
Abstract	

The																				System		

 Jennifer A. Steffens, Drake University

A	New	Approach	

•  Swi1	is	a	scrip3ng	language	designed	to	parallelize	high	
performance	workflows	in	order	to	op3mize	efficiency.	

•  It	is	composed	of	one	server	node	and	many	worker	nodes.	
•  The	current	implementa3on,	Swi1/T,	U3lizes	MPI	and	ADLB	

libraries	in	its	run3me,	Turbine.	
•  Swi1/T	can	perform	up	to	1.5	billion	tasks	per	second,	improved	
from	the	Swi1/K	maximum	of	500	tasks	per	second	[1].	

•  The	Swi1	System’s	current	provenance	model,	which	aims	to	
collect	metadata	concerning	a	program’s	execu3on,	outputs	to	a	
log	text	file,	then	parses	and	inserts	informa3on	into	a	SQLite	
database	upon	program	termina3on	[2].	

•  MPDM	collects	provenance	data	during	run3me.	
•  Many	processes	wri3ng	to	a	single	database	at	the	same	3me	

can	be	slow,	corrupt	data,	or	kill	the	processes	[Figure	1].	

Evalua0on	
•  SQLite	database	opera3ons	were	implemented	in	C	and	
integrated	into	the	Swi1/T	source	code.	

•  Data	was	inserted	into	two	major	tables	during	
run3me	[Figure	3].	

•  A	Swi1/T	script	was	run	that	generated	100	tasks	for	each	
worker	node.	

•  The	speeds	of	a	mul3ple	database	system	to	that	of	
a	single	database	system	were	compared	[Figure	4].	

•  Unpopulated	database	models	executed	create	
statements	to	set	up	the	pre-determined	schema.	

•  Populated	models	added	to	exis3ng	databases.	
•  Each	model	was	given	three	separate	trials	for	each	
node	count,	and	the	average	speed	was	recorded.	

•  The	program	was	executed	on	Cooley,	a	126-node	
supercomputer	hosted	by	Argonne	Na3onal	Laboratory.	

•  Two	2.4	GHz	Intel	Haswell	E5-2620	v3	processors	
per	node	(6	cores	per	CPU,	12	cores	total).	

•  One	NVIDIA	Tesla	K80	(with	two	GPUs)	per	node.	
•  384GB	RAM	per	node,	24	GB	GPU	RAM	per	node	(12	
GB	per	GPU).	

ScriptRun	
	

scriptRunId	 int	
scriptFileName	 date3me	
logFileName	 int	
swi1Version	 int	
turbineVersion	 char	(128)	
finalState	 char	(128)	
startTime	 char	(128)	
dura3on	 char	(128)	
scriptHash	 text	
scriptRunId	 int	

Applica0onExecu0on	
	

tries	 int	
startTime	 date3me	
try_dura3on	 int	
total_dura3on	 int	
command	 char	(128)	
stdios	 char	(128)	
arguments	 char	(128)	
notes	 text	
tries	 int	

Figure	3:	Schema	of	Applica4onExecu4on	and	ScriptRun	

Figure	4:	Comparison	of	the	efficiency	of	database	systems	
	

Conclusions	
•  Swi1/T’s	current	provenance	system	requires	improvement.		
•  The	new	provenance	model,	the	Mul0ple	Parallel	Database	

Model	(MPDM),	parallelizes	the	real-3me	storage	of	data	in	a	
user-accessible	database	system.		

•  MPDM	shows	significant	improvement	in	many	ways	over	the	
previous	model.	

	

	
•  Significant	increase	in	speed:	The	maximum	
observed	efficiency	of	MPDM	is	one	hundred	3mes	that	of	
the	previous	model.	

•  Long	term	scalability:	Efficiency	increases	as	more	
worker	nodes	are	added,	mimicking	the	behavior	of	the	
Swi1	language.		

•  Accessibility:	With	provenance	data	being	viewable	at	
run3me,	researchers	can	now	analyze	output	as	soon	as	it	
is	collected	and	observe	its	change	in	real	3me.	This	aids	in	
tracing	output,	iden3fying	errors,	and	accelera3ng	
program	improvement	and	efficiency.	

•  Flexibility:	Since	the	method	of	use	of	the	database	
engine	rather	than	the	engine	itself	is	modified,	this	
method	can	be	applied	to	other	database	engines	to	
improve	their	performance	as	well.		

