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e Ve explore a novel clustering-based approach for organizing Extract metadata regarding filstypes within the dataset l;;ATA
data “swamps” by automatically identifying latent content similar- File processing REPOSITORY

Unstructured text data:

- filetypes for text (txt, pdf, doc, html) are converted to txt for easy processing
- text data are tokenized, stemmed, counted, and vectorized
- TFIDF matrix computed

Structured tabular data:

- filetypes for tabular data (csv, tsv, xIs) are converted to csv for easy processing
- schema extraction extracts headers for the data
- pairwise Jaccard distance matrix computed

Clustering
Text data: k-means and the faster MiniBatch k-means
Tabular data: agglomerative hierarchical clustering

Optimizing k
Cluster over a user-specified range of k values
Select the k value that yields the highest frequency drop score

Cleanliness score T
Report frequency drop score associated with best k value

ities between files.

e \\Ve developed a parallel pipeline that crawls large filesystems,
collects key information regarding data composition and distribu-
tion, and then clusters files automatically based on extracted
content and metadata.
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® [0 evaluate our methods we propose a novel method for quanti-
fying the organization of a filesystem using a score based on the
directory composition of the clusters.
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Clusters Sets and eloments As a baseline for comparison, we generated 4 “perfect” /T N\
C={Cy...Cit T Files: . N = 3 datasets based on N-ary trees: PU BS .
Directories: D. height = 2 - 2-ary 5-height (expect 32 clusters) - 6-ary 2-height (expect 36 clusters) Cleanliness scores
. . ’ - 3-ary 3-height (expect 27 clusters) - 40-ary 1-height (expect 40 clusters) pub8 from CDIAC shuffled.
Frequency of a directory in a cluster Dataset: A -
° .
fitD)={zeD:xeC}. Clusters: Ci N-ary trees \7 : W
Set of directories of C; - L, - root node/directory has N children | oA O . | T 0.4
Order directories by descending frequency : - each subsequent node has /N children we e gt
CIUSterlng Of A : C ) eXtended tO SOMe helght h . 2 . . SWReee Y24 :.;"i’ :::.. ::.:. (0] o mmm Frequency drop score
fi(Dj2) < fi(Djl) if 71 < Jo. Set of all clusterings of A: T - each leaf nrc:clie ifs ne(;med a{tgr sgrgilword w Direcf’; r’:g 2 ® '. - “ AR -y Xy R L g = Sihoustiascors
Set of all directories of A: L :gzgh fﬁ: Crc];t:ir?so Cv?g]p?eatecljefoo times ¥ s . N 1%} ';, |
Set of differences in directory frequency ® 4 "‘ o ei" bl nte d . -_\_\
Wi = {fi(D;;1) — fi(D;):1<j<m—1}. Quantities Tree distance o g
- calculated as the number of directory changes needed T T 00
Number of clusters: k | until two files are in the same directory 00 0 s 0 s 0 s 0 s w
Index of largest drop in frequency Number of directories in L; : m Com parlson Of SCOreS - measures how far apart files in the filesystem are File C O File B O Shuffle ratio

Baselines:

0; = max {argmax {fi(Djx1) — fi(D;) :1 <7< m— 1}}

J Functions - Naive tree distance between files in the filesystem (cohesion):
i Li =+ N - Silhouette score calculated using file system tree distance (cohesion and separation)
Head and tail of the frequency distribution c:NxR.yp— R Clean“ness oG Cl |°
_ : : . eaniiness scores
H; ={Dj € Li: 1 <7 <0}, drop : ¢ — [0, 1] 3-ary tree with height 3. 6-ary tree with height 2.
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