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ABSTRACT
Big data scientists face the challenge of locating valuable
datasets across a network of distributed storage locations.
We explore methods for recommending storage locations
(“endpoints”) for users based on a range of prediction models
including collaborative filtering and heuristics that consider
available information such as user, institution, access his-
tory, endpoint ownership, and endpoint usage. We combine
the strengths of these models by training a deep recurrent
neural network on their predictions. Collectively we show,
via analysis of historical usage from the Globus research data
management service, that our approach can predict the next
storage location accessed by users with 80.3% and 95.3% ac-
curacy for top-1 and top-3 recommendations, respectively.
Additionally, our heuristics can predict the endpoints that
users will use in the future with over 75% precision and re-
call.

1. INTRODUCTION
As data volumes and network speeds increase, the task of
determining where useful data are to be found becomes more
complex. Services such as Globus [12] simplify the manage-
ment of scientific data (for example, by streamlining shar-
ing [8] and publication [7]). Still, an individual scientist
may have access to hundreds or even thousands of storage
systems. Which should they visit next?

Commercial web services, such as travel, e-commerce, and
television streaming services rely on user-specific recommen-
dations to both enhance user experience and drive revenue
streams [4]. These recommendations are possible because
of the large amount of usage information captured by these
services. Here we investigate the feasibility of providing sim-
ilar, targeted data location recommendations to scientists,
with the goals of improving both 1) user experience and 2)
understanding of how large scientific data are used. We use
the approximately 3.5 million transfer operations conducted
via Globus between research storage systems over the past

five years as a basis for this study. We envisage such capa-
bilities could be offered as an online recommendation engine
that would allow users to quickly find the data they are
looking for while also enabling them to explore other data
of relevance (Figure 1).

We define and evaluate a collection of specialized endpoint
prediction heuristics that consider unique features of large
scientific data, Globus users, and storage endpoint informa-
tion (e.g., institution, transfer frequency, and endpoint loca-
tion) derived from historical Globus usage data. We measure
the performance of these heuristics in terms of how well they
predict 1) the two specific endpoints used in a user’s next
transaction and 2) the set of endpoints used by a a user in
the future. We show that we can predict the next endpoint
correctly over 95% of the time and future endpoints with
over 75% precision and recall. In addition, by analyzing
the relative contributions of the different features used by
the heuristics, we explore the contribution of each feature to
our recommendations. We find a large and surprising dif-
ference between good recommendation strategies for source
and destination endpoints.

The rest of this paper is as follows. In §2 we investigate
historical Globus usage as the basis for developing endpoint
recommendation heuristics. We then describe in §3 a base-
line recommendation algorithm, using industry standard col-
laborative filtering. In §4 we describe a series of endpoint
recommendation heuristics developed using our observations
of historical usage. In §5, we present the neural network
used to combine our heuristics’ recommendations. Next, in
§6, we evaluate the performance of our approaches. Finally,
we compare with related work in §7 and conclude in §8.

Figure 1: Mockup of recommendation interface.
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Figure 2: Globus Network. Endpoints are repre-
sented as vertices. Edges represent transfers be-
tween endpoints. Larger endpoints have transferred
more frequently with more distinct endpoints. End-
points that transfer more frequently with each other
are closer.

2. GLOBUS
Globus, a software as a service provider of research man-
agement capabilities, supports data transfer, synchroniza-
tion, and sharing [2]; data publication [7]; identity manage-
ment, authentication, and authorization [21]; and profile and
groups management [6]. It provides a rich source of infor-
mation from which we can understand scientific data access
patterns. Thus, as the basis for developing recommendation
heuristics we first explore historical Globus usage to derive
features that may be indicative of usage.

Over its six years of existence, Globus has been used to
conduct almost 3.5 million transfers, totaling more than
180PB and 2.5 billion files, among 23,000 unique endpoints.
Thus, Globus usage can be represented as a network with
23,000 vertices and 3.5 million edges. Part of this network
is illustrated in Figure 2.

The graph highlights the different usage patterns of Globus
users and endpoints. There are distinct endpoint clusters,
typically centered around a single large (more frequently
used) endpoint. These clusters are clearly related in some
way, perhaps, for instance associated with a data source
(e.g., the National Center for Atmospheric Research’s Re-
search Data Archive), a particular scientific group, or a par-
ticular instrument or resource (e.g., the BlueWaters Super-
computer). Some clusters are completely independent of the
rest of the network, while others are more tightly connected.
We also see that a small number of endpoints have been in-
volved in many transfers with many endpoints, while many
endpoints have participated in few transfers with few end-
points.

