
Multi-Size Optional O�line Caching Algorithms
Andrew Choliy
Rutgers University

ayc41@scarletmail.rutgers.edu

Max Whitmore
Brandeis University

whitmore@brandeis.edu

Gruia Calinescu
Illinois Institute of Technology

calinescu@iit.edu

ABSTRACT
�e optional o�ine caching (paging) problem, where all future
�le requests are known, is a variant of the heavily studied online
caching problem. �is o�ine problem has applications in web
caching and distributed storage systems. Given a set of unique
�les with varying sizes, a series of requests for these �les, fast
cache memory of limited size, and slow main memory, an e�cient
replacement policy is necessary to decide when it is best to evict
some �le(s) from the cache in favor of another. It is known that
this problem is NP-complete, and few approximation algorithms
have been proposed. We propose three new heuristics, as well as a
4-approximation algorithm. We then evaluate each algorithm by
the metrics of runtime complexity and proximity to the optimal
solutions of many synthetic data sets.

KEYWORDS
o�ine caching, caching algorithm, distributed storage
ACM Reference format:
Andrew Choliy, Max Whitmore, and Gruia Calinescu. 2017. Multi-Size
Optional O�ine Caching Algorithms. In Proceedings of International Con-
ference for High Performance Computing, Networking, Storage and Analysis,
Denver, Colorado USA, November 2017 (SuperComputing 2017), 3 pages.
DOI: 10.475/123 4

1 INTRODUCTION
�e general caching problem involves choosing an e�cient replace-
ment policy for a two-level memory system where one is local, fast
cache of �xed size and the other is distant, slow main memory. �e
problem’s goal is to minimize access to the slow memory. �is
problem is well-studied in the online version in the context of CPU
caches. In the o�ine model, the sequence of �le requests is known
in advance. Irani [6] introduces a variant of the o�ine problem in
the context of web caching where caching a faulted �le is optional
and the cost of a �le fault is equal to its size (bit model). We con-
sider this model. Zhao et al. [7] use the same model when studying
distributed storage systems and was the catalyst for our work.

Formally, we are given a �nite set M of m unique �les. Each
unique �le i has a size s(i) ∈ Z+ equal to its cost c(i). We are also
given a �nite list R of n requests to the unique �les. Each request
r ∈ R corresponds to some �le i , denoted д(r) = i . We are also
given a cache capacity C ∈ Z+ and an initial cache Q1 which may
or may not be empty. For each r, if the requested �le i is in the
cache, it is read at cost zero. If the �le requested is not in the cache,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SuperComputing 2017, Denver, Colorado USA
© 2017 Copyright held by the owner/author(s). 123-4567-24-567/08/06. . . $15.00
DOI: 10.475/123 4

a fault occurs and д(r) must be read from slow memory. Because
the policy we examine for caching is optional, the faulted �le i may
or may not be loaded into the cache for later use.

A solution to a given general caching problem has a length-n
schedule of caches, where each cache Qr is a set of unique �les
stored at location r in the list of requests. To obtain the total cost of
the schedule, use

∑n
r=1

∑
i ∈(д(r)∪Qr+1)\Qr c(i). Here, Qn+1 = ∅. An

optimal replacement policy loads and evicts �les at each request
in such a way that it minimizes the overall fault cost. A feasible
solution is displayed by Figure 1.

20, 40, 90, 90, 150, 150, 150, 150

ith File Request File
requested

Cache
Usage Cost

1 F1 Empty 20

2 F2 F1 40

3 F3 F1, F2 90

4 F3 F1, F2, F3 90

5 F4 F1, F2, F3 150

6 F4 F1, F2, F4 200

7 F4 F1, F2, F4 200

8 F1 F1, F2, F4 200

Feasible Solution: Cache Content at Each File
Request and Associated Cost

C
ac

he
 U

sa
ge

0

25

50

75

100

g(r) and associated cache Qi

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

size(f4) = 60
size(f3) = 50
size(f2) = 20
size(f1) = 20
Free

f1 f2 f3 f3 f4 f3 f4 f1

20 20 50 0 60 50 0 0

Figure 1: With C = 100, cost(д(r)) is shown below each �le
request. �e cumulative cost is: 20, 40, 90, 90, 150, 200, 200,
200. Each �le requested not present in the cache is loaded
except for f3 at the index denoted by the arrow. It is read
from main memory to later read f4 for free and save cost.

2 METHODOLOGY
We consider several o�ine algorithms. �e �rst was proposed by
Zhao et al. [7]. We then present three of our own variants and our
adaptation of Bar-noy et al.’s [2] framework in the context of Loss
Minimization to optional caching. To evaluate these algorithms, we
compare total cost and runtimemetrics using a large set of synthetic
data samples. We also include results for the well-known LRU
algorithm and the optimal solution (when feasible to calculate) as
reference points. All the algorithms have a runtime of O(nm logm)
except Overload Reduction, which is O(n2).

Heuristic Caching from HyCache+ (HC) Proposed by Zhao
et al. [7], a cost/gain value is computed for each �le equal to its size
multiplied by the number of remaining requests for that �le. As the
algorithm iterates through the �le requests, these values dictate if
д(r) is added to the cache, and which �les will be evicted, if any.

Heuristic Cachingwith FixedWindowSize (HCFW).HCFW
is our �rst variant of the HC algorithm. Rather than considering
all of R when computing the cost/gain value for a �le, we only look
at a window of 3m �le requests ahead.

