Multi-Size Optional Offline Caching Algorithms

Andrew Choliy Max Whitmore Gruia Calinescu
Rutgers University Brandeis University Illinois Institute of Technology
ayc41@scarletmail.rutgers.edu whitmore@brandeis.edu calinescu@iit.edu
ABSTRACT a fault occurs and ¢(r) must be read from slow memory. Because

The optional offline caching (paging) problem, where all future
file requests are known, is a variant of the heavily studied online
caching problem. This offline problem has applications in web
caching and distributed storage systems. Given a set of unique
files with varying sizes, a series of requests for these files, fast
cache memory of limited size, and slow main memory, an efficient
replacement policy is necessary to decide when it is best to evict
some file(s) from the cache in favor of another. It is known that
this problem is NP-complete, and few approximation algorithms
have been proposed. We propose three new heuristics, as well as a
4-approximation algorithm. We then evaluate each algorithm by
the metrics of runtime complexity and proximity to the optimal
solutions of many synthetic data sets.

KEYWORDS

offline caching, caching algorithm, distributed storage

ACM Reference format:

Andrew Choliy, Max Whitmore, and Gruia Calinescu. 2017. Multi-Size
Optional Offline Caching Algorithms. In Proceedings of International Con-
ference for High Performance Computing, Networking, Storage and Analysis,
Denver, Colorado USA, November 2017 (SuperComputing 2017), 3 pages.
DOI: 10.475/123_4

1 INTRODUCTION

The general caching problem involves choosing an efficient replace-
ment policy for a two-level memory system where one is local, fast
cache of fixed size and the other is distant, slow main memory. The
problem’s goal is to minimize access to the slow memory. This
problem is well-studied in the online version in the context of CPU
caches. In the offline model, the sequence of file requests is known
in advance. Irani [6] introduces a variant of the offline problem in
the context of web caching where caching a faulted file is optional
and the cost of a file fault is equal to its size (bit model). We con-
sider this model. Zhao et al. [7] use the same model when studying
distributed storage systems and was the catalyst for our work.
Formally, we are given a finite set M of m unique files. Each
unique file i has a size s(i) € Z" equal to its cost c(i). We are also
given a finite list R of n requests to the unique files. Each request
r € R corresponds to some file i, denoted g(r) = i. We are also
given a cache capacity C € Z" and an initial cache Q; which may
or may not be empty. For each r, if the requested file i is in the
cache, it is read at cost zero. If the file requested is not in the cache,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SuperComputing 2017, Denver, Colorado USA

© 2017 Copyright held by the owner/author(s). 123-4567-24-567/08/06...$15.00

DOI: 10.475/123_4

the policy we examine for caching is optional, the faulted file i may
or may not be loaded into the cache for later use.

A solution to a given general caching problem has a length-n
schedule of caches, where each cache Q, is a set of unique files
stored at location r in the list of requests. To obtain the total cost of
the schedule, use 37, Yie(g(ru0,\0, ¢(i). Here, Oni1 = 0. An
optimal replacement policy loads and evicts files at each request
in such a way that it minimizes the overall fault cost. A feasible
solution is displayed by Figure 1.

Feasible Solution: Cache Content at Each File
Request and Associated Cost

O Free

T M size(f1) =20
size(f2) = 20
M size(f3) = 50
W size(f4) =60
0 e

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

g(r) and associated cache Qi

Cache Usage
(o)
o

Figure 1: With C = 100, cost(g(r)) is shown below each file
request. The cumulative cost is: 20, 40, 90, 90, 150, 200, 200,
200. Each file requested not present in the cache is loaded
except for 3 at the index denoted by the arrow. It is read
from main memory to later read f4 for free and save cost.

2 METHODOLOGY

We consider several offline algorithms. The first was proposed by
Zhao et al. [7]. We then present three of our own variants and our
adaptation of Bar-noy et al’s [2] framework in the context of Loss
Minimization to optional caching. To evaluate these algorithms, we
compare total cost and runtime metrics using a large set of synthetic
data samples. We also include results for the well-known LRU
algorithm and the optimal solution (when feasible to calculate) as
reference points. All the algorithms have a runtime of O(nm log m)
except Overload Reduction, which is O(n?).

