techniques from Swift/T compiler. This work uses a preliminary
version of XTask for evaluation purposes.

3 LOAD BALANCING IN XQUEUE
Original XQueue design implements an MPMC interface using one
master and one auxiliary queue and communication between them
is modelled after a dynamic task graph execution. However, this is
not ideal for distributing tasks evenly across workers.

Figure 1: These figures represent the number of cycles each
CPU spent executing tasks for the Fibonacci workload (left)
and Cholesky workload (right).
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This work focuses on studying and improving load balancing
in XQueue. XQueue provides lower enqueue and dequeue laten-
cies than standard approaches to concurrent queueing systems,
which require locking or atomic operations, by utilizing multiple,
lock-less, single-producer single-consumer queues. We extend the
XQueue design by creating different topologies on the connections
between cores in the XQueue system. We then test our versions of
the XQueue system on several architectures for two sample work-
loads, a workload for the computation of Fibonacci numbers and a
workload for the computation of Cholesky factorizations, both of
which can be tuned to generate millions of fine-grained tasks.

3.1 Workstealing
Work stealing[2] is a common approach to achieve better load dis-
tribution between workers on various cores in which idle workers
ask other workers for tasks. Original XQueue uses multiple lock-
less SPSC queues and we modified it to use atomic primitives for
supporting work stealing.

Let ci denote the number of cycles the ith CPU spent executing
tasks. Define load balance error by

λ :=
max{ci }∑

ci/n
− 1

Our measurements yielded the following results:
λ

Design Fib. Chol.
XQueue 14.96 4.85

XQueue v2 3.99 7.94
XQueue vN 0.12 0.03

Work Stealing 0.10 0.01

3.2 XQueue Design Variations

(a) One Auxiliary
Queue

(b) Two Auxiliary
Queues (c) N Auxiliary

Queues

Figure 2: XQueue Designs

The approach of sending tasks to a neighbor cannot be broadly
applied to various applications since the task distribution entirely
depends on the structure of the DAG. While work stealing is one
of the solutions to achieve better load balancing, we also explored
load balancing using multiple auxiliary queues. Figure 2 shows the
designs we explored as part of this work.

4 EVALUATION
We found that our changes to the XQueue system led to signif-
icantly more optimal load balancing. Our final design achieved

load balancing comparable to the load balancing achieved with a
work stealing-based approach, a load balancing technique that is
widely utilized in modern task-based runtime systems (see [2] or
[3], for example). Additionally, our new XQueue design achieves
speed ups of up to 6-10x compared to the original XQueue design
when using 128 threads, while still remaining entirely lock-less.
Our new XQueue design also demonstrates some scalability, show-
ing increasingly good performance on the Fibonacci workload up
to 128 threads. Finally, we show that our new XQueue design is
still significantly outperformed by OpenMP[1] on the Fibonacci
workload and a work stealing-based approach on the Fibonacci and
Cholesky workloads, demonstrating a need for further investiga-
tion into aspects of the system other than load balancing in order
to achieve good performance on a wide variety of applications.

(a) Cholesky workload (32K x
32K matrix) (b) Runtime of Fib(35)

Figure 3: These figures show the results obtained using var-
ious XQueue topologies and work stealing strategies

5 CONCLUSION AND FUTUREWORK
This paper presents several load balancing strategies for XQueue,
which is an extremely scalable lock-less concurrent multiple pro-
ducer multiple consumer out of order queue. Evaluation results
show that XQueue is scalable up to hundreds of threads of execu-
tion. XTask is awork-in-progress runtime systemwhich can achieve
low latency and high throughput at extreme scale and achieve peak
performance on modern multi-core architectures. Work stealing
significantly improved the task distribution over the simplistic load
balancing in XQueue. As part of the future work, we plan on in-
tegrating XQueue and/or XTask with the parallel programming
systems Swift/T and Parsl [4] to exploit implicit parallelism capa-
bilities, and OpenMP to accelerate many more applications with
fine-grained parallelism transparently.
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