Heuristic Caching with Variable Window Size (HCVW).
�e HCVW algorithm is similar to HCFW, but the length of the

SuperComputing 2017, November 2017, Denver, Colorado USA Andrew Choliy, Max Whitmore, and Gruia Calinescu

Figure 2: Data for average cost with 5 unique �les.

window expands and contracts to include at least one request of
each unique �le from the current point in the request list to its end.
If a �le no longer appears in the request list, it is excluded from this
rule.

Heuristic Caching Weighted by Distance (HCWD).�is al-
gorithm takes the distance of each request into account when com-
puting the cost/gain value for each �le. For each request, use the
size of its �le divided by its distance from the current step in the
request list. �e sum of these values for a given �le becomes that
�le’s cost/gain.

Overload Reduction (OR).�is algorithm is adapted from Bar-
Noy et al. [2] and also inspired by Albers et al. [1]. �e original
version was intended for the forced caching version of our problem;
we have modi�ed it for optional caching. We can prove this is a
4-approximation, improving [6].

3 RESULTS
Our evaluations were performed on a machine with an i7 4810MQ
CPU and 8 GB of DDR3 RAM.We consider cases withm = 5, 10, 100,
and 1000 unique �les, as well as between 500 and 4000 �le requests
at increments of 500. File sizes range from 21 to 40 (m = 5 or 10) or
1 to 20 (m = 100 or 1000). C is always 100. For each combination of
number of unique �les and number of �le requests, we generate 30
random trials. �en we average the total cost and runtime metrics
for each algorithm across the trials.

Each of our algorithms (HCFW, HCVW, and HCWD) generally
perform be�er than HC in terms of average cost while maintain-
ing HC’s fast runtime. With 5 unique �les, HC returns on average
168.8% of the optimal cost, whereas OR and HCWD give just 107.3%
and 107.6%, respectively. With 100 unique �les, OR produces an
output that is on average 18.2% lower than HC. HCWD is second
best at a 8.6% improvement. When the number of unique �les is
relatively close to the number of �le requests, we see very similar
cost metrics across the algorithms, even LRU. �is makes sense

Figure 3: Data for average cost with 100 unique �les.

because it becomes rare that �les are repeated o�en, minimizing
the usefulness of caches in the �rst place. �is is best re�ected in
the cases with 1000 unique �les, where we see only OR having any
notable reduction in total cost versus HC. Even then, it is only an
improvement of 5.6% on average. �e OR algorithm generally has
the best performance, but at the cost of a signi�cantly longer run-
time to the point where it must be measured in seconds. Whether
the time and system resources spent on executing the OR algorithm
is acceptable will depend on the speci�c application. If not, the
HCWD algorithm is generally the next best option in optimizing
cost and runtime.

4 PREVIOUS AND RELATEDWORK
In the simplest model with unit-size �les and cost, an optimal
algorithm exists given by Belady [4]: evict the �le that is requested
farthest from the current. �e problem becomes much harder in the
multi-size model, shown by Chrobak et al. [5] to be NP-complete.
Irani [6] gives the �rst solution as an O(logk)-approximation ratio,
where k is the ratio of C to the size of the smallest �le.

In the o�ine forced caching model, Albers et al. [1] provide an
O(log(M + C))-approximation algorithm where M and C denote the
cache size and the largest �le fault cost, respectively. �ey also
provide a reduction to the Loss Minimization problem. Bar-noy et
al., [2] using the local ratio technique from Bar-Yehuda and Even,
[3] provide a 4-approximation algorithm to Loss Minimization and
for the Multi-Size Forced O�ine Caching problem.

5 CONCLUSION AND FUTUREWORK
Additional evaluation of these algorithms using real-world work-
load data would provide greater insight to the usefulness of these
algorithms in applications.

Acknowledgement. �is work was supported by the National
Science Foundation under award NSF - 1461260 (BigDataX REU).

Multi-Size Optional O�line Caching Algorithms SuperComputing 2017, November 2017, Denver, Colorado USA

REFERENCES
[1] Susanne Albers, Sanjeev Arora, and Sanjeev Khanna. 1999. Page replacement

for general caching problems. In Proceedings of the tenth annual ACM-SIAM
symposium on Discrete algorithms (SODA ’99). Society for Industrial and Applied
Mathematics, Baltimore Maryland, 31–40.

[2] Amotz Bar-Noy, Reuven Bar-Yehuda, Ari Freund, and Joseph (Se�) Naor. 2001.
A Uni�ed Approach to Approximating Resource Allocation and Scheduling.
Association for Computing Machinery (ACM) 48, 5 (2001), 1069–1090.

[3] Reuven Bar-Yehuda and Shimon Even. 1985. A local-ratio theorem for approxi-
mating the weighted vertex cover problem. Annals of Discrete Mathematics 25
(1985), 27–46.

[4] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage
Computer. IBM Systems Journal 5, 2 (1966), 78–101.

[5] Marek Chrobak, Gerhard J. Woeginger, Kazuhisa Makino, and Haifeng Xu. 2012.
Caching is hard - even in the fault model. Algorithmica 63, 4 (2012), 781–794.

[6] Sandy Irani. 1999. Page Replacement with Multi-Size Pages and Applications
to Web Caching. In Proceedings of the twenty-ninth annual ACM symposium on
�eory of computing (STOC ’97), Vol. 3. ACM, El Paso Texas, 701–710.

[7] Dongfang Zhao, Kan Qiao, and Ioan Raicu. 2015. HyCache+: Towards Scalable
High-Performance Caching Middleware for Parallel File Systems. International
Journal of Big Data Intelligence (2015).

	Abstract
	1 Introduction
	2 Methodology
	3 Results
	4 Previous and Related Work
	5 Conclusion and Future work
	References