Globus is used in a broad range of scenarios, including au-
tomated usage by scripts and third-party applications. Due
to our primary interest in providing recommendations to
users, rather than programs (e.g., those that backup super-
computers), that use Globus, we focus our prediction efforts
on the roughly 800,000 operations initiated using the web
interface. Figure 3 further illustrates usage patterns show-

ing the data volumes, number of transfers, and number of
unique endpoints per user for all Globus usage submitted
via the Web interface. These long-tailed distributions are a
defining feature of Globus (and perhaps scientific data usage
in general), and present a challenge for endpoint prediction.
The endpoints with low usage provide little historical infor-
mation on which to base predictions, and the endpoints with
high activity are often used by many different scientists each
with different usage patterns.

Although Globus has been used to transfer billions of
files, the mappings between users and endpoints, and end-
points and endpoints, are sparse. Only ∼0.01% of potential
user/endpoint pairs and 0.006% of potential endpoint/endpoint
pairs are present. Figure 4 illustrates this sparsity with a
heatmap showing the transactions between the 200 most ac-
tive users and endpoints.

In addition to highlighting sparsity the heatmap shows
two interesting patterns. First, an approximately diagonal
line that shows correlation between the most active users
and the most active endpoints: that is, active users strongly
favor a single endpoint so much so that this favored endpoint
has a usage ranking similar to the user’s. This striking pat-
tern leads us to suspect that recommending the endpoint
most frequently used by a user would provide good results.
The second usage characteristic is the presence of vertical
lines. While most users use one endpoint much frequently
than others, these lines indicate that some endpoints (pri-
marily the most active endpoints) are used by many users.
This knowledge can be leveraged by identifying and recom-
mending these broadly used endpoints.

3. COLLABORATIVE FILTERING
Collaborative filtering (CF) is a technique commonly used
by recommendation systems to determine rankings based on
other users’ rankings. In simple terms, the model assumes
that if user A has a preference for the same item as user B,
then A is more likely to choose another item preferred by B
than a user chosen at random. CF techniques are commonly
applied to product and movies recommendations: CF was
used to win the Netflix Challenge [28], for example. CF has
also been used with success to recommend web services to
users [27].

While CF is typically used to recommend new products
to users based on explicit rankings, thus it is more suitable
for our second recommendation task of predicting a set of
endpoints to be used in the future. We use the popular
GraphLab [19] toolkit to implement a CF model. We set a
user’s rating of an endpoint to 1 if that user has used that
endpoint, and 0 otherwise. We also give the model the parts
of users’ email suffixes (for example, wagnew3@gatech.edu
belongs to the categories“gatech”and“edu”) and the owners
of each endpoint, the idea being that the CF model could
find groups of collaborating users. We then applied the rank-
ing factorization recommender [1], which writes all user-item
recommendation weights as an equation of many unknown
variables and then uses stochastic gradient descent to find
the values for those variables that minimize some cost func-
tion. These variable values are then used to predict future
endpoint ratings for users.

4. ENDPOINT PREDICTIONHEURISTICS
Globus stores detailed records regarding users, endpoints,
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(a) Transfer volume per user (b) Transfers per user (c) Distinct endpoints per user

Figure 3: Long-tailed distributions of Globus usage. In (a) and (b), all transfers are in orange, and web
(human) initiated transfers are in blue. (c) shows endpoint usage for all transfers; web transfers are similar.

Figure 4: Heatmap of user-endpoint transfer pairs
for the 200 most active users and endpoints. Users
on y axis. Endpoints on x axis. Colors are based
on the log of the number of transactions for each
user-endpoint pair.

and transfer history: user names, email addresses, and insti-
tutions; endpoint descriptions, locations, and settings; and
transfer settings, performance, and errors. We use this in-
formation to develop a collection of specialized endpoint rec-
ommendation heuristics. When queried with user ID, date,
and a positive integer n, each heuristic returns what it be-
lieves are the top-n best endpoint recommendations for that
user ID on that date. Now we describe each heuristic.
History: The history heuristic does exactly what one

would expect: it predicts that the top-n best source (S) /
destination (D) endpoints are the n most recently used S/D
endpoints.
Markov Chain: The Markov Chain heuristic correlates

previously used endpoints with potential future endpoints.
To do so, it maintains a transition matrix of the probabilities
of using each endpoint as a S/D conditioned on a particular
endpoint being previously used as a S/D. These probabilities
are estimated online by the Markov chain heuristic from the
observed transitions. According to this heuristic, the top-
n most likely S/D endpoints for a user are the top-n most

