Improved Algorithms for Two Energy-Optimal
Routing Problems in Ad-Hoc Wireless Networks

Samuel Baugh*, Gruia Calinescuf, David Rincon-Cruz*, Kan Qiao§
* University of Chicago, Chicago, USA
TDepartment of Computer Science, Illinois Institute of Technology, Chicago, USA
! Knox College, USA
§ Google Inc., USA

Abstract—We study two problems of assigning transmission
power to the nodes of ad hoc wireless networks to minimize
total power consumption while satisfying certain connectivity
constraints. The first problem requires to establish k£ node-disjoint
paths from a given source to a given destination. Our new
algorithm works for the most general cost model, and returns
an optimal solution in time O(n®) (where n is the number of
nodes), improving the running time over the previously published
algorithm by a factor of k.

The second problem assumes that the power requirement
between any two nodes is symmetric, and that there are exactly
two possible power levels, one of which is negligible. A source is
given and all the nodes in the network must be reachable from
the source (unidirectional links allowed for broadcast). We obtain
a (4 + Inn)-approximation algorithm, while the best published
approximation ratio is 2(1 + In(n — 1)). It was also known that
no approximation ratio better than O(Inn) is possible unless
P=NP.

I. INTRODUCTION

As nodes in ad-hoc wireless networks often possess limited
battery life, it is beneficial to implement routing schemes that
conserve transmission energy. Multi-path routing techniques
yield various advantages for wireless networks, but consume
more energy than their single-path counterparts. This renders
minimum-energy schemes particularly important in the multi-
path case. However, determining an energy-optimal scheme
can be computationally expensive, especially when many dis-
joint paths are required. In this paper, we present an algorithm
that alleviates the added expense of finding many minimum-
energy disjoint paths by improving upon the time complexity
of the previously best-known algorithm by a factor of k (where
k is the number of node-disjoint paths desired). We then prove
the correctness and asymptotic run-time of this algorithm. We
assume throughout the paper that the wireless network is multi-
hop and static.

Precisely, we improve upon an algorithm, introduced Srini-
vas and Modiano [21], to minimize energy costs in a power-
constrained wireless ad-hoc network. Ad-hoc networks are
those without pre-set infrastructures, so every node assumes
the role of both host and router. When one wishes to send a
packet from a source node to a destination node where direct
transmission is not possible, a routing scheme (a sequence of
nodes from the source node to the destination node) is required.

As there are generally multiple possible routes from the
source to the destination node, one has the option to choose
whether to transmit among one or multiple routes simulta-
neously. In either case, one may want to choose the path

or paths that minimizes a particular cost, such as energy
or bandwidth. This paper, as well as [21], concerns itself
with multiple minimum-energy disjoint paths. The reason for
considering multiple disjoint paths is that ad-hoc wireless
networks are generally known to be more unreliable than
wired networks. For example, physical obstructions, channel
fading, and node failure can result in transmission failure and
data loss. Sending the packet among multiple transmission
paths significantly decreases the chance of failure, as the
transmission will succeed as long as one path does not fail.
This strategy is best realized when the paths are disjoint, as
intersecting paths can be taken down by a single node failure.

The reason for minimizing energy is that energy conserva-
tion is particularly important in ad-hoc wireless networks. For
example, the nodes of mobile, sensor, and vehicular mobile
networks all have limited battery life, and often spend most of
their energy in communication [21]. Naturally, multiple path
routing schemes require more energy than their single path
counterparts, further emphasizing the necessity to minimize
energy. By using a minimum-energy multiple path routing
scheme, a network can improve its chances of successful
transmission while minimizing the negative effect of multiple
path schemes on energy transmission and thus on network
lifetime.

