
IMPLEMENTING PARALLEL EVOLUTIONARY ALGORITHMS IN A

DISTRIBUTED WORKFLOW

Jonathan Burge

Whitworth University

jburge16@my.whitworth.edu

ABSTRACT
This paper contains research focused on the utilization of

evolutionary algorithms (EAs), specifically the use of the DEAP

library, in the environment of an implicitly parallel language. This

research was motivated primarily by a desire to allow user to

implement parallel EAs without the prerequisite mastery of MPI.

The computation of EAs consist of many instances of the same

computational operations. By evaluating EAs in an implicitly

parallel work-space, we can obtain the benefits provided by

parallelization without dealing with the full complexity of a

distributed computer system. Swift/T is an implicitly parallel

scripting language developed specifically for high performance

computing. In this study, we investigate the benefits of using

Swift/T to implicitly parallelize EAs by evaluating the

performance and scalability from data collected from various tests

using DEAP EAs and a simple agent based model simulation

which is used for the fitness evaluation.

1. INTRODUCTION
The utilization of parallel computation is essential for any form of

high processing computation. The parallel computation of tasks

allow greater performance as the number of nodes is increased.

These systems are able to compute solutions for problems which

were previously unfeasible. Optimization of complex systems are

one subset of the problems HPC systems can address. In an

optimization problem, a solution is graded based on its evaluated

fitness determined by the initial parameters of the solution. HPC

systems allow for a parallel search of the search space, whereas a

serial search would be impractical. Previous research has

demonstrated that non-deterministic search methods are the most

efficient means of navigating large search spaces for optimal

solutions *. Of the several common non-deterministic heuristics,

one of the most utilized is evolutionary algorithms (EAs).

In order to effectively implement evolutionary algorithms for

HPC systems, the EAs must also be computed in a parallel

manner. Fortunately, "EAs are naturally prone to parallelism,

since most variation operations can be easily undertaken in

parallel" [1]. Although EAs are naturally easy to compute in

parallel, the implementation of such an algorithm requires

significant understanding of some sort of message passing or

communication between nodes, MPI being one of the most

standard. Additionally, most users who would benefit from using

a HPC system to solve their problem do not possess the technical

capacity to implement their algorithm to run on a distributed

system. This is a case in which utilizing an implicitly parallel

language would allow these users to obtain the benefits of parallel

computation without the complexity of dealing with a distributed

system.

Swift/T is an implicitly parallel scripting language designed for

HPC systems. It is naturally concurrent and allows the user to

easily call functions from external languages including C, C++,

Fortran, Python, R, Tcl or executable programs. Swift/T uses MPI

and provides an abstraction for the user that hides this complexity

[2]. In this report, we will demonstrate how Swift/T may be used

to easily implement parallel evolutionary algorithms, without

dealing with the complexity of message passing or other means of

inter-node communication. Our motivation is to demonstrate that

this practice allows users to obtain efficient and scalable results

without dealing with the full complexity of a distributed system.

2. DEAP
In this study, instead of writing our own evolutionary algorithms,

algorithms from the Distributed Evolutionary Algorithms in

Python (DEAP) library were implemented. This was done to

demonstrate how preexisting algorithms may be easily integrated

into a Swift workflow. This ability to integrate preexisting code

and algorithms into the workflow of a Swift script is one of the

great strengths provided by the Swift/T scripting language.

The DEAP library’s development was motivated by a desire to

provide adaptable tools for scientists to implement distributed

evolutionary algorithms specific to their problems, while

abstracting away the complexity of message passing between

nodes. This was a shift away from previously developed

frameworks in which typically a variety of canned algorithms

were provided to the user. The DEAP library is composed of

modules, each of which has a specific function in the overall

algorithm execution. The Core, Creator and Tools modules deal

with the framework for the basic mechanics of evolutionary

algorithm execution. Other important modules include the

Distributed Task Manager and Algorithms modules. The first

deals with managing the parallel execution of the EA. The latter

contains several commonly used EAs which may either be used or

adapted to meet the user’s needs [4].