	
We	believe	parallelizing	databases	in	this	fashion	will	make	

simple	 database	 engines	 prac3cal	 for	 high	 performance	
compu3ng.	 	 For	 the	 Swi1/T	 language,	 the	 Mul3ple	 Parallel	
Databases	Model	 offers	 easy	 storage	 and	 access	 to	 valuable	
data	collected,	available	as	soon	as	it	is	processed.		

Acknowledgements	
	 	 This	 work	 was	 supported	 in	 part	 by	 the	 Na3onal	 Science	
Founda3on	 under	 awards	 NSF-1461260	 (REU)	 and	 used	
resources	 of	 the	 Argonne	 Leadership	 Compu3ng	 Facility	 at	
Argonne	Na3onal	Laboratory,	which	is	supported	by	the	Office	
of	 Science	 of	 the	 U.S.	 Department	 of	 Energy	 under	 contract	
DE-	 AC02-06CH11357.	 This	 work	 was	 supervised	 by	 Jus3n	
Wozniak	of	Argonne	Na3onal	Laboratory.		

References	
[1] 	Wozniak,	Jus3n	M.,	Timothy	G.	Armstrong,	Michael	Wilde,	Daniel	S.	Katz,	

Ewing	Lusk,	and	Ian	T.	Foster.	"Swi1/T:	large-scale	applica3on	composi3on	
via	distributed-memory	dataflow	processing."	In	Cluster,	Cloud	and	Grid	
Compu4ng	(CCGrid),	2013	13th	IEEE/ACM	Interna4onal	Symposium	on,		
	pp.	95-102.	IEEE,	2013.	

	
[2]			Gadelha,	L.	M.,	B.	Clifford,	M.	Maooso,	M.	Wilde,	and	I.	Foster.	Provenance	

management	in	SwiN	with	implementa4on	details.	No.	ANL/MCS-TM-311.	
Argonne	Na3onal	Laboratory	(ANL),	2011.	

	
[3]			Gadelha	Jr,	Luiz	MR,	Michael	Wilde,	Marta	Maooso,	and	Ian	Foster.	

"MTCProv:	a	prac3cal	provenance	query	framework	for	many-task	scien3fic		
	compu3ng."	Distributed	and	Parallel	Databases	30,	no.	5-6	(2012):	351-370.	

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

0	 20	 40	 60	 80	 100	

Ta
sk
s/
Se
co
nd

	

Worker	Nodes/Total	Tasks	in	Hundreds	

Performance	of	Database	Models	

	Single	Populated,	1	Process	Per	Node	

	Mul3ple	Unpopulated,	1	Process	Per	Node	

	Mul3ple	Populated,	1	Process	Per	Node	

	Mul3ple	Populated,	12	Processes	Per	Node	

Worker	Nodes/	
Total	Tasks	

Single		Populated	
1	Process	Per	Node	

Mul0ple	Unpopulated	
	1	Process	Per	Node	

Mul0ple	Populated		
1	Process	Per	Node	

Mul0ple	Populated	
12	Processes	Per	Node	

2 2.2172	 16.785	 80.667	 111.669	
4 2.594	 106.8	 111.592	 228.506	
8 4.056	 109.27	 128.673	 432.654	
16	 4.506	 122.822	 138.925	 173.461	
32	 1.085	 105.351	 133.662	 163.913	
64	 0.5926	 97.207	 123.193	 126.203	
100	 N/A	 88.235	 128.084	 131.73	

•  The	single	database	model	showed	
to	be	significantly	less	efficient.	

•  The	single	database	model	and	the	
unpopulated	mul3ple	model	
showed	decreasing	end	behavior,	
implying	a	booleneck.	

•  Both	populated	mul3ple	models	
showed	increasing	end	behavior	
implying	scalability.	

•  The	12	PPN	populated	model	
showed	the	most	efficient	for	60	
workers	and	less	and	then	showed	
similar	efficiency	to	its	1	PPN	
counterpart.	

•  MPDM	Solves	this	by	assigning	each	worker	node	a	separate,	
schema3cally	iden3cal	database	[Figure	2].	
•  Data	is	queried	by	aoaching	the	databases	to	each	other,	

elimina3ng	the	need	to	combine	the	files.	

Figure	1:	A	visualiza4on	of	the	previous	database	model	

Figure	2:	A	visualiza4on	of	the	Mul4ple	Parallel	Database	Model	