Denoting the number of paths desired as k, an algorithm
to find a k disjoint paths routing scheme of minimum energy
was introduced by Srinivas and Modiano [21]. Their primary
algorithm is exact (not an approximation algorithm) and runs
with a worst-case asymptotic complexity of O(kn?). This
complexity is not terrible for a exact solution algorithm,
especially when k is fixed or low. In fact, Srinivas and Modiano
[21] additionally propose a specialized algorithms for the case
k = 2 that reduces the general run-time (but not the asymptotic
complexity). However, all things being equal, the chance of
transmission failure increases with the size of the network. As
such, more paths may be desired as network grows larger to
counteract the increase in transmission failure.

This use case in mind, this paper introduces an algorithm
that eliminates the algorithm asymptotic dependence on &k by
reducing the time complexity of the Srinivas and Modiano
algorithm to O(n?). In the next session, we formally set up
the problem borrowing the notation of Srinivas and Modiano,
as well as describe their algorithm. In Section III, we describe
the algorithm’s procedure and prove its asymptotic bound. Our
algorithm is obtain by a deeper look inside the Min-Cost Flows
(as in Subchapter 8.4 of [23]) algorithm employed as black-
box by [21], and relies on properties of the flows.

Besides point-to-point communication, broadcast is an im-
portant primitive that must be supported, again while mini-
mizing total power consumption. However, this is NP-hard,
and we employ approximation algorithms. A source is given
and all the nodes in the network must be reachable from
the source (unidirectional links allowed for broadcast). We
assume that the power requirement between any two nodes
is symmetric, and that there are exactly two possible power
levels, one of which is negligible. Inspired by the methodology
of [4] and an algorithm of [14], we obtain a O(4 + Inn)-
approximation algorithm, while the best published approxima-
tion ratio is 2(1 4 In(n — 1)) (throughout this paper, In stands
for natural logarithm). It was also known that no approximation
ratio better than O(Inn) is possible unless P = NP. In
fact, a polynomial-time algorithm with approximation ratio of
(1 —€)Inn is also very unlikely to exist [12], for any € > 0.

II. SET-UP AND PREVIOUS WORK

For the purpose of energy conservation, each node can
(possibly dynamically) adjust its transmitting power, based on
the distance to the receiving node and the background noise.
In the most common power-attenuation model [18], the signal
power falls as l% where [is the distance from the transmitter
antenna and x is a real constant dependent on the wireless
environment, typically between 2 and 5. Assume that all
receivers have the same power threshold for signal detection,
which is typically normalized to one. With this assumption,
the transmission power required to support a link between two
nodes separated by a distance [is [”. A crucial issue is how
to find a route with minimum total energy consumption for a
given communication session. This problem is referred to as

Minimum-Energy Routing in [20, 25].

In the most general cost model, the input is a simple
directed graph G = (V, E), and a cost function (sometimes
called “power requirement” or “power (transmission) thresh-
old’y ¢ : E — RT. A power assignment is a function
p : V. — RY. A unidirectional link from node u to node v
is established under the power assignment p if wv € E and
p(u) > ¢yp. Let H(p) denote the set of all unidirectional
links established between pairs of nodes in V' under the power
assignment p.

MIN-POWER k-UNICAST also has as input a source s € V'
and a destination/sink ¢ € V/, and the connectivity requirement
is that the digraph (V, H(p)) contains k& node-disjoint paths
from s to t. When k = 1, the problem can easily be reduced
to a shortest path computation; as an aside, this can be done in
a more sophisticated way also if symmetric links are required
as shown in [1].

Finding minimum-cost paths on a weighted graph has a
well known tradition in theoretical computer science through
the classic algorithms of Dijkstra and Bellman-Ford. Building
on this work, Suurballe [22] presented an algorithm to find
multiple paths that minimizes the paths’ overall cost. A direct
application of Suurballe’s algorithm does not work for our
model, however, because when broadcasting information to
a node at a certain transmission range, all nodes within a
lesser or equal transmission range also receive the signal. As
such, our algorithm does not wish to find a set of paths P
that minimizes 3_, ;< p ci,; (the total cost of the paths) but
rather) .. .p(i) where p(i) = max{c;,; : (i,j) € P}
(the aggregate energy spent by the nodes). In other words,

our algorithm wishes to account for the energy savings of
transmitting simultaneously to more than one node.