3. TESTING FRAMEWORK
In this study EAs were used to optimize a parameter set for a

simple agent based model (ABM). This ABM was implemented

using Repast Simphony, a Java based framework for executing

agent based models and simulation. This specific model simulated

a two dimensional environment populated by zombies and

humans. Over the course of the simulation, zombies would chase

and infect humans. The initial parameters of this simulation were

the initial populations of the zombies and humans as well as the

speed at which they could pursue or flee. An evolutionary

algorithm was used to optimize these initial parameters in order to

maximize the remaining human population at the conclusion of

each simulation. The values of these initial parameters were

contained by a lower and upper bounds.

The motivation for this research is based on the fact that often

times, the most time and computational intensive aspect of an

evolutionary algorithm is the evaluation of each solution’s fitness.

This computation could entail the execution of an external

application which would then output fitness results. By reducing

the number of solutions evaluated before one of a desired caliber

is found, the cost of executing the algorithm decreases. In this

study, I used this ABM as a simple example with which to test

algorithm efficiency over various settings.

In this model, the value of the four parameters has an extremely

intuitive impact on the solution’s fitness. This allows us to easily

infer the global optima of the search space defined by the given

bounds. My aim was to study the efficiency and speed at which

DEAP’s evolutionary algorithm was able to approach this global

optima at various settings.

When considering the performance of a given algorithm, two

attributes must be considered. The first is the rate of improvement

of both the population’s fitness and that of the most fit individual.

The second attribute is the magnitude of this improvement. For

example, some settings for the evolutionary algorithm may

quickly provide various solutions with a fitness of about half the

actual global optima, but may struggle to further improve upon

these solutions. Alternatively, an algorithm may take a long time

to provide a useful solution, but actually be the fastest at

obtaining solutions very close to the global optima. Since the

global optima is known for these tests, it is easy to compute the

respective speed at which each algorithm may provide a solution

of a given quality.

4. FUTURE TESTS
I am currently in the preliminary stages of this testing. I plan on

first testing algorithm performance and speed over a parameter

spread of various solution population sizes. I will be measuring

the number of simulation executions required to obtain a solution

of various qualities. These qualities will be 50%, 75%, and 95%

the global optima.

I believe that changes in the solution population size may have an

interesting impact on the search for solution of various qualities

for the following reasons. First of all, larger populations require

the computation of more new solutions per generation then when

smaller solution populations are used. This will generally increase

the number simulations to execute per generations. However,

increasing population size allows for a greater degree of solution

diversity to be preserved. Since there are more individuals in the

population, more distinct attributes of these solutions may be

preserved between generations. This may allow for a more

comprehensive search of the search space and consequently

provide faster performance for the computation of more fit

solutions. Other research regarding the effect of population size

on algorithm performance has been conducted by Matej

Črepinšek et al. [5].

6. ACKNOWLEDGEMENTS
I would like to thank the mentors who worked with me, Justin

Wozniak and Mike Wilde, for their instruction and guidance. I

would also like to acknowledge the help and support of my peers

of the BigDataX REU program. Additionally I would like to

acknowledge Jonathan Ozik and the other researchers at Argonne

who both provided direction as well as had previously

implemented the code used by the agent based model.

7. REFERENCES
[1] E. Alba and M. Tomassini. Parallelism and evolutionary

algorithms. IEEE Transactions on Evolutionary

Computation, 2002.

[2] T. Armstrong. Implicitly Parallel Scripting as a Practical

and Massively Scalable Programming Model for High-

Performance Computing. PhD thesis, 2015.

[3] E. Cantú-Paz. A Summary of Research on Parallel Genetic

Algorithms, 1995.

[4] F. Rainville, F. Fortin, M. Gardner, M. Parizeau, and C

Gagné. DEAP : A Python Framework for Evolutionary

Algorithms. Genetic and Evolutionary Computation

Conference GECCO2012: EvoSoft Workshop. 2012.

[5] Matej Črepinšek, Shih-Hsi Liu, and Marjan Mernik. 2013.

Exploration and exploitation in evolutionary algorithms: A

survey. ACM Comput. Surv. 45, 3, Article 35 (July 2013), 33

pages.

