Swift/T REPL: An Interactive Shell for a Parallel Scripting
Language

Basheer Subei
Dept. of Computer Science

Timothy G. Armstrong
Dept. of Computer Science

Justin M. Wozniak
Mathematics and Computer

University of lllinois at Chicago University of Chicago Science Division
Chicago, IL 60607, USA Chicago, IL 60637, USA Argonne National Laboratory
bsubei2@uic.edu tga@uchicago.edu Argonne, IL 60439, USA
wozniak@mcs.anl.gov
ABSTRACT 1. INTRODUCTION

With the rapid technological advances in high-performance
computing, access to parallel computing resources is becom-
ing more prevalent in the scientific community. Scientific
computation has been proven to be an invaluable tool for
tackling challenges faced by science, but writing massively-
parallel software for scientific applications remains difficult
and requires years of training and practice, making the idea
of writing one’s own software a painful option for novices.
Recently, software frameworks aimed at easing the develop-
ment process, such as Swift/T, have been successfully used
to allow scientists to write software in the form of high-level
scripts that automatically parallelize and scale across huge
high-performance computers. However, the learning curve
can be further flattened by incorporating interactivity into
Swift/T, specifically using a read-eval-print-loop (REPL)
mode. This project investigates the validity and usefulness
of adding an interactive REPL to Swift/T, as well as sur-
veying other popular scientific computing environments and
interfacing with them.

Categories and Subject Descriptors

D.3 [Programming Languages|: Language Classifications—

Data-flow languages; D.2 [Software Engineering]: Pro-

gramming Environments—Interactive environments; D.1 [Pro-

gramming Techniques|: Concurrent Programming— Par-
allel programming; C.5 [Computer System Implementa-
tion]: Large and Medium (“Mainframe”) Computers—Super
(very large) computers

General Terms

Data-flow Language, Data-driven Task Parallelism, Implic-
itly Parallel Language, Interactive Environment, Interpreted
Language, Literate Programming, in-situ computing

Keywords
Swift/T, Tcl, Java, ANTLR, Turbine, STC, MPI, Load Bal-
ancing, REPL, intermediate code, IPython

As large scale and high-performance computing becomes
more available to the industry and scientific community, it is
becoming apparent that the traditional development model ,
specifically using message-passing frameworks such as MPI,
is too difficult for non-experienced programmers. Moreover,
even the most experienced programmers will find it difficult
to build larger and more complex applications using tra-
ditional development methods. These problems are solved
with implicitly parallel languages and frameworks such as
Swift/T[4], where users write scripts in a high-level lan-
guage, and where all the parallelism and required communi-
cation between processes happens implicitly and behind the
scenes. Swift/T is able to scale the application in a very
efficient manner to fit as many resources as the user has.

But the current development model for Swift/T can be fur-
ther improved by allowing the user to interact with the run-
time. There are many benefits for this in-situ approach in
a data-driven scripting language such as Swift/T, as the
user would be able to launch separate tasks and simulta-
neously monitor the data, giving them much deeper insight
into the system. Moreover, extending this model to include
interfaces to other scientific computing environments, such
as IPython/Jupyter[3], gives the ability to visualize their
work, and also more easily share their ideas via collabo-
ration resembling “literate programming”[1] approaches by
using IPython/Jupyter Notebooksl[5, 6].

2. OVERVIEW OF COMPILATION AND EX-
ECUTION MODEL

2.1 Compilation to intermediate code

The user’s Swift script is processed by the Swift-to-Turbine
compiler (STC)[7], which uses ANTLR[2] to generate the
lexing and parsing rules in Java. These rules translate the
user’s scripts into language constructs, which are then used
by STC to generate Turbine intermediate code (.tic), which
is just Tcl code that calls Turbine runtime functions.

2.2 Turbine Runtime

Turbine is the runtime, which is a Tcl wrapper built on top
of a load-balancing library that uses MPI. On startup, it
spawns servers and workers each as its own MPI rank/pro-
cess. The servers manage and distribute all the tasks that
need to be done, while the workers perform the tasks , as
shown in Figure 2 below.