Since we are looking for disjoint paths (specifically, node-
disjoint paths) the only node that can take advantage of this
saving is the source node. That is, each node that is not the
source is a member of only one path, and as such, transmits
to only one other node. The source node, on the other hand,
must transmit to k£ nodes, and as such can take advantage of
other energy saving. Srinivas and Modiano account for this
observation by fixing the source’s transmission power and
incrementing it over the set of nodes that can be reached.
With each resulting graph, they run Suurballe’s algorithm
to determine the minimum energy k disjoint paths for that
transmission power. They then choose the minimum-energy
scheme out of the set of those computed. This algorithm runs
Suurballe’s algorithm an order of O(n) times (the number of
nodes that can be possibly reached by the source), and since
Suurballe’s algorithm itself runs with a complexity of O(kn?)
their resulting complexity is O(kn?).

A closer look reveals that the Srinivas and Modiano algo-
rithm also has running time of k - deg(s)(m + nlogn), where
m = |E| and deg(s) is the (out)degree of the source s in
the input graph G. Then our algorithm has running time of
deg(s)(m + nlogn).

MIN-POWER BROADCAST also has as input a source
s € V, and the connectivity requirement is that the digraph
(V,H(p)) contains a path from the source s to every other
vertex. The same problem was also studied in the bidirected
input model (sometimes called “undirected” or “symmetric” in
the literature), where the edge set of the input E is bidirected,
(that is, uv € E if and only if vu € F, and if weighted, the
two arcs have the same cost). In some wireless settings, it is
reasonable to assume an Euclidean input model, where ¢, ,
is proportional to the Euclidean distance from the position of
u to the position of v, raised to a power k, where x is fixed
constant between 2 and 5.

A survey of Power Assignment problems is given by Santi
[19]; as there we only consider centralized algorithms (there
is a vast literature on distributed algorithms). The general
(directed) input model is appropriate in certain scenarios (i.e,
it can take into account the residual battery of the nodes
[4]), while the bidirected input model is more general than
the Euclidean input model and is also appropriate in some
scenarios (i.e, when obstacles make communication between
two nodes more power-consuming, or even impossible). From
an approximation algorithm standpoint, it appears to be easier
to tackle the two-dimensional Euclidean input model than the
three-dimensional input model. The three-dimensional input
model is easier than the bidirected input model, and the general
input model appears to be harder than the bidirected input
model. Even in the two-dimensional Euclidean input model,
MIN-POWER BROADCAST was proven NP-hard [9]. Only
in the one-dimensional Euclidean input model, MIN-POWER
BROADCAST has polynomial-time algorithms.

In this paper, we tackle Broadcast in the bidirected input
model with the further restriction that c only takes two values;
that is ¢ : E — {0,1}. This corresponds to the case when
wireless nodes can only adjust their power on two levels,
one of which is negligible. This problem is still NP-hard,

and a standard reduction from Set Cover shows that no
approximation ratio better than O(Inn) is possible unless
P = NP (using [12]). This reduction was known in 2000
and appears in several papers [3, 4, 8, 9, 15, 16]. We obtain a
4 + Inn-approximation algorithm, while the best previously
published approximation algorithms [4, 7, 17] have a ratio
of 2lnn (our own paper [6] also obtains this ratio, with
faster algorithms). Actually, [4] suggests the existence of a
1.351Inn approximation algorithm (in the most general cost
model) based on the ideas of [14]. A 1.51n(n) approximation
algorithm (also in the most general cost model) was claimed by
[13]; however this paper has errors. These may be fixable. Note
that the MIN-POWER BROADCAST WITH POWER LEVELS
{0,1} problem is to minimize the number of nodes with
assigned power 1. We assume that the input graph is connected
(this can easily be checked).