Heuristic Caching from HyCache+ (HC) Proposed by Zhao
et al. [7], a cost/gain value is computed for each file equal to its size
multiplied by the number of remaining requests for that file. As the
algorithm iterates through the file requests, these values dictate if
g(r) is added to the cache, and which files will be evicted, if any.

Heuristic Caching with Fixed Window Size (HCFW). HCFW
is our first variant of the HC algorithm. Rather than considering
all of R when computing the cost/gain value for a file, we only look
at a window of 3m file requests ahead.

Heuristic Caching with Variable Window Size (HCVW).
The HCVW algorithm is similar to HCFW, but the length of the

SuperComputing 2017, November 2017, Denver, Colorado USA

Cost Evaluation of Caching Algorithms (5 Unique Files)

60000
50000
40000
%
[=3
bS]
& 30000
c
5
E
20000
vl W0 |
500 1000 1500 2000 2500 3000 3500 4000
mOptimal 3361 6502 9729 13508 14949 18647 20153 26476
=OR 3595 7000 10432 14476 16112 20115 21699 28108
mHWD 3607 6973 10445 14527 16000 20171 21718 28762
HowW 3806 7360 11145 15474 17022 21420 23090 30522
HCFW 3896 7632 11395 15892 17516 21977 23713 31370
HC 5305 10681 16452 23097 25803 32428 34374 45249
LRU 6595 12977 19187 26527 30091 37534 41376 52735

File Requests

mOptimal mOR mHWD HCWW HCFW HC LRU

Figure 2: Data for average cost with 5 unique files.

window expands and contracts to include at least one request of
each unique file from the current point in the request list to its end.
If a file no longer appears in the request list, it is excluded from this
rule.

Heuristic Caching Weighted by Distance (HCWD). This al-
gorithm takes the distance of each request into account when com-
puting the cost/gain value for each file. For each request, use the
size of its file divided by its distance from the current step in the
request list. The sum of these values for a given file becomes that
file’s cost/gain.

Overload Reduction (OR). This algorithm is adapted from Bar-
Noy et al. [2] and also inspired by Albers et al. [1]. The original
version was intended for the forced caching version of our problem;
we have modified it for optional caching. We can prove this is a
4-approximation, improving [6].

3 RESULTS

Our evaluations were performed on a machine with an i7 4810MQ
CPU and 8 GB of DDR3 RAM. We consider cases with m = 5, 10, 100,
and 1000 unique files, as well as between 500 and 4000 file requests
at increments of 500. File sizes range from 21 to 40 (m = 5 or 10) or
1 to 20 (m = 100 or 1000). C is always 100. For each combination of
number of unique files and number of file requests, we generate 30
random trials. Then we average the total cost and runtime metrics
for each algorithm across the trials.

Each of our algorithms (HCFW, HCVW, and HCWD) generally
perform better than HC in terms of average cost while maintain-
ing HC’s fast runtime. With 5 unique files, HC returns on average
168.8% of the optimal cost, whereas OR and HCWD give just 107.3%
and 107.6%, respectively. With 100 unique files, OR produces an
output that is on average 18.2% lower than HC. HCWD is second
best at a 8.6% improvement. When the number of unique files is
relatively close to the number of file requests, we see very similar
cost metrics across the algorithms, even LRU. This makes sense

Andrew Choliy, Max Whitmore, and Gruia Calinescu

Cost Evaluation of Caching Algorthims (100 Unique Files)