Server 1

' Turbine
Execution

Server 2

°h rh

REPL Turbine
Worker sTc Cizsly

X

Distribute to
all workers

Worker 2

Worker 3

Worker 4

WOrker 5 [ae-smsesssmmmmmssnmsnissisninanit

Figure 1: Overview of Initial Swift/T REPL running inside Turbine

3. SWIFT/T REPL
3.1 Features

3.1.1 Dynamic Compilation/Execution

An interactive implementation of Swift /T requires that Swift
code can be compiled and executed dynamically, once the
user starts a session. A straight-forward method for dynamic
compilation is to simply call the compiler (STC) from shell
and give it user input. Each line of code the user enters, if
it’s a complete statement, will be thus compiled into inter-
mediate (.tic) code. Then, this intermediate code is simply
evaluated/interpreted in the current Tcl Turbine instance.
It is important to note that once the .tic code is evaluated,
the appropriate tasks are spawned and any heavy-load work
can then be executed in the background inside Turbine. User
input returns instantaneously afterwards, allowing a user to
operate in a parallel workflow dynamically.

3.1.2 Visual Output and Global Variable States

Any output from the user code (which executes in the back-
ground) is directed to standard out (STDOUT) by default,
as in most applications, and allows the user to monitor the
progress of their scripts. Furthermore, if the user wants to
at any time probe the global variable states, they may use
the “%ls” magic command to view global variable states,
whether they are assigned yet or not. Since Turbine stores
global variables references by unique ID, and not by names,
a dictionary was created that maps global variable IDs to
names, and this dictionary is filled dynamically as global
variables are created.

3.1.3 Command History

A history of user-entered commands/scripts is a desired fea-
ture in any interactive environment, because it saves the
user from re-typing often-used commands, and also enables
the user to recall what they entered recently.

3.1.4 Code-Completion and Hints
As with any environment that is designed to help new users
learn a programming language and framework, providing

hints to the user for completing module/function/variable
names can be very helpful. Not only does it help new users
learn, but it can save a lot of time when entering code. This
feature would require the REPL to parse the input, looking
for language constructs and scan over already defined names.
The implementation can be achieved more easily by reusing
the ANTLR grammar already defined by the compiler to
parse the language.

3.1.5 Syntax Highlighting

Similar to the code-completion feature, syntax highlighting
can help improve the readability of the code and provide for
a much friendlier user interface in the REPL. Parsing the in-
put for this feature will be simpler than for code-completion,
since all that’s required is to identify the object types and
keywords from what the user enters, but it will also use
ANTLR for parsing.

3.1.6 Multiple Client Connection to a Single REPL

Once a REPL session is started, a user should be able to pro-
vide input from one or many clients (essentially just termi-
nal shell sessions). Additionally, interacting with the REPL
through alternate means, such as Notebooks as in [Python
or Mathematica, can prove to be very helpful, and make
the REPL quite versatile. The REPL was designed to keep
this feature in mind, and the implementation is extensible
to allow this to be achieved.

3.2 Initial Implementation of REPL

The initial implementation of the REPL mode is essentially
just a program run in Swift/T, that takes user input and
compiles it and executes it. Because the first worker (rank
0) is by default connected to standard input/output, the
REPL resides on that first worker. On startup, there is
nothing for the other ranks to do but sit and idle, waiting
for the REPL rank (blocking) to receive user input.

Once the user inputs scripts/commands into the REPL, the
REPL (written in Tcl) compiles the script using STC (with

special flags), and generates tic code. The global and func-
tion definitions are executed on the current rank, and then
subsequently distributed to all worker ranks. Now that all
the ranks are synchronized and have the same definitions,
the actual tic code (main function) is executed on the REPL
rank. From there, further task spawning can continue as
usual, as shown in Figure 1 above. Thus, Swift code entered
by the user is executed inside of an already-running Turbine
instance.

Worker 0

Worker 1

Server 1
Worker 2

: 5 Turbine Turbine
Swift Script STC "‘\ﬁ\]—' ety > Server2

Worker 3

fl

Figure 2: Overview of non-interactive Swift/T run-
time

3.2.1 Limitations

One limitation in the Swift REPL is that redefining vari-
ables, although an important use case for interactive pro-
gramming, is not currently supported. This limitation is
due to the deterministic write-once nature of the language,
and carelessly overwriting some variable values could lead to
non-deterministic strange behavior of the program. A viable
solution would be to allow users to restart certain portions
of their code upon redefining dependent variables (or simply
doing this automagically in the background) , as illustrated
in use case #3 in the Appendix.