likely endpoint transitions given that user’s previous S/D
endpoint choice.
Most unique users: The most unique users heuristic

takes advantage of the long-tailed usage distribution: a small
number of endpoints are used by many users and most end-
points are used by few users. The top-n best S/D endpoints
are the endpoints with the nth most unique users who used
that endpoint as a S/D.
Institution: The institution heuristic maps users to their

institution based on that user’s associated email suffix. For
example, “wagnew3@gatech.edu” would be mapped to the
institution “gatech.edu.” The top-n best S/D endpoints for
a user are the n endpoints owned by a user belonging to the
same institution with the most unique users that have used
them as a S/D.
Endpoint ownership: The endpoint ownership heuris-

tic recommends the top-n most recently created endpoints
owned by a user, based on the idea that if a user creates a
new endpoint, that user is likely to use it soon.

5. COMBINING HEURISTICS
Our heuristics model different aspects of usage and therefore
perform well for different classes of users. To provide the
best possible recommendations we combine these heuristics
into a single, superior heuristic. To do so, we trained a deep
recurrent neural network [14] on historical Globus data to
select the best endpoint recommendations from each heuris-
tic. We choose to use a recurrent neural network over more
traditional, simpler ensemble methods because of the great
success recurrent neural networks have achieved in learning
series [16].

The model for this neural network is shown in Figure 5.
The basic model is composed of two LSTM blocks stacked
on top of two fully connected layers. The first LSTM block
has an output size of 15 and the next LSTM block and the
two fully connected layers have input and output sizes of 15.
The first fully connected block uses a ReLU activation func-
tion which has proven effective in deep neural networks [13].
The last layer of the network uses a softmax activation func-
tion, which creates a probability distribution of outputs. We
do not claim that this network architecture is optimal, but
we justify its complexity by comparing it to a simpler ar-
chitecture of a single dense layer of size 15 and a softmax
output layer (§6).

As we see in Figure 3(c), there is a a significant difference
between endpoints used as sources and endpoints used as
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destinations. To address this difference we have trained sep-
arate neural networks for source and destination endpoint
recommendation. We explore this choice in §6.

5.1 Neural network input
The input to the neural network consists of two parts: rec-
ommendation weights and additional problem information.
To obtain recommendation weights, each heuristic recom-
mends its top-n endpoints, along with their weights. If an
endpoint has already been recommended by another heuris-
tic, then the heuristic continues recommending top end-
points until it has recommended n endpoints distinct from
the other recommendations or until it can no longer make
recommendations. Disallowing duplicate recommendations
allows the network to consider more endpoints for its size,
but it may reduce accuracy in some cases: if a particular
endpoint is weighted highly by many heuristics, then that
endpoint is likely a good recommendation. To alleviate this
problem, we include each heuristic’s weight for each recom-
mended endpoint.

To give a brief example of how we incorporate the heuris-
tics into our neural network, consider an endpoint X. Each
heuristic weights endpoint X, that is, outputs how confident
it is that endpoint X is the correct endpoint choice. If the
user owns only Y , then the Endpoint Ownership heuristic
will assign Y a weight of one. If endpoint Z is the sec-
ond most recent endpoint used, then the history heuristic
will assign Z weight of 1

2
. Each heuristic’s weighting is

fairly arbitrary, having only the property that more highly
ranked endpoints have larger weights; in most cases, we use
a weighting function of 1

rank
. The neural network is then

presented with the set of endpoints X,Y, Z along with their
weights. use such arbitrary weighting functions in the ab-
sence of more natural weighting functions and leave it to
the neural network to learn how to interpret each heuristic’s
weightings.

The performance of different heuristics could be affected
by external information, for example, whether the user works
in academia or industry, if the endpoint is located in the
same country, or if the data accessed is large. In short, any
number of factors could affect endpoint selection. To fur-
ther improve recommendation accuracy we provide the neu-
ral network with every piece of information available and
let the neural network learn which information is impor-
tant. The complete list of additional input information is as
follows: transaction date, user institution type (academic,
commercial, government, other), number of Globus users
affiliated with user institution, total number and volume of
user transactions, data size, transaction frequency and vol-
ume for each recommended endpoint, current accuracy for
each heuristic for the user, and the correctness of each of the
previous recommendations made for the user. Finally, each
heuristic also provides its overall confidence for its recom-
mendations for that user, again a fairly arbitrary weighting
that is interpreted by the neural network. For example, the
history heuristic uses the size of the user’s transaction his-
tory to compute its confidence.