III. MIN-POWER k-UNICAST
A. Description

The algorithm we present here uses the technique of incre-
menting the source’s transmission and computing minimum-
cost flows as featured in the algorithm of Srinivas and Modi-
ano, however at each iteration our algorithm uses the results
of the previous iteration along with properties of network
flows to compute the next k disjoint paths in less time. As
such, instead of running Suurballe’s full algorithm at each
iteration (which runs in O(kn?) time) our algorithm can
run Dijkstra’s algorithm (which runs in O(n?) time) at each
iteration to improve the overall run time by a factor of k
while preserving the optimality of the results. The runtime
bounds of O(kn?) and O(n?) are attributed to the cost of
each algorithm’s sub-routine multiplied by the upper bound
for the number of neighbors of the start vertex (which is n).
We will start describing this algorithm with formal definitions
used in in the proof of correctness of Algorithm 1 (our
algorithm). We also include Algorithm 2, the Srinivas and
Modiano algorithm, for comparison. Algorithm 2 looks much
simpler as most computation is hidden in the (previously
known) SuurballePaths procedure.

B. Formal Definitions

Let G = (V, E) be a directed graph with non-negative weight
function ¢ : £ — R. Let k be a positive integer. Let s,t € V
be the source node and sink node respectively. Let k be
the number of paths desired. Denote the neighbors of s as
{81, 8deg(s)} Where i < j = cs,, < cs5; (thus assuming
these nodes are sorted accordingly).

Define G' = (V, E%), where E' = E\ {(s,s;)|j > i}. In G,
all the capacities on arcs are 1. All the arcs of G have costs
given by c except for the arcs leaving s, which have cost 0.
Let G; be the residual graph of G’ with respect to flow f. As
notation, ¢(P) is the sum of the costs of arcs in path P and
¢(f) is the sum of the costs of the arcs e on which f(e) = 1.

C. Node Disjoint Transformation

In order to ensure that all paths are node disjoint, for every
node u, we add another node to the graph, v/, and the arc uu’
of cost 0. We then remove all outgoing arcs from u, and direct

them from u’. Thus, only one path can use u as a vertex. This
is a standard well-known transformation. Moreover, remove s
and ¢’ (and all their incident arcs) from the graph, and have s’
as the source of the flow and ¢ as the sink. We still call G* the
transformed graph. An example of this transformation appears
in Figure 1.

(b)

s 4 s ’

© (d)
Fig. 1: (a) The input G is here bidirected, and we represent
antiparallel arcs by undirected segments. Here deg(s) = 3. (b)
GL. (c) G2 (d) G3.

D. Non-Negative Arc Cost Transformation

Let G' = (V/,E’) be a digraph with costs ¢’ on the
arcs, and without negative-cost cycles. Following Johnsons’
algorithm (see Chapter 25 of [11]), define a modified cost
function a’ such that

Ve € E', d'(e) = (e) + d'(u) — d'(v), (1

where w is the tail of e, v is the head of e, and d’ is the
distance (in G”) vector from some node 5 in V' that can reach
all the other nodes of G’ (it is known that this distance vector
exists if G’ does not have a negative-cost cycle). It is known
that a/(e) > 0 for all e € E’ and we include the argument
for completeness. Let P be the path P : 5 ~» wu such that
¢(P) = d'(u), then consider P + e, where u is the tail of
e and v is the head of e. Then (P 4 ¢) = (e) + d'(u);

however, d’'(v) is the cost of the least cost path from s to v in
G’ and therefore d'(v) < ¢/(e) + d'(u).

It is also known (Chapter 25 of [11]), that this is a valid
transformation, specifically that the least cost path with respect
to o’ and ¢’ are equivalent (see the next lemma). As such, we
can use o’ as a substitute for finding the least cost paths in G’.
The advantage of doing this is that non-negative arc weights
are necessary for the correctness of Dijkstra’s Algorithm,
which runs with a lower time bound than the negative cycle
detecting Bellman-Ford Algorithm (with a bound of O(n?)
versus a bound of O(n?)).

