APPENDIX A
ARTIFACT DESCRIPTION APPENDIX:
MEASURING SWAMPINESS: QUANTIFYING CHAOS IN
LARGE HETEROGENEOUS DATA REPOSITORIES

A. Abstract

As scientific data repositories and filesystems grow in size
and complexity, they become increasingly disorganized. The
coupling of massive quantities of data with poor organiza-
tion makes it challenging for scientists to locate and utilize
relevant data, thus slowing the process of analyzing data of
interest. To address these issues, we explore an automated
clustering approach for quantifying the organization of data
repositories. Our parallel pipeline processes heterogeneous
filetypes (e.g., text and tabular data), automatically clusters
files based on content and metadata similarities, and computes
a novel “cleanliness” score from the resulting clustering. We
demonstrate the generation and accuracy of our cleanliness
measure using both synthetic and real datasets, and conclude
that it is more consistent than other potential cleanliness
measures.

B. Description
1) Checklist:

Program: Python 3.6.5

Data set: CDIAC data, synthetic data

Run-time environment: Ubuntu

Hardware: Amazon Web Services virtual machine (128GB

ram, 16 cores)

o Output: Output files to designated folders outside code direc-
tory

« Experiment workflow: Clustering pipeline

« Experiment customization: Pipeline execution has multiple
parameters that a user can manipulate to customize their ex-

periment.
o Publicly available?: Code composing the pipeline
is available on the following GitHub repository:

https://github.com/lollyluann/cluster-datalake
2) How software can be obtained:

o Software dependencies can be obtained using pip or
some other equivalent installation method
o Code can be forked/cloned from the repository listed.

3) Hardware dependencies:

e 16+ GB of RAM
« To take advantage of parallelized pipeline, multiple cores
o Enough storage for dataset and 20+ GB extra

4) Software dependencies:

o Python 3.x
o Python 3.x packages
— bs4
— tqdm
— numpy
— pandas
— matplotlib
— unipath
— nltk
- mpld3
— sklearn
— scipy

— textract
o Linux software
- gzip
- swig3.0
— python3-dev
— libasound2-dev
— libpulse-dev
— calibre
— gnumeric
5) Datasets:
o Self-generated toy datasets
— Code to generate custom versions of these datasets
is present on the GitHub repository.
o CDIAC (data from the Carbon Dioxide Information Anal-
ysis Center)
— Transferred using Globus
o pub8 (a subset of the CDIAC dataset)

C. Installation

o Software dependency installation depends on system
used.

o For Ubuntu systems, a file is present in the repository
containing commands to install all dependencies.

« Installation of the pipeline code can be done through
GitHub

D. Experiment workflow

main.py
METADATA EXTRACTION

EE
—— TEXT CLUSTERING

Converted files

SCHEMA CLUSTERING

Scatterplot

Bar charts

Scatterplot
~—E=—— COMPUTE SCORES
Bar charts

E. Evaluation and expected result

Pipeline generates the following results:

e Metadata information
— Pie chart regarding filetype distribution
— Various text files

o Clusters
— MDS scatterplot
— Various dependency files
— Bar charts with file distribution

o Cleanliness score(s)
— Cleanliness score for each cluster
— Overall cleanliness for score for entire clustering



— Best cleanliness score over a range of k
Cleanliness scores should be interpreted as such:

o Score of 1 indicates very clean dataset
e Score of 0 indicates very disorganized dataset
e Score should fall between 0 and 1, inclusive

FE. Experiment customization

Our pipeline is constructed in such a way that it possesses
multiple parameters that can be manipulated by future users.
These allow for customization of the running of the pipeline.

The following parameters are customizable:

o Dataset to run

o Whether to plot extensions

o Whether to convert filetypes

o Whether to cluster tabular data

o Whether to cluster text data

o How many extensions to take

o How many processes to use

o Fill threshold for schema extraction

o Overwrite

— Tabular distance matrix
— Tabular plots

— Text tokens

— Text clusters

e Whether to use minibatch k-means
o Range of k values to try



