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ABSTRACT 
This paper contains research focused on the utilization of 

evolutionary algorithms (EAs), specifically the use of the DEAP 

library, in the environment of an implicitly parallel language. This 

research was motivated primarily by a desire to allow user to 

implement parallel EAs without the prerequisite mastery of MPI. 

The computation of EAs consist of many instances of the same 

computational operations. By evaluating EAs in an implicitly 

parallel work-space, we can obtain the benefits provided by 

parallelization without dealing with the full complexity of a 

distributed computer system. Swift/T is an implicitly parallel 

scripting language developed specifically for high performance 

computing. In this study, we investigate the benefits of using 

Swift/T to implicitly parallelize EAs by evaluating the 

performance and scalability from data collected from various tests 

using DEAP EAs and a simple agent based model simulation 

which is used for the fitness evaluation. 

1.  INTRODUCTION 
The utilization of parallel computation is essential for any form of 

high processing computation. The parallel computation of tasks 

allow greater performance as the number of nodes is increased. 

These systems are able to compute solutions for problems which 

were previously unfeasible. Optimization of complex systems are 

one subset of the problems HPC systems can address. In an 

optimization problem, a solution is graded based on its evaluated 

fitness determined by the initial parameters of the solution. HPC 

systems allow for a parallel search of the search space, whereas a 

serial search would be impractical. Previous research has 

demonstrated that non-deterministic search methods are the most 

efficient means of navigating large search spaces for optimal 

solutions *. Of the several common non-deterministic heuristics, 

one of the most utilized is evolutionary algorithms (EAs). 

 

In order to effectively implement evolutionary algorithms for 

HPC systems, the EAs must also be computed in a parallel 

manner. Fortunately, "EAs are naturally prone to parallelism, 

since most variation operations can be easily undertaken in 

parallel" [1]. Although EAs are naturally easy to compute in 

parallel, the implementation of such an algorithm requires 

significant understanding of some sort of message passing or 

communication between nodes, MPI being one of the most 

standard. Additionally, most users who would benefit from using 

a HPC system to solve their problem do not possess the technical 

capacity to implement their algorithm to run on a distributed 

system. This is a case in which utilizing an implicitly parallel 

language would allow these users to obtain the benefits of parallel 

computation without the complexity of dealing with a distributed 

system. 

 

Swift/T is an implicitly parallel scripting language designed for 

HPC systems. It is naturally concurrent and allows the user to 

easily call functions from external languages including C, C++, 

Fortran, Python, R, Tcl or executable programs. Swift/T uses MPI 

and provides an abstraction for the user that hides this complexity 

[2]. In this report, we will demonstrate how Swift/T may be used 

to easily implement parallel evolutionary algorithms, without 

dealing with the complexity of message passing or other means of 

inter-node communication. Our motivation is to demonstrate that 

this practice allows users to obtain efficient and scalable results 

without dealing with the full complexity of a distributed system. 

2. DEAP 
In this study, instead of writing our own evolutionary algorithms, 

algorithms from the Distributed Evolutionary Algorithms in 

Python (DEAP) library were implemented. This was done to 

demonstrate how preexisting algorithms may be easily integrated 

into a Swift workflow. This ability to integrate preexisting code 

and algorithms into the workflow of a Swift script is one of the 

great strengths provided by the Swift/T scripting language. 

 

The DEAP library’s development was motivated by a desire to 

provide adaptable tools for scientists to implement distributed 

evolutionary algorithms specific to their problems, while 

abstracting away the complexity of message passing between 

nodes. This was a shift away from previously developed 

frameworks in which typically a variety of canned algorithms 

were provided to the user. The DEAP library is composed of 

modules, each of which has a specific function in the overall 

algorithm execution. The Core, Creator and Tools modules deal 

with the framework for the basic mechanics of evolutionary 

algorithm execution. Other important modules include the 

Distributed Task Manager and Algorithms modules. The first 

deals with managing the parallel execution of the EA. The latter 

contains several commonly used EAs which may either be used or 

adapted to meet the user’s needs [4]. 

3. TESTING FRAMEWORK 
In this study EAs were used to optimize a parameter set for a 

simple agent based model (ABM). This ABM was implemented 

using Repast Simphony, a Java based framework for executing 

agent based models and simulation. This specific model simulated 

a two dimensional environment populated by zombies and 

humans. Over the course of the simulation, zombies would chase 

and infect humans. The initial parameters of this simulation were 

the initial populations of the zombies and humans as well as the 

speed at which they could pursue or flee. An evolutionary 

algorithm was used to optimize these initial parameters in order to 

maximize the remaining human population at the conclusion of 



each simulation. The values of these initial parameters were 

contained by a lower and upper bounds. 

 

The motivation for this research is based on the fact that often 

times, the most time and computational intensive aspect of an 

evolutionary algorithm is the evaluation of each solution’s fitness. 

This computation could entail the execution of an external 

application which would then output fitness results. By reducing 

the number of solutions evaluated before one of a desired caliber 

is found, the cost of executing the algorithm decreases. In this 

study, I used this ABM as a simple example with which to test 

algorithm efficiency over various settings. 

 

In this model, the value of the four parameters has an extremely 

intuitive impact on the solution’s fitness. This allows us to easily 

infer the global optima of the search space defined by the given 

bounds. My aim was to study the efficiency and speed at which 

DEAP’s evolutionary algorithm was able to approach this global 

optima at various settings. 

 

When considering the performance of a given algorithm, two 

attributes must be considered. The first is the rate of improvement 

of both the population’s fitness and that of the most fit individual. 

The second attribute is the magnitude of this improvement. For 

example, some settings for the evolutionary algorithm may 

quickly provide various solutions with a fitness of about half the 

actual global optima, but may struggle to further improve upon 

these solutions. Alternatively, an algorithm may take a long time 

to provide a useful solution, but actually be the fastest at 

obtaining solutions very close to the global optima. Since the 

global optima is known for these tests, it is easy to compute the 

respective speed at which each algorithm may provide a solution 

of a given quality. 

4. FUTURE TESTS 
I am currently in the preliminary stages of this testing. I plan on 

first testing algorithm performance and speed over a parameter 

spread of various solution population sizes. I will be measuring 

the number of simulation executions required to obtain a solution 

of various qualities. These qualities will be 50%, 75%, and 95% 

the global optima. 

 

I believe that changes in the solution population size may have an 

interesting impact on the search for solution of various qualities 

for the following reasons. First of all, larger populations require 

the computation of more new solutions per generation then when 

smaller solution populations are used. This will generally increase 

the number simulations to execute per generations. However, 

increasing population size allows for a greater degree of solution 

diversity to be preserved. Since there are more individuals in the 

population, more distinct attributes of these solutions may be 

preserved between generations. This may allow for a more 

comprehensive search of the search space and consequently 

provide faster performance for the computation of more fit 

solutions. Other research regarding the effect of population size 

on algorithm performance has been conducted by Matej 

Črepinšek et al. [5]. 
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