5.2 Neural network output
Recall that we focus on two recommendation use cases: rec-
ommending the next endpoint used and recommending end-
points that might be used in the future. When recommend-
ing the next endpoint, we want the neural network to out-

Figure 5: Neural Network Block. Takes as in-
put heuristic recommendation weights and memory
from past recommendations to the user, and outputs
reweighed endpoint recommendations and updated
recommendation memory.

put a weight of 1 if the endpoint will be used as the next
transaction and a weight of 0 for all other endpoints. When
recommending the set of future endpoints, the desired out-
put is 1 if the corresponding endpoint will be used within the
specified time interval after the transaction, and 0 otherwise.

6. EVALUATION
We study our ability to predict 1) the next endpoint used;
and 2) the endpoints to be used in the future. In the first
case we compare the performance of collaborative filtering,
our heuristics, and the ensemble neural network. In the sec-
ond, we compare the performance of collaborative filtering
and the ensemble neural network.

We compare performance with respect to accuracy as well
as precision and recall. Accuracy measures our ability to
correctly predict endpoints amongst a group of recommen-
dations. We define two accuracy measures. The first, total
accuracy, is the fraction of all endpoints correctly predicted
where tp is the number of correct predictions and nt is the
number of total transfers:

Total Accuracy =
tp
nt

(1)

As shown in §2, most users perform few transfers. While
predicting endpoints for the highly active users is important,
we cannot ignore users with few transfers, as the latter are
likely would most benefit from good endpoint prediction.
Therefore, to gauge how well our recommendations perform
for each user, we also report user accuracy as an average
accuracy across all users. Let tu be the number of transfers
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performed by a user and nu be the total number of users.
That is:

User Accuracy =

∑n
i=1

tp
tu

nu
(2)

Precision and recall, two commonly used metrics in rec-
ommendation and information retrieval systems, measure
how good recommended items are and how likely good items
are to be recommended, respectively. They are defined as
follows, where tp and tn are true positives and negatives,
respectively, and fn is false negatives:

Precision =
tp

tp + fp
(3)

Recall =
tp

tp + fn
(4)

All training and recommendation algorithms took only a
few hours to run on hundreds of thousands of transactions,
making them very feasible for real world use.

6.1 Training
We split historical Globus data into training and validation
sets. We trained two groups of four (one for each combina-
tion of source/destination and top-1/top-3) networks. The
first group is used to predict the endpoints to be used in the
next transaction, the second group is used To predict the
set of endpoints to be used in the future. The networks for
predicting endpoints to be used in the next transaction were
trained on the first 500,000 transactions for 1000 epochs with
batch sizes of 5,000 using the categorical logarithmic objec-
tive function, and validated using the most recent approx-
imately 450,000 transactions. For the networks to predict
the endpoints used in the future, we first defined “future”
for three different time spans: one week, one month, and
one year. That is, when we predict endpoints to be used
in in the future, we evaluate by predicting a set of end-
points that a user will use in the next week, month, or year.
The future endpoint networks were trained for 1000 epochs
with a batch size of 5,000 on all but the transactions in the
past 1.5 years (about 380,000) with the categorical logarith-
mic objective function. For validation data, we used every
transaction that occurred within the past 1.5 years up until
the specific time period evaluated. That is, given the need
to evaluate within a time period (e.g., 1 year) we must have
at least that period’s data available for validated (e.g., for 1
year experiments we validated historical data from 1.5 years
ago to 1 year ago). All experiments contained at least at
least 150,000 transactions.

6.2 Next endpoint recommendation
We next examine our heuristics’ performance at predicting
the endpoints to be used in the next transaction. Figure 6
shows each heuristic’s total accuracy and Figure 7 shows user
accuracy. Each figure shows accuracy when recommending
the top-1 and top-3 endpoints. In addition to each heuristic
and the neural network, we also report on recommendations
produced by a simple neural network implementation (Shal-
low Neural Network) and the optimal algorithm, Combined,
that selects the correct endpoint if it is predicted by any sin-
gle heuristic. The shallow neural network contains a single
dense layer of size 15 and a softmax output layer.

