
Multi-Size Optional Offline Caching Algorithms
Andrew Choliy1, Max Whitmore2, Gruia Calinescu3 (Advisor)

1Rutgers University, 2Brandeis University, 3Illinois Institute of Technology

Abstract
The optional offline caching (paging) problem, where all future file
requests are known, is a variant of the heavily studied online
caching problem. This offline problem has applications in web
caching and distributed storage systems. Given a set of unique
files with varying sizes, a series of requests for these files, fast
cache memory of limited size, and slow main memory, an efficient
replacement policy is necessary to decide when it is best to evict
some file(s) from the cache in favor of another. It is known that this
problem is NP-complete, and few papers have proposed
approximation algorithms. We propose three new heuristic
algorithms with effective replacement policies, as well as a
4-approximation algorithm. We then evaluate each algorithm by the
metrics of runtime complexity and proximity to the optimal solutions
of many synthetic data sets.

Related Work

Formal Definition

Methodology

Conclusion and Future Work

Heuristic Caching from HyCache+
In their algorithm, Zhao et. al [6] define a cost/gain value for each file equal to its size multiplied by the
number of remaining requests for that file. The algorithm iterates through the list of file requests. At each step,
see if the file is already in the cache. If so, continue. Otherwise, add this file to the cache if there is sufficient
free space. If there is not enough space in the cache, the algorithm considers the cost of the files that would
need to be evicted and the gain of adding this current file. It does so by first sorting the files in the cache by
order of increasing cost. It then considers as many of the lowest cost files as necessary until the amount of
free space in the cache from the potential eviction of these files is at least the size of the current file. If the
sum of the costs of removing this file(s) exceeds the gain of adding the new file, the cache remains
unchanged. Otherwise, those files will be evicted and the new file will be added to the cache.

Proposed Algorithms
(1) Heuristic Caching Fixed Window (HCFW)
(2) Heuristic Caching Variable Window (HCVW)
(3) Heuristic Caching Weighted by Distance (HCWD)
(4) Overload Reduction (OR)

(1-3) are variants of the heuristic caching (HC) algorithm as given by Zhao et al. [6]
(4) is an adaption of Bar-noy et al.'s [2] Loss Minimization framework from the forced model to the optional;
guaranteed 4-approximation

Benchmark
● Well-known LRU algorithm
● Optimal solution (when feasible to calculate)

Testing
● C = 100
● Between 500 and 4,000 file requests at increments of 500
● 5, 10, 100, or 1000 unique files
● File sizes range from 21 to 40 (m = 5, 10) or 1 to 20 (m = 100, 1000)
● 30 random trials for each combination of number of unique files and number of file requests with results

averaged

Input
● Finite set M of m unique files
● For each file i, a size s(i) ∈ Z+ and a cost c(i) = s(i)
● Finite list R of n requests to the unique files
● For each request r, g(r) denotes the unique file requested
● Initial cache Q1 of fixed capacity C ∈ Z+. Q1 may or may not be empty
Output

● A schedule of caches {Q2, Q3, … Qn} where
Cost

●
Optimal Replacement Policy
● Load and evict files at each new request to minimize overall fault cost

Feasible Solution: Cache Content and Associated Cost
● C = 100
● cost(g(r)) is shown below

each file request
● Each file not present in

the cache is loaded
except for f3 at the index
denoted by the arrow. It is
read from main memory
to save cost and later
read f4 for free

Forced model with unit-size files and cost
● Belady [3] gives an optimal algorithm
Optional model with multi-size files and cost
● Chrobak et al. [4] show the problem is NP-complete
● Irani [5] gives the first solution as an O(log k)-approximation ratio, where k

is the ratio of C to the size of the smallest file
Forced model with multi-size files and cost
● Albers et al. [1] provide an O(log(M + C))-approximation algorithm where M

and C denote the cache size and the largest file fault cost, respectively.
They also provide a reduction to the Loss Minimization problem

● Bar-noy et al. [2] provide a 4-approximation algorithm by reduction to a
Loss Minimization problem

We propose three heuristic algorithms with effective replacement
policies, as well as a 4-approximation algorithm.

HCFW, HCVW, and HCWD show significant improvement over the HC
algorithm. Although it is much slower than the other algorithms, OR
returns the smallest cost on average and is always a 4-approximation
even if the cost for reading a file is arbitrary (not related to the file size).

Additional evaluation using real-world workload data would provide
greater insight to the usefulness of our algorithms in applications. Future
work could examine the performance of our algorithms using multiple
caches, distributed at several compute nodes.

[1] Susanne Albers, Sanjeev Arora, and Sanjeev Khanna. 1999. Page replacement for general caching
problems. In Proceedings of the tenth annual ACM-SIAM symposium on Discrete algorithms (SODA
’99). Society for Industrial and Applied Mathematics, Baltimore Maryland, 31–40.
[2] Amotz Bar-Noy, Reuven Bar-Yehuda, Ari Freund, and Joseph (Seffi) Naor. 2001. A Unified
Approach to Approximating Resource Allocation and Scheduling. Association for Computing Machinery
(ACM) 48, 5 (2001), 1069–1090.
[3] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM
Systems Journal 5, 2 (1966), 78–101.
[4] Marek Chrobak, Gerhard J. Woeginger, Kazuhisa Makino, and Haifeng Xu. 2012. Caching is hard -
even in the fault model. Algorithmica 63, 4 (2012), 781–794.
[5] Sandy Irani. 1999. Page Replacement with Multi-Size Pages and Applications to Web Caching. In
Proceedings of the twenty-ninth annual ACM symposium on Theory of computing (STOC ’97), Vol. 3.
ACM, El Paso Texas, 701–710.
[6] Dongfang Zhao, Kan Qiao, and Ioan Raicu. 2015. HyCache+: Towards Scalable High-Performance
Caching Middleware for Parallel File Systems. International Journal of Big Data Intelligence (2015).

Average Percent of Optimal Cost for 5 Unique Files

Average Cost Comparison vs HC for 100 Unique Files

Performance Evaluation:
● HC, HCFW, HCVW, and HCWD all have a runtime complexity

of O(nm log (m)). OR has a runtime complexity of O(n2).
● For m < 1000, HCFW, HCVW, and HCWD significantly reduce

average cost while maintaining HC's fast runtime.
● OR usually has the best average cost, but with significantly

longer runtime.
● HCWD algorithm strikes a good balance of low cost and fast

runtime.
● When unique files is close to number of file requests (m =

1000), each algorithm performs similarly, even LRU. This
makes sense because it becomes rare that files are repeated
often, minimizing the usefulness of caches in the first place.

References

Acknowledgements
This work was supported by the National Science Foundation
under award NSF - 1461260 (BigDataX REU).

Methodology and Results Evaluation

● HC: 168.8%
● HCFW: 117.4%
● HCVW: 114.3%

● HCWD: 107.6%
● OR: 107.3%
● LRU: 199.6%

● OR: 18.2% improvement
● HCWD: 8.6%

● HCFW: 4.3%
● HCVW: 2.5%