Lemma 1 (Reformulation of Lemma 25.1 of [10]). Let G’ =
(V', E") be a digraph with costs ¢’ on the arcs, and let d'(v)
be a vector (of length |V'|) satisfying that, for all e € E' with
tail w and head v, ¢'(e) + d'(u) — d'(v) > 0. Let a'(e) =
d(e) + d'(u) — d (v). We can conclude that shortest paths in
G’ exists, and, moreover, P is a shortest path w.r.t a' if and
only if P is a shortest path w.r.t ¢'.

E. Auxiliary arcs

Given a directed spanning subgraph H of G, the power
of a vertex u in H is given by pg(u) = max,,cp(H) Cu,v-
The power of H is given by p(H) = .y pu(u). It is easy
to check that p(H) is the minimum total power that results
in establishing all the arcs of H (and possibly more arcs).
The algorithms below returns a set of arcs OPT'; the power
assignment, assuming all arcs of OPT are original (defined
below), is given by p(v) = popr (V).

Let M = n-maxy yev Cyu,p. For technical reasons we add
to each G* the following auxiliary arcs:

1) For all u, the arc s'u with capacity 2n + 1 and cost M,
and
2) For all s;, the arc s;s’ with capacity 2n + 1 and cost M

We call G’ the obtained multi-di-graphs. The auxiliary arcs
have such high cost that, if any feasible solution exists at all
in G, any optimal solution in G%9(s) has flow 0 on all the
aAuxiliary arcs). All G have the same vertex set, which we call
V' The total number of auxiliary arcs added is n — 1 4 deg(s)
and thus the size of G? is at most twice the size of G*. We
call an arc of G" that is not auxiliary an original arc.

F. The algorithm

We make the convention that djikstraPath(G’, u, a) returns
the shortest path distance vector from w to all the vertices
of G’, assuming a is the weight on the arcs of G’ (this
works correctly and in the promised runtime only if a is
non-negative), and that djikstraPath(G’, u, v, a) in addition to
these shortest-path distances, also returns the shortest path
from u to v. We make sure to only call djikstraPath when
u can reach all the nodes in the graph. The procedure
positiveCostTransformation(G’, d’) returns, for every arc of
G’, a new cost obtained by Equation (1).

G. Proof of Correctness

We will make use of the following classical result (see, for
example, Theorem 8.11 of [23]):

Theorem 2. f is a minimum-cost flow (of a certain value) iff
Gy does not contain any negative-cost cycle.

Algorithm 1 Improved Minimum Energy k-Disjoint Paths

1: procedure INPUT IS G = (V,E), SOURCE-SINK PAIR
s,t € V, COST FUNCTION ¢ : E — R*, AND INTEGER
k> 0.
G=NodeDisjointTransformation(G)
sortNeighbors(s) such that ¢, s, < ¢s6,,, for all ¢
fo=flow of value k on auxiliary arc s’t and value 0 on
all the other arcs;
5: i =1; opt = kM; dy = array of all values M except
dop[s'] =0
: while ¢ < deg(s) do

aw

7: i1 = positiveCostTransformation(G};l17 di—1)

8: G =addNeighbor(G~) // adds the arc of cost 0
from s’ to s; -

9: (P, d)) :djﬂfstrapath((;;;jl Sy S ai1)

10: Forall v € V, set d[v] = d[v]+d;—1[v] —di—1][si]

11: if ¢(P) < 0 (costs are in sz:) then

12: fz-:AugmentFlow(G};l1 , fi—1,P) (push one
unit of flow on path P)

13: fi(SISi) =1

14: else

15: fi=fia

16 end if o

17: a; =positiveCostTransformation(G* , d;)

18: d; =djikstraPath(G';,, s, a})

19: For all v € V, set d;[v] = d;[v] + d}[v] — d}[5']

20: if ¢, +c(fi) < opt then

21: opt = cs.5, + c(fi)

22: OPT ={w € G| fi(v'v) =1}

23: end if

24: i1=1+1

25: end while

26: if opt < M then

27: return(OPT)

28: else

29: return (“no feasible solution”).

