
1

APPENDIX A
ARTIFACT DESCRIPTION APPENDIX: “NAUTDB: TOWARDS

A HYBRID RUNTIME FOR PROCESSING COMPILED
QUERIES”

A. Abstract

I have written a simple database which I then compile one
version for Linux and another for Nautilus.

B. Description
1) Check-list (artifact meta information):
• Program: db-multiverse
• Run-time environment: Linux 4.17.6 (in Fedora Release 28)

and Nautilus @ commit 2fb4e52816
• Hardware: AMD EPYC 7281 16-Core Processor
• Compiler: gcc 8.1.1 20180712 (Red Hat 8.1.1-5).
• Compiler Options: See the Makefile and the
nautilus/Makefile for compile-options.

• Experiment workflow: See section.
• Experiment customization: Modify what work the database is

doing, the number of chunks, number of columns, chunk-size,
and domain-size (domain of the elements in the database).

• Publicly available: Yes

2) How software can be obtained (if available): NautDB
can be cloned from this GitHub Repository.

3) Hardware dependencies: At the time of this writing,
Nautilus supports x86 64, Xeon Phi, and the GEM5 simulator.

In order to gather performance data, I use the CPU-enabled
performance counters. These are specific within processor
families. I have targetted ‘AMD EPYC 7281 16-Core Proces-
sor’, but the code can be modified for other processors as well
(see src/app/perf* and include/app/perf*). If this
is not modified, you can still collect cycle-counts.

4) Software dependencies: gcc, GNU make, GNU libc (for
running in Linux), grub2 (for compiling Nautilus), xorriso (for
compiling Nautilus)

C. Installation

1) Download the source code.

git clone git@github.com:\
HExSA-Lab/db-multiverse.git

D. Experiment workflow

1) Manual Workflow:
1) Compile the Linux version

make main

2) Run and collect output

./main > linux_output

3) Compile Nautilus

./scripts/insert_into_nautilus.sh
make -C nautilus nautilus.bin

4) Boot into Nautilus. If you are using grub,

mv nautilus.bin /boot/nautilus.bin
echo <<EOF

menuentry "Nautilus" {
adjust for your specific hw
set root='hd0,msdos1'
multiboot2 /nautilus.bin
boot

}
EOF >> /etc/grub.d/41_custom
reboot
wait for grub menu
select Nautilus from the menu
capture output over serial link

2) Workflow Automation: This is the simplest way of
reproducing the Nautilus experiment. However, the user
can benefit from automation.
• A hardware management tool such as IPMI

can automate the process of rebooting, select-
ing Nautilus from the Grub menu, and captur-
ing the serial remotely. This is implemented in
scripts/ipmi_helper.sh.

• expect can be used to automate navigat-
ing the Grub menu. This is implemented in
scripts/drive_grub.py.

• See scripts/run_linux.sh and
scripts/run_nautk.sh for start-to-finish
automation on both platforms with a remote
run-host and a remote build-host.

E. Evaluation and expected result

The software will output blocks of CSV data wrapped in
curly-braces, such as:

file: cool_data.csv {
x column1 name,column2 name,title
1,2,

}

The independent variables have a header beginning with ‘x’.

F. Experiment customization

Customize src/app/main.c to choose which modules
to run.

To customize the test_db module, edit
src/app/test_db.c. The parameters for the database
(number of columns, chunk size, number of chunks, domain
size) and which operators will be timed can be customized
here.

G. Notes

It may be tempting to run Nautilus in a virtualized envi-
ronment such as QEMU instead of on bare-metal. While this
can be an error-detecting step, but the virtualized environment
will not have yield realistic performance data.

https://github.com/HExSA-Lab/db-multiverse/

	Appendix A: Artifact Description Appendix: ``NautDB: Towards a Hybrid Runtime for Processing Compiled Queries''
	Abstract
	Description
	Check-list (artifact meta information)
	How software can be obtained (if available)
	Hardware dependencies
	Software dependencies

	Installation
	Experiment workflow
	Manual Workflow
	Workflow Automation

	Evaluation and expected result
	Experiment customization
	Notes

