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ABSTRACT
Scientific applications often exhibit a trade-off between cost and
accuracy. However, measuring and predicting cost and accuracy in
a way that users can understand these trade-offs is challenging. To
address these needs, we present predictive cost and accuracymodels
for data-intensive genomics applications. We use these models to
create a trade-off graph, which researchers can use to selectively
trade-off cost and accuracy.
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1 INTRODUCTION
Exploding data volumes combined with adoption of data- and
compute-intensive methodologies are transforming scientific com-
puting. While iterative machine learning-based techniques and
ensemble methods enable new discoveries, they also create new
challenges in determining when models are sufficiently accurate
and result in a trade-off between accuracy and computation cost.

To explore the cost-accuracy trade-off, we investigate the com-
putationally expensive variant calling analysis of genomes. Variant
calling identifies single nucleotide variants within an individual
genome relative to the population at large. There are dozens of inter-
changeable variant callers, with no scientific consensus on which is
the “best”. Researchers and repositories, such as the Genomic Data
Commons (GDC), often combine results from several variant callers
and use ensemble-based approaches to improve accuracy [3].
2 METHODOLOGY
In this study, we use GDC variant calling data, which consists of
approximately 10,000 samples from 33 different cancers, analyzed
using four different variant callers (muse, mutect, somaticsniper,
varscan). We implement GDC pipelines in Parsl [1] and measure
the computation time for different input sample sizes. We then
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developmodels that predict the accuracy of variant calling ensemble
models and represent the resulting cost-accuracy trade-off as an
edge weighted digraph.

2.1 Ensemble-based analyses
To better understand the benefits of ensemble-based approaches we
first explored the GDC dataset. Figure 1 shows three visualizations
of the performance of four variant callers on the aggregate of breast
cancer (BRCA) samples. We observe that the variant callers identify
a disjoint set of variants. Increasing the number of variant callers in-
creases the number of identified variants. However, approximately
half of all variants can be identified using only two callers.

In the absence of manually curated truth data for the GDC
dataset, we apply a consensus approach as our metric for accuracy:
if two or more variant callers identified a variant, we considered it
to be “real” [2]. Using this approach, we found that that a significant
fraction of the samples had a zero or near zero percent increase
in accuracy when adding variant callers. Thus, when considering
additional cost, it is important to consider which samples would
benefit from additional processing.
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Figure 1: Performance of the different intersections of vari-
ant callers on the aggregate of samples.
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2.2 Cost model
To quantify the cost of each variant caller we measured the compu-
tational time on different input data sizes. We ran our experiments
on ASPIRE1, a cluster with 1288 nodes (dual socket with 12 cores
and 128 GB RAM per node). Initial results indicated file system
contention, as a result we modified our experiments to make use of
shared flash storage. Figure 2 shows a least-squares fit, implemented
using scipy curve_fit, demonstrating the relationship between data
size and execution duration for each caller. We use these fitted lines
to predict run time as a function of input data size.
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Figure 2: Cost (execution time) as a function of input data size plot-
ted with a least-squares fit for four variant callers.

2.3 Accuracy model
We created random forest models using scikit-learn to predict
whether an additional variant caller will yield an increase in accu-
racy based on features of the data (e.g., cancer type, allele substitu-
tion type) and from the number of variants identified by previously
applied variant callers in the ensemble. Table 1 shows the accuracy,
precision, and recall of our models.
Table 1: Average accuracy, precision, and recall when pre-
dicting whether a specific caller will increase accuracy.

baseline variant caller(s) accuracy precision recall

muse 0.67 0.69 0.81
mutect 0.68 0.55 0.68
somaticsniper 0.75 0.78 0.90
varscan 0.65 0.47 0.68
muse, mutect 0.65 0.21 0.66
muse, somaticsniper 0.63 0.63 0.66
muse, varscan 0.66 0.11 0.70
mutect, somaticsniper 0.71 0.24 0.67
mutect, varscan 0.71 0.05 0.76
somaticsniper, varscan 0.70 0.49 0.68

Overall the results show reasonable predictive performance; how-
ever, we note that some combinations resulted in trivial predictive
problems. For example, since mutect and varscan perform signifi-
cantly better than muse and somaticsniper, as seen in Figure 1, our

data is skewed towards there being a zero increase when adding
muse or somaticsniper after mutect or varscan. To remedy this is-
sue, we applied a random undersampling algorithm to our training
set. This improved the results of our predictions, particularly by
increasing the recall of our models. We focus on maximizing the
recall of our models, because it is likely that researchers would be
more willing to incur additional costs (from occasional execution
of variant callers that yield no new variants) rather than to miss
potentially important variants.
2.4 Cost-accuracy model
We combined the cost and accuracy models above to visualize the
average accuracy across samples and cost for a given input size for
all ensembles of variant callers. Figure 3 shows the increase in accu-
racy and cost for different orderings of variant callers. This graph
can be used to quantify the cost-accuracy trade-off and optimize
the ensemble. Our results show that, on average, we can achieve
99% accuracy at approximately half the cost by optimally selecting
variant callers.
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Figure 3: Visualization of accuracy vs. runtime
We can reconstruct this plot as an edge weighted directed graph,

and assign weights to each edge:
wi j =

accuracyj−accuracyi
t imej−t imei | i ⊂ j; i, j ∈ V

where i represents the baseline variant caller(s), j represents the
union of i and the variant caller being added, V is the set of all
subsets of callers. In order to traverse the graph, we add a root
node at cost and accuracy of 0 with edges to each individual variant
caller. We then iteratively select edges with the highest weight. The
algorithm continues until cost or accuracy exceed a given threshold.

3 SUMMARY
We have shown that the common approach in genomics of applying
as many variant callers as possible to achieve the highest accuracy
is often cost-inefficient. Our predictive cost and accuracy models
allow researchers to optimize the cost-accuracy trade-off using an
edge weighted digraph, and our algorithm can be generalized to
any number of other variant callers. Our methods are applied here
to genomics, but they are also applicable to other ensemble models.
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