
ScalableLoad-BalancingConcurrentQueuesonMany-coreArchitectures
Caleb Lehman1, Poornima Nookala2 (advisor), Ioan Raicu2 (advisor)

1Ohio State University, 2Illinois Institute of Technology

Abstract
• Core counts are increasing, making parallel pro-

gramming an increasingly powerful paradigm

• Decomposition of computations into very fine-
grained tasks is necessary to effectively utilize
many-core systems

• We present XQueue, a novel design for a queu-
ing system, analyze its efficiency, suggest im-
provements, and compare performance to exist-
ing designs, all within the context of XTask, a
custom, task-based runtime for shared memory
systems.

Motivation
• Swift/T is an implicitly parallel programming

language used to implement scientific dataflow
programs.

• Swift/T uses MPI for internode and intranode
communication.

• Today’s processors can run billions of instruc-
tions per second, however we are limited to
100K tasks per second.

• Traditional concurrent data structures and
synchronization mechanisms do not scale to
hundreds of cores.

Figure 1: Throughput of Swift/T in tasks/sec for Fi-
bonacci workload on a Haswell machine with 24 cores
and 48 hardware threads.

Can high-level programming be
applied to modern parallel

architectures with strong scaling
workloads?

Load Balancing in XQueue
The initial XQueue design provides lower latencies for individual enqueue and dequeue operations, but has
very poor load balancing, leading to relatively poor performance on our sample workloads.

These figures represent the
number of cycles each CPU

spent executing tasks (measure
of load balancing) for the

Fibonacci workload (left) and
Cholesky workload (right).

XQueue Design

Figure 2: From left to right, the XQueue, XQueue v2, and XQueue vN designs (showing 2, 2, and 1 cores,
respectively). In general, consumer threads pass tasks to auxiliary queues of connected cores and producer threads
put tasks on local master queue. Consumer threads retrieve from all local queues.

Performance Results
Load Balancing

Let ci denote the number of cycles the
ith CPU spent executing tasks. For n
CPUs, define load balance error by

λ :=
max{ci}∑

ci/n
− 1

Our measurements yielded the follow-
ing results:

λ
Design Fib. Chol.
XQueue 14.96 4.85

XQueue v2 3.99 7.94
XQueue vN 0.12 0.03

Work Stealing 0.10 0.01

Fibonacci Results

Figure 3: Runtimes of Fib(35) on Skylake 192-core ma-
chine with up to 384 hardware threads.

Cholesky Results

Figure 4: Performance on Cholesky workload (32K x 32K matrix)
on AMD Epyc 64-core machine using 128 hardware threads.

Conclusions
• XQueue is a novel lockless concurrent queuing

system with relaxed ordering semantics that is
geared to realizing scalability to hundreds of con-
current threads.
• Original XQueue design had poor load bal-

ancing and depended significantly on workload
structure.
• New designs significantly improved load balanc-

ing and slightly improved performance, but may
have introduced some scalability concerns.
• The various XQueue designs performed worse

than the standard work stealing approach.

Future Work
• Profile the XTask runtime to determine if it is

optimized enough for testing XQueue
• Integrate XQueue into existing runtime sys-

tems
• Study new designs on same or larger systems

Acknowledgements
This work is supported by the NSF CCF-
1757964/1757970 REU award (BigDataX), and the
NSF CNS-1730689 CRI award (Mystic)