Figure 6: Transfer recommendation accuracy

Figure 7: User recommendation accuracy

Figures 6 and 7 show that the deep neural network out-
performs any single heuristic and indeed performs close to
optimally, with a difference of 14.9%/0.8% for transfer rec-
ommendation accuracy and 13.7%/5.1% for user recommen-
dation accuracy, relative to the optimal combined strategy.
The history heuristic outperforms the other heuristics in all
cases, this is due to the frequency with which users use the
same endpoints. The most unique users, institution, and
owned endpoints heuristics perform significantly worse than
the others. Surprisingly, the Turi CF heuristic does much
worse than far simpler heuristics, like history, providing fur-
ther evidence of the need for domain-specific knowledge. (In
the case of the history heuristic, this knowledge may be that
users often choose the same endpoint multiple times; in con-
trast, customers rarely buy the same book multiple times.)
It should also be noted, that predicting the same item and
using implicit ratings is not a typical use-case for CF. For all
heuristics, user accuracy is lower than transaction accuracy,
but this is not unexpected: there are many users with little
transaction history from which to base predictions, and user
accuracy gives greater weight to these users. Finally, we
note that the deep recurrent neural networks have virtually
the same accuracy on all datasets, except for top-1 transfer
accuracy. This shows that our deep recurrent neural net-
work is not an overly complex model, yet still adds value
when compared to a simpler model.

6.3 Future endpoint recommendation
We next study the effectiveness of our heuristics at predict-
ing the endpoints a user will use in the future: more specif-
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Figure 8: Transfer precision and recall for different
recommendation thresholds

Figure 9: User precision and recall for different rec-
ommendation thresholds

ically, the endpoints that the user will use a week, month,
and year after each transaction. We use the same heuris-
tics and neural network combiner to predict these endpoints,
but instead of recommending the top-1 or top-3 endpoints,
we predict all endpoints that the neural network combiner
weights above a certain threshold for the requested period
of time. A lower threshold predicts more endpoints, increas-
ing recall (the ratio of true predictions to endpoints actually
used) but decreasing precision (the ratio of true predictions
to all predictions). A higher threshold value, in contrast, rec-
ommends heavily weighted endpoints and thus gives a lower
recall but higher precision. Precision and recall are both
desirable in different situations; by adjusting our threshold
value, we can observe obtainable precision vs. obtainable
recall for each heuristic. As when predicting current trans-
action endpoints, we consider both total precision and recall
(Figure 8) and user precision and recall (Figure 9). We show
only the precision and recall of the Turi CF heuristic and
neural network, as the other heuristics do not have obvious
good endpoint weighting functions.

We see in Figures 8 and 9 that by adjusting the thresh-
old the neural network maximizes precision and recall up
to a point, whereas the CF approach performs significantly
worse. Precision and recall for predictions over the next
week and month are relatively similar, however, as expected,
predicting endpoints for a year in the future is less accu-
rate. A similar trend is observed for Turi CF. Our neural
network is able to achieve approximately 75% transfer pre-
cision and recall for all cases, and 90% for the week and
month intervals, significantly better than Turi CF. That is,

Figure 10: Independent source and destination net-
works vs. combined network

our model’s predictions are correct at least 75% of the time,
and if an endpoint will be used, our model will predict it
at least 75% of the time. We again attribute Turi CF’s sig-
nificantly worse performance to its lack of domain-specific,
content-based heuristics (e.g., owned endpoints, institution,
and most unique users), which prevent it from producing a
comprehensive list of the endpoints that a user could use,
much less a list with few false positives. As in the previous
section, our results are better when averaged over transfers
rather than users because of the many users with few trans-
actions.

6.4 Neural network analysis
We next explore what our neural networks have learned.
While the neural networks perform well, it is not obvious
what features are being used to predict usage. By exploring
these features, we can gain insight into what factors are most
indicative of future use.

First, we examine our choice to train two independent net-
works (for source and destination endpoints) rather than a
single combined network for both (Figure 10). The com-
bined network performs comparably to the separate net-
works for top-1 predictions (within 0.2% and 1.3%). How-
ever, individual networks perform better for top-3 predic-
tions (3.1% and 3.7%). This shows there is a small benefit
obtained by using two networks.

Next we investigate which pieces of information are most
related to prediction accuracy. To do so, we simply remove
individual features by setting its inputs to zero. If an im-
portant feature is removed, then accuracy will drop signifi-
cantly. Figure 11 shows the results for both source and des-
tination networks. Note the striking difference between the
source and destination networks: the destination network is
relatively unaffected by the removal of features (except the
history heuristic), whereas the source network is affected
by the removal of any feature. This tells us that the source
and destination recommenders behave in very different ways:
the destination recommender relies very heavily on a user’s
recent history when making recommendations; the source
recommender, while still relying heavily on users’ histories,
makes significant use of other heuristics too. As these net-
works are quite accurate, this tells us that whether a user
has recently used an endpoint is a very important factor in
determining if that endpoint will be used as a destination,
but many factors, including the endpoint’s popularity at the
user’s institution and overall, are important in determining
if the user will use that endpoint as a source.
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Figure 11: Top-3 next transfer accuracy with individual features removed

7. RELATEDWORK
While many researchers have studied characteristics of sci-
entific networks and methods for recommending data and
analysis tasks in workflow systems, we are not aware of other
work on recommending data storage locations.