3.2.2 Performance Overhead

The only significant overhead comes from having to compile
the user’s script through STC, which takes a few seconds
to run. However, the actual execution of the script inside
the Turbine environment carries negligible overhead. We
measured the average running times of Use Case #1 for both
non-interactive (445ms) and REPL (581ms) versions given
40 trials each. As can be seen from the histogram in Figure
3, the runtime overhead is minimal. The overhead from the
compiler (STC) has been determined to be caused by the
long time it takes for the Java Virtual Machine (JVM) to
start up and shut down, and the best solution is to avoid
having to call STC every time the user enters input. This
requires the REPL script to start up the JVM with STC
idling, and then feeding it the user input as it comes through
dynamically. This is a future feature that will be discussed
in the last section.

4. FINALIZED DESIGN OF THE SWIFT/T
REPL
4.1 IPython/Jupyter

After the initial implementation and the feature list, it was
clear that a more suitable approach needed to be taken, and
that writing Tcl scripts to do everything was sub-optimal.
After reviewing ongoing interactive programming projects,

Histogram of Runtimes

8
mREPL
l = Non-REPL
. I l dd 11

350 400 450 500 550 600 650 700 750 800 850 900 950 1000

Count
EN-)

N

Runtime (ms)

Figure 3: Histogram of runtimes for both REPL and
non-REPL versions of Use Case #1.

especially Jupyter (formerly IPython), we decided it would
be suitable to implement an interface to those environments.
Jupyter provides clients in the form of terminal sessions and
Notebooks, and it allows multiple clients to exist and con-
nect to a single kernel (the code that processes and executes
user input).

So, the new REPL design requires a Swift kernel to be writ-
ten for Jupyter, allowing the Jupyter clients and kernel to
communicate. For clarity, Jupyter already handles all of the
work to receive user input, relay it to the kernel, and even
provides hooks for advanced features, including all those we
mentioned in the previous section on Features. Further-
more, this kernel would be written in Python, for which an
ANTLR library exists, making the implementation of code-
completion even easier.

4.2 Jupyter Kernel and REPL Communica-
tion

Once the kernel receives user input from the Jupyter client,
it can process it (think of any of those fancy features), and
then send the Swift script to a REPL instance for compil-
ing/executing. However, since our solution should prefer-
ably be self-contained as a single process, we wanted to avoid
needing both a Jupyter kernel process and a REPL/Turbine
instance running separately and requiring to be synced.

Therefore, the first attempt to solving this problem was to
use Unix pipes and subprocess to communicate between the
Jupyter kernel and REPL instance. After numerous at-
tempts, it seemed very difficult to implement in practice,
because both processes were long-running and Python’s pipe
features were gimmicky. At any rate, an easier more elegant
solution was to use sockets to communicate between the two
processes, and this was not only easy in Python on the kernel
side (unsurprisingly), but it was even easier to implement in
Tcl on the REPL side. As a note, the socket connection had
to be non-blocking, as the kernel and REPL had to alter-
nate between sending and receiving from the socket, and the
data could be multi-line or single line (which threw off Tcl
at first).

4.3 Overview
To recap the overall design: a Jupyter client communicates
with a kernel, which spawns a REPL instance (contain-

ing the existing code to run Turbine and dynamically com-
pile/execute Swift script within it). The kernel and REPL
communicate over a socket connection, and the REPL/Tur-
bine instance takes care of spawning all the Turbine server-
s/workers and also takes care of spawning tasks to the ap-
propriate queues. All the Turbine workers sit idle until the
user enters something, which prompts the REPL worker to
send off tasks, which the other Turbine workers start work-
ing on. Figure 4 shows an overview diagram of the entire
process.

