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Abstract--In scientific computing, understanding the 
origins and derivation of data is crucial. Provenance 
models aim to provide a means of capturing this in an 
efficient and effective manner. For the Swift/T language, 
the current provenance handling system requires 
improvement. In this poster, we discuss the development 
of a new Swift/T provenance model, the Multiple Parallel 
Databases Model (MPDM), which parallelizes the real-
time storage of provenance data in a user-accessible 
database system. Utilizing multiple databases in high 
performance, parallel workflows can increase the 
practicality of lightweight, relational databases engines 
such as SQLite, as we show MPDM to be more efficient 
and have better scalability than the previous, single 
database model. 

 
I. THE SWIFT SYSTEM 

The Swift scripting language is designed for optimizing 
the execution of scientific computational experiments by 
performing independent tasks implicitly in parallel. The 
system operates on a given number of nodes, with one server 
node and many script-executing worker nodes. Swift/T, the 
current implementation of the language, utilizes MPI and 
ADLB libraries in its runtime, Turbine, letting it perform up 
to 1.5 billion tasks per second [1]. 

 The provenance model for the previous generation of the 
Swift language, Swift/K, is based on the Open Provenance 
Model. After the execution of parallel scripts that specify 
many-task computations, this model extracts provenance 
information from the log files that Swift/K generates and 
stores it in a SQLite-driven database [2]. SQLite is simple 
and lightweight, with the advantage of being already present 
on most machines and leaving an extremely small memory 
footprint. 

II. OUR APPROACH 
Instead of upon program termination, our model collects 

provenance data during runtime, providing the benefit of 
access before a large workflow finishes executing and easy 
progress tracking. To achieve this, we integrated an SQLite- 

 

 
Fig. 1. Schema of ScriptRun and ApplicationExecution. These are 

modified versions of tables in the Swift/K model. 
 
utilizing C program into the Swift/T source code that inserts 
information into the databases as it is processed. In this 
system, the two largest and data-intensive tables are 
ApplicationExecution, which details external application 
calls (leaf tasks) in a Swift script, and ScriptRun, which 
details important general information [Fig. 1].  

We assigned each worker its own database, which is 
schematically identical to the master database. By doing this, 
we can make sure each database is not being written to by 
multiple processes simultaneously [Fig. 2]. To query the data, 
we use attach statements to join all of the separate database 
files, eliminating the need to combine them into a single file.

ApplicationExecution 
tries int 
startTime datetime 
try_duration int 
total_duration int 
command char (128) 
stdios char (128) 
arguments char (128) 
notes text 
tries int 

ScriptRun 
scriptRunId int 

scriptFileName datetime 

logFileName int 

swiftVersion int 

turbineVersion char (128) 

finalState char (128) 

startTime char (128) 

duration char (128) 

scriptHash text 

scriptRunId int 



.  
 

 

 

 

 

 

 

 

 

 

Fig. 2. A visualization of the single database system (top) and 
the Multiple Parallel Databases Model (bottom). 

 

III. EVALUATION 

To test the efficiency of our system, we ran a simple 
Swift script thrice per trial on a variable amount of nodes 
hosted by the Cooley computing system, a collection of 126 
compute nodes housed at Argonne National Laboratory that 
is composed of Two 2.4 GHz Intel Haswell E5-2620 v3 
processors per node (6 cores per CPU, 12 cores total), and 
has 384GB RAM per node. Our script generated a hundred 
tasks per worker node, and assigned them each their own 
database. We compared this to the same script ran with a 
single database and found significant increases in 
performance for the multiple database models [Fig. 3].  

The unpopulated multiple database model executed a 
creation statement for each database and this caused it to not 
show scalability long term. However, in practical use, the 
databases will only need to be created in the first script 
execution, and the execution of any script following will only 
add to them. Therefore, the populated models, which were 
shown to scale, portray realistic use. The 12 processes per 
node model gave our maximum efficiency of 432.654 tasks 
per second, at 8 worker nodes and 800 tasks. It continues to 
be the most efficient model, but when executed on more than 
60 nodes, it mimics the behavior of its single process per 
node counterpart. 

 
IV. CONCLUSION 

Our model provides a significant improvement in speed, 
with the maximum observed efficiency of the Multiple 
Parallel Databases Model being one hundred times that of the  

Fig. 3. A visualization comparing the speed of the systems. 
 

previous model. The efficiency of this model also increases 
as more worker nodes are added, mimicking the behavior of 
the Swift language.  

 Since provenance data is viewable at runtime, researchers 
can now analyze output as soon as it is collected and observe 
its change in real time. This aids in tracing output, identifying 
errors, and accelerating program improvement and 
efficiency. In addition, since the method of use of the 
database engine rather than the engine itself is modified, this 
model can be applied to other database engines to improve 
performance.  

We believe parallelizing databases in this fashion will 
make simple database engines practical for high performance 
computing.  For the Swift/T language, the Multiple Parallel 
Databases Model offers easy storage and access to valuable 
data collected, available as soon as it is processed. 
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Worker	Nodes/Total	Tasks	in	Hundreds	

Performance	of	Database	Models	

	Single	Populated,	1	Process	Per	Node	

	Multiple	Unpopulated,	1	Process	Per	Node	

	Multiple	Populated,	1	Process	Per	Node	

	Multiple	Populated,	12	Processes	Per	Node	


