
Parallel Provenance Databases for
High Performance Workflows

Jennifer A. Steffens

Drake University
Des Moines, IA

jennifer.steffens@drake.edu

Abstract--In scientific computing, understanding the
origins and derivation of data is crucial. Provenance
models aim to provide a means of capturing this in an
efficient and effective manner. For the Swift/T language,
the current provenance handling system requires
improvement. In this poster, we discuss the development
of a new Swift/T provenance model, the Multiple Parallel
Databases Model (MPDM), which parallelizes the real-
time storage of provenance data in a user-accessible
database system. Utilizing multiple databases in high
performance, parallel workflows can increase the
practicality of lightweight, relational databases engines
such as SQLite, as we show MPDM to be more efficient
and have better scalability than the previous, single
database model.

I. THE SWIFT SYSTEM

The Swift scripting language is designed for optimizing
the execution of scientific computational experiments by
performing independent tasks implicitly in parallel. The
system operates on a given number of nodes, with one server
node and many script-executing worker nodes. Swift/T, the
current implementation of the language, utilizes MPI and
ADLB libraries in its runtime, Turbine, letting it perform up
to 1.5 billion tasks per second [1].

 The provenance model for the previous generation of the
Swift language, Swift/K, is based on the Open Provenance
Model. After the execution of parallel scripts that specify
many-task computations, this model extracts provenance
information from the log files that Swift/K generates and
stores it in a SQLite-driven database [2]. SQLite is simple
and lightweight, with the advantage of being already present
on most machines and leaving an extremely small memory
footprint.

II. OUR APPROACH
Instead of upon program termination, our model collects

provenance data during runtime, providing the benefit of
access before a large workflow finishes executing and easy
progress tracking. To achieve this, we integrated an SQLite-

Fig. 1. Schema of ScriptRun and ApplicationExecution. These are

modified versions of tables in the Swift/K model.

utilizing C program into the Swift/T source code that inserts
information into the databases as it is processed. In this
system, the two largest and data-intensive tables are
ApplicationExecution, which details external application
calls (leaf tasks) in a Swift script, and ScriptRun, which
details important general information [Fig. 1].

We assigned each worker its own database, which is
schematically identical to the master database. By doing this,
we can make sure each database is not being written to by
multiple processes simultaneously [Fig. 2]. To query the data,
we use attach statements to join all of the separate database
files, eliminating the need to combine them into a single file.

ApplicationExecution
tries int
startTime datetime
try_duration int
total_duration int
command char (128)
stdios char (128)
arguments char (128)
notes text
tries int

ScriptRun
scriptRunId int

scriptFileName datetime

logFileName int

swiftVersion int

turbineVersion char (128)

finalState char (128)

startTime char (128)

duration char (128)

scriptHash text

scriptRunId int

.

Fig. 2. A visualization of the single database system (top) and
the Multiple Parallel Databases Model (bottom).

III. EVALUATION

To test the efficiency of our system, we ran a simple
Swift script thrice per trial on a variable amount of nodes
hosted by the Cooley computing system, a collection of 126
compute nodes housed at Argonne National Laboratory that
is composed of Two 2.4 GHz Intel Haswell E5-2620 v3
processors per node (6 cores per CPU, 12 cores total), and
has 384GB RAM per node. Our script generated a hundred
tasks per worker node, and assigned them each their own
database. We compared this to the same script ran with a
single database and found significant increases in
performance for the multiple database models [Fig. 3].

The unpopulated multiple database model executed a
creation statement for each database and this caused it to not
show scalability long term. However, in practical use, the
databases will only need to be created in the first script
execution, and the execution of any script following will only
add to them. Therefore, the populated models, which were
shown to scale, portray realistic use. The 12 processes per
node model gave our maximum efficiency of 432.654 tasks
per second, at 8 worker nodes and 800 tasks. It continues to
be the most efficient model, but when executed on more than
60 nodes, it mimics the behavior of its single process per
node counterpart.

IV. CONCLUSION

Our model provides a significant improvement in speed,
with the maximum observed efficiency of the Multiple
Parallel Databases Model being one hundred times that of the

Fig. 3. A visualization comparing the speed of the systems.

previous model. The efficiency of this model also increases
as more worker nodes are added, mimicking the behavior of
the Swift language.

 Since provenance data is viewable at runtime, researchers
can now analyze output as soon as it is collected and observe
its change in real time. This aids in tracing output, identifying
errors, and accelerating program improvement and
efficiency. In addition, since the method of use of the
database engine rather than the engine itself is modified, this
model can be applied to other database engines to improve
performance.

We believe parallelizing databases in this fashion will
make simple database engines practical for high performance
computing. For the Swift/T language, the Multiple Parallel
Databases Model offers easy storage and access to valuable
data collected, available as soon as it is processed.

ACKNOWLEDGMENTS

 This work was supported in part by the National Science
Foundation under awards NSF-1461260 (REU) and used
resources of the Argonne Leadership Computing Facility at
Argonne National Laboratory, which is supported by the
Office of Science of the U.S. Department of Energy under
contract DE- AC02-06CH11357. This work was supervised
by Justin Wozniak.

REFERENCES

[1] Wozniak, Justin M., Timothy G. Armstrong, Michael Wilde, Daniel S.

Katz, Ewing Lusk, and Ian T. Foster. "Swift/T: large-scale application
composition via distributed-memory dataflow processing." In Cluster,
Cloud and Grid Computing (CCGrid), 2013 13th IEEE/ACM
International Symposium on, pp. 95-102. IEEE, 2013.

[2] Gadelha, L. M., B. Clifford, M. Mattoso, M. Wilde, and I.
Foster. Provenance management in Swift with implementation details.
No. ANL/MCS-TM-311. Argonne National Laboratory (ANL), 2011.

[3] Gadelha Jr, Luiz MR, Michael Wilde, Marta Mattoso, and Ian Foster.

"MTCProv: a practical provenance query framework for many-task
scientific computing." Distributed and Parallel Databases 30, no. 5-6
(2012): 351-370.
	

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

0	 20	 40	 60	 80	 100	

Ta
sk
s/
Se
co
nd
	

Worker	Nodes/Total	Tasks	in	Hundreds	

Performance	of	Database	Models	

	Single	Populated,	1	Process	Per	Node	

	Multiple	Unpopulated,	1	Process	Per	Node	

	Multiple	Populated,	1	Process	Per	Node	

	Multiple	Populated,	12	Processes	Per	Node	

