
NautDB: Towards a Hybrid Runtime for Processing Compiled Queries
Samuel Grayson (sag150430@utdallas.edu)

University of Texas at Dallas

Abstract

Goal: to integrate specialization techniques from the OS community hybrid runtimes
and DB community compiled queries for high-performance querying on big data.

•Certain abstractions improve generality, but get in the way of performance at exascale
computing.

• In specific cases, give up flexibility and generality in exchange for performance.
•We prototype NautDB: specialized using a hybrid runtime kernel (based on the
Nautilus Aerokernel [1]) and executing pre-compiled building-blocks.

•We demonstrate performance benefits in certain cases, while maintaining a simple in-
terface for users.

Specialized Hybrid Runtimes [1]

•Kernel + Runtime run in ring 0 (unikernel-like) =⇒ fewer context switches
•Partition physical resources between general purpose OS and hybrid runtime [2] =⇒
can call general purpose OS where needed.

•Unikernel-inspired design gives programmer fine-grained control over . . .
•Not time-shared =⇒ No context-switches or thread-migration
•Avoid interrupts =⇒ Faster and more predictable
•Single address space =⇒ Huge page-sizes (1Gb) =⇒ No TLB misses
•Memory allocation =⇒ Specialize allocator for workload/application (see Fig. 1)

Compiled Query Processing [4, 3]

•DB engine is specialized for a particular query
•Can be pre-compiled or JIT-compiled

•Smaller code =⇒ less i-cache misses and branches
•Specialized data structures
•Combine code for multiple operators (pipeline) =⇒ optimizations within operators
and less func calls

•Specialize code for hardware without blow up in code size
•The DB-programmer writes compiled code in the unikernel, giving them unfettered
access HW.
•Compose operators within a block =⇒ avoid function-call overhead.
•Control HW =⇒ NUMA-aware code.

Figure 1: The custom allocator outperforms the highly optimized allocator of linux for
smaller sizes by more than an order of magnitude. This demonstrates the potential of
specialization—the behaviour of a component can be fine-tuned to workload characteris-
tics. Hypothesis

Executing compiled queries in a hybrid runtime can improve perfor-
mance within parameter ranges that benefit from a particular special-
ization and leads to more predictable performance.

NautDB Prototype

•Hand-optimized, in-memory, columnar, chunk-oriented operator implementations
•Tables are stored in a column-oriented fashion, the data of a columns is split into 256
chunks - each is an array of data values of a fixed size

•We tested creating, sorting, selection (filter), creating, and freeing tables
•The database server is compiled into Nautilus and invoked on startup (single-application
OS)

Configuration

•We vary the number of columns and the size of chunks
•We aggregated over 10 trials
•Hardware: 16-core x86_64 AMD EPYC 7281 with 4 NUMA nodes
•OS: linux kernel 4.17.6, Nautilus - git commit 2fb4e52816

•Nautilus has default configuration with debugging removed and extra devices disabled.
It uses 1GB pages.

Figure 2: Row-oriented sort in Nautilus and Linux varying the # of columns and chunk-size
For larger number of columns and chunk sizes, Nautilus outperforms Linux. This is
because Nautilus has larger page size and incurs less TLB misses (see Table 1).

Kernel TLB misses Instruction cache misses
Linux 135,000,000 3,030,000
Nautilus 1 480,000

Table 1: Row-oriented sorting for a 128 column table with 256 chunks with 8192 elements

Figure 3: Column-oriented sort measuring runtime and uncertainty for a fixed chunk size
(8192), varying the number of columns.

Nautilus performance is more predictable than Linux, even when its raw performance is
worse. Nautilus does not have scheduling interrupts, so it avoids unpredictable detours
which also leads to better cache performance (see Table 2).

Kernel TLB misses Instruction cache misses
Linux 2,500,000 8,200,000
Nautilus 1 1,100,000

Table 2: Column-oriented sorting for a 128 column table with 256 chunks with 8192
elements each

Discussion

•Specialization allows us to beat Linux with relatively little effort.
•We should be able to beat Linux everywhere

•By switching to Linux’s algorithm when the workload is suited to it
•Hybrid runtimes have more predictable performance than general purpose OS

•will lead to better performance once we go parallel (e.g., bulk-synchronous model)

Next Steps

•Borrow algorithms from Linux where they outperform the existing Nautilus algorithms
•Make the development process simpler for the user
•Evaluate parallel implementations of operators
•Evaluate effect of noise due to other applications running (in a partitioned VM envi-
ronment)

Our Vision: NautDB

Implement our vision of NautDB as a hybrid dataflow engine for compiled queries

•VMs: Since NautDB is an application-specific OS, it could be running in its own VM
alongisde a general-purpose OS.

•Frontend: compiles queries into executable tasks for the dataflow backend and takes
care of higher-level scheduling and runtime optimization tasks (e.g., task placement and
global planning)

•Threads: will be pinned to CPU cores; they will run to completion without interrup-
tion.

•Work distribution: Cores are either workers that pull tasks from a local (lock-free)
queue and execute them or management threads that pass tasks from clients to workers
and hand results to clients, push statistics about task execution and resource utilization
to clients, and garbage collect task memory.

References

[1] K. C. Hale and P. A. Dinda.
A case for transforming parallel runtimes into operating system kernels.
In Proceedings of the 24th ACM Symposium on High-performance Parallel and Distributed Computing (HPDC 2015),
June 2015.

[2] B. Kocoloski, J. Lange, H. Abbasi, D. E. Bernholdt, T. R. Jones, J. Dayal, N. Evans, M. Lang, J. Lofstead, K. Pedretti, and
P. G. Bridges.
System-level support for composition of applications.
In Proceedings of the 5th International Workshop on Runtime and Operating Systems for Supercomputers (ROSS
2015), June 2015.

[3] T. Neumann.
Efficiently compiling efficient query plans for modern hardware.
PVLDB, 4(9):539–550, 2011.

[4] A. Shaikhha, I. Klonatos, L. E. V. Parreaux, L. Brown, M. Dashti Rahmat Abadi, and C. Koch.
How to architect a query compiler.
In SIGMOD, number EPFL-CONF-218087, 2016.