Jupyter Jupyter L Turbine
E’ Client) Kernel @Dl Code
sockets
REPL
Worker

Distribute to
all workers

On Startup
—» Server1

REPL
Turbine
Code

Turbine
Execution

........................
‘9| Server2
T ¥ orkers e
°

Figure 4: Overview of the Final REPL Design

S. PROJECT TIMELINE AND PROGRESS

The core features of the REPL, including the integration
with Jupyter and the kernel, have already been implemented
successfully. However, the advanced features, such as syn-
tax highlighting and code-completion, have yet to be imple-
mented as of this report. All the required interface between
the Jupyter client and kernel for these features is already in
place automatically by Jupyter. The only remaining needed
code for code-completion is that which will parse the cur-
rent input (passed down by client to kernel) and determine
appropriate hint output (returned to the client from kernel),
and similarly for syntax highlighting and others. A few is-
sues remain to be solved as of yet, one of which is the fact
that Jupyter and most interactive environments are not de-
signed for tasks that run in the background, as is the main
feature of Swift/T REPL. This means that STDOUT from
Turbine workers running in the background needs to be redi-
rected properly to the Jupyter client, and in such a way that
the client can display that the output is yet to return from
running in the background. This is crucial for implementing
the Notebook feature.

Weeks 1-4 of the REU program were spent familiarizing with
the overall Swift/T project architecture, including setting up
binary Debian packages for Swift/T. During weeks 5-6, the
initial REPL implementation was written, and the technical
Turbine workarounds were figured out. At that point, the
overall design for the REPL (Figure 1) was formed. The
issues of linking multiple scripts and global “extern” vari-
ables were solved during weeks 7-8, which required writing
new language constructs and numerous changes to the com-
piler (STC). The final weeks (9-10) were spent on writing

the Jupyter kernel to interface between the Jupyter client
(user) and the REPL.

6. CONCLUSION

Despite not being originally designed with interactivity in
mind, Swift/T was adapted to work with an interactive shell,
and its usability and accessibility to novice programmers has
greatly improved. The main objectives of the REPL project
were achieved, and as the use cases in the Appendix show,
users can now interactively start tasks in Swift and monitor
the status of the system with very little overhead . Moreover,
the interface to Jupyter will add many useful features like
code-completion and Notebook documents, which will make
it even easier to use and collaborate on Swift/T scripts.

APPENDIX

A. EXAMPLE INTERACTIVE USE CASES
/ SCENARIOS

A.1 Monitor status of array filling

> int A[]; // create an array
> foreach i in [1:1000] { // loop 1000
times and fill up A
Ali] = i;

> // prompt returns as script is running in
the background

> %ls // user decides to view status of
variables

variable u:A has id 125 and values 1 2 3 4
567 89 10...

A.2 Referencing Variables from Multiple Scripts

> int x = 7;

> int y = x + 22; // ’extern int x;’
implicitly placed in script

A.3 Redefining Variables

> int x = f();

> int x = g();

B. REFERENCES

[1] D. E. Knuth. Literate programming. The Computer
Journal, 27(2):97-111, 1984.

[2] T. J. Parr and R. W. Quong. Antlr: A predicated-11 (k)
parser generator. Software: Practice and Ezxperience,
25(7):789-810, 1995.

[3] F. Pérez and B. E. Granger. Ipython: a system for
interactive scientific computing. Computing in Science
& Engineering, 9(3):21-29, 2007.

[4] J. C. Phillips, J. E. Stone, K. L. Vandivort, T. G.
Armstrong, J. M. Wozniak, M. Wilde, and K. Schulten.
Petascale tcl with namd, vind, and swift/t. In
Proceedings of the 1st First Workshop for High
Performance Technical Computing in Dynamic
Languages, pages 6-17. IEEE Press, 2014.

[5] H. Shen et al. Interactive notebooks: Sharing the code.
Nature, 515(7525):151-152, 2014.

[6]

[7]

J.-L. R. Stevens, M. Elver, and J. A. Bednar. An
automated and reproducible workflow for running and
analyzing neural simulations using lancet and ipython
notebook. Frontiers in neuroinformatics, 7, 2013.

J. M. Wozniak, T. G. Armstrong, M. Wilde, D. S.
Katz, E. Lusk, and I. T. Foster. Swift/t: large-scale
application composition via distributed-memory
dataflow processing. In Cluster, Cloud and Grid
Computing (CCGrid), 2013 13th IEEE/ACM
International Symposium on, pages 95-102. IEEE, 2013.