50000
40000
% 30000
o
o
o
o
5 20000
- I “ ‘
, M I
500 1000 1500 2000 2500 3000 3500 4000
uOR 4638 9303 13978 18522 23199 27490 32561 37749
EHWD 5207 10418 15638 20700 25839 30779 36304 42003
HOW 5402 11028 16617 22156 27826 33046 39002 45270
HCFW 5362 10868 16309 21717 27232 32293 38212 44282
HC 5414 11188 16978 22754 28644 34200 40517 47011
LRU 6032 12099 18130 24065 30131 35784 42253 48851

File Requests

®OR EMHWD ©“HCVW ®HCFW ®HC = LRU

Figure 3: Data for average cost with 100 unique files.

because it becomes rare that files are repeated often, minimizing
the usefulness of caches in the first place. This is best reflected in
the cases with 1000 unique files, where we see only OR having any
notable reduction in total cost versus HC. Even then, it is only an
improvement of 5.6% on average. The OR algorithm generally has
the best performance, but at the cost of a significantly longer run-
time to the point where it must be measured in seconds. Whether
the time and system resources spent on executing the OR algorithm
is acceptable will depend on the specific application. If not, the
HCWD algorithm is generally the next best option in optimizing
cost and runtime.

4 PREVIOUS AND RELATED WORK

In the simplest model with unit-size files and cost, an optimal
algorithm exists given by Belady [4]: evict the file that is requested
farthest from the current. The problem becomes much harder in the
multi-size model, shown by Chrobak et al. [5] to be NP-complete.
Irani [6] gives the first solution as an O(log k)-approximation ratio,
where k is the ratio of C to the size of the smallest file.

In the offline forced caching model, Albers et al. [1] provide an
O(log(M + C))-approximation algorithm where M and C denote the
cache size and the largest file fault cost, respectively. They also
provide a reduction to the Loss Minimization problem. Bar-noy et
al., [2] using the local ratio technique from Bar-Yehuda and Even,
[3] provide a 4-approximation algorithm to Loss Minimization and
for the Multi-Size Forced Offline Caching problem.

5 CONCLUSION AND FUTURE WORK

Additional evaluation of these algorithms using real-world work-
load data would provide greater insight to the usefulness of these
algorithms in applications.

Acknowledgement. This work was supported by the National
Science Foundation under award NSF - 1461260 (BigDataX REU).

Multi-Size Optional Offline Caching Algorithms

REFERENCES

(1]

Susanne Albers, Sanjeev Arora, and Sanjeev Khanna. 1999. Page replacement
for general caching problems. In Proceedings of the tenth annual ACM-SIAM
symposium on Discrete algorithms (SODA °99). Society for Industrial and Applied
Mathematics, Baltimore Maryland, 31-40.

Amotz Bar-Noy, Reuven Bar-Yehuda, Ari Freund, and Joseph (Seffi) Naor. 2001.
A Unified Approach to Approximating Resource Allocation and Scheduling.
Association for Computing Machinery (ACM) 48, 5 (2001), 1069-1090.

Reuven Bar-Yehuda and Shimon Even. 1985. A local-ratio theorem for approxi-
mating the weighted vertex cover problem. Annals of Discrete Mathematics 25
(1985), 27-46.

L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage
Computer. IBM Systems Journal 5, 2 (1966), 78-101.

Marek Chrobak, Gerhard J. Woeginger, Kazuhisa Makino, and Haifeng Xu. 2012.
Caching is hard - even in the fault model. Algorithmica 63, 4 (2012), 781-794.
Sandy Irani. 1999. Page Replacement with Multi-Size Pages and Applications
to Web Caching. In Proceedings of the twenty-ninth annual ACM symposium on
Theory of computing (STOC °97), Vol. 3. ACM, El Paso Texas, 701-710.
Dongfang Zhao, Kan Qiao, and Ioan Raicu. 2015. HyCache+: Towards Scalable
High-Performance Caching Middleware for Parallel File Systems. International
Journal of Big Data Intelligence (2015).

SuperComputing 2017, November 2017, Denver, Colorado USA

	Abstract
	1 Introduction
	2 Methodology
	3 Results
	4 Previous and Related Work
	5 Conclusion and Future work
	References