Predicting transfer throughput is an important tool for
optimizing transfer parameters and identifying and fixing
software and hardware bottlenecks [23, 20, 18, 22]. In ad-
dition to creating throughput optimization schemes, recent
studies of throughput prediction have studied the factors
that affect transfer rate, including the effects of disk and raid
controller bandwidth, data compression, and parallelism [15];
the effects of transfer protocol characteristics, such as buffer
and window size [25]; and the detrimental effects of con-
current transfers and prioritization of transfers representing
certain use cases [17]. Our work is differentiated both by
its focus and also its approach, as none of these efforts use
neural network methods for combining predictions. How-
ever, there is potential for these approaches to be mutually
beneficial. For example, differentiating the throughput of
transfers between the same pair of endpoints but initiated
by different users requires some knowledge of those users,
such as if they work in a field with relatively incompress-
ible data; this knowledge could be used to predict which
endpoints those users will use in the future. Furthermore,
throughput prediction typically relies on various heuristics,
whether average, median, or more complex statistical mod-
els. Not only does our neural network approach provide
a powerful way of combining heuristics, but also a way to
integrate problem information that is potentially relevant
but difficult to use as a heuristic—something the previous
ensemble methods used in throughput prediction do not.
Finally, neural networks are able to learn complex and sub-
tle relationships, and are reasonably amenable to analysis,
allowing more insight into which factors influence various
characteristics of scientific data transfers.

Another area of interest is the prediction of groups of
files that are frequently transferred together. By identifying
these groups, transfer performance can be improved using
better caching and job scheduling algorithms [11]. While
this problem is not directly related to endpoint prediction,
we believe that many families of heuristics for character-
izing transfers model both well. For example, the history
heuristic is one of the best heuristics for predicting future
endpoint usage, and historical data about which files were
transferred together is often used to identify file groups. By

using families of heuristics, such as those described in this
paper, specifically the Markov model and neural network,
we believe that larger and more strongly associated groups
of files could be identified.

Workflow systems such as Galaxy, Kepler, and Taverna
are used to orchestrate complex scientific analyses composed
of independent applications. These systems provide inter-
faces for many users to develop and execute workflows, and
therefore provide a rich source of information regarding users,
workflows, applications and data [24, 10]. Following a simi-
lar motivation to our work, researchers have developed rec-
ommendation approaches to simplify usage of scientific work-
flow systems by recommending workflows, applications, and
data to users [26, 5, 3, 9]. While these approaches are in
a different domain, we have applied similar techniques to
recommending endpoints. Furthermore, our work is comple-
mentary to these efforts as endpoint recommendations could
be used to support the creation of workflows and selection
of input data.

8. SUMMARY
We have developed and evaluated a collection of heuristics
for recommending data locations to users. By leveraging
rich sources of historical usage information and information
about users, endpoints, and transfer settings we were able
to create specialized heuristics that consider transfer his-
tory, user institutions, endpoint ownership and other infor-
mation. While these heuristics performed well individually,
the greatest performance is obtained by combining heuristics
into an ensemble model using a recurrent neural network.
Our neural network model was able to correctly predict the
endpoints to be used in the next transfer with 80.3% and
95.3% accuracy for top-1 and top-3, respectively. It was
also able to predict the endpoints that a user will use in the
future with greater than 75% precision and recall. These
results not only provide value for users but may also pro-
vide insights into how scientific big data is used and could
be applied to develop better algorithms for accessing and
transferring data.

We aim next to develop and deploy an online recommen-
dation engine within Globus. We are also interested in char-
acterizing, modeling, and improving the use of scientific big
data by analyzing the performance of heuristics for differ-
ent user profiles. Finally, we note that our deep recurrent
neural network has virtually the same accuracy as a simpler
neural network. While the simpler neural network still inte-
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grates novel features and heuristics in a new way, we find the
difference between the two models disappointing, and hope
to improve our usage of deep recurrent neural networks in
future work.
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