30: end if

31: end procedure

Algorithm 2 Srinivas and Modiano Algorithm

1: procedure INPUT IS G = (V,E), SOURCE-SINK PAIR
s,t € V, COST FUNCTION ¢ : E — R™*, AND INTEGER
k> 0.

2: G=NodeDisjointTransformation(G)

3 sortNeighbors(s) such that ¢, s, < ¢s6,,, for all ¢

4 for i =k,..., deg(s) do

s: fi=SuurballePaths(G?, s', ¢, k)

6: end for

7: J = argmin, (c(fi) + ¢s.s,)

8: return(OPT = {uv € G | f;j(u/v) =1})

9: end procedure

The correctness of the whole algorithm will appear later.
For it, we need the main technical contribution of this section.

Theorem 3. For all i > 0, f;, as computed by Algorithm 1, is
an mtegral min-cost flow of value k in G, Moreover, all the
a and a’ costs used by Algorithm 1 are non-negative (so that
indeed, Dijkstra’s algorithm can be used to correctly compute
distance vectors).

Proof: The proof is by induction on 7, and we also prove
that before Line 7, d;_; is the shortest-path vector from s’ in
Gi_l and that s’ reaches every other vertex in éi_ll Also,
we prove that after Line 10, d; is the shortest-path vector from
s; in Gl 11 and that s; reaches every other vertex in Gl !

The base case is ¢ = 0. There are no arcs leaving s’ in GO,
and thus any flow of positive value must use auxiliary arcs; all
these have cost M, and all the arcs of G° have non-negative
cost. Thus any flow of value k has a cost at least kM ; such a
flow is indeed given by having flow k on the auxiliary arc s't
and 0 on all the other arcs of GO.

We also have that do is the vector of shortest-paths from
s’ in G?c as indeed G(; contains all the arcs of G° plus the
back arc of the auxiliary arc s’t (which has cost —M). All the
arcs except this back arc have non-negative costs, and all the
arcs leaving s’ have cost M. Thus one shortest path from s’
to any vertex u € V' \ {s} is the auxiliary arc s'u, and one
shortest path from s’ to any vertex v/, for u € V' \ {s,t}, is
the auxiliary arc s'u followed by the O-cost arc uu'. Note also
that these arcs allow s’ to reach every other vertex in G?»O.

Now we proceed to the induction step. We know, by the
induction hypothesis, that we start iteration ¢ with d;—; the
shortest-path vector (from s’) in G}:}l, where s’ can reach
every other vertex. Then, using the argument that follows
Equation (1), we know that a;,_; is a non-negative cost
function. Thus we can use Djikstra’s algorithm in Line 9. As
a;—1(e) = c(e) + di—1(u) — d;—1(v), where u is the tail of e
and v is the head of e, we have that the cost of s;v-path P
w.I.t to a;_1 is ai_l(P) = C(P) + di—l(si) — d/i_l(’l}); thus
C(P) = ai_l(P) + di_l(’l}) - dl_l(sl) This, together with
Lemma 1, shows that d; is correctly recomputed in Line 10,
that is, d is a shortest-path vector from s; in Gl_l Moreover,

s; can reach every vertex in Gi- 11 due to the existence of the
forward version of all the auxrlrary arcs. Indeed, these forward
arcs are never saturated, since each such auxiliary arc has in
G(}O a capacity of at least 2n + 1, starts with a flow between
0 and k, and further iterations only change the flow on an arc
by at most 1.

For Line 11, once a shortest path P is found w.r.t. a;_;, we
have that P is also a shortest path w.r.t the costs of the residual
network GZ ! . (based on Lemma 1). We can recompute the

cost in Gl - of P in linear time (or we can use d'[s'], which
is this cost of P as argued above).

We claim that, by Line 16, f; is a min-cost flow of value
k in G*. Indeed, we have two cases. If ¢(P) > 0 in Line 11,
then CAT” , does not have any negative cost cycles, since any
cycle in Gl _, 1s either a cycle in Gl ! , (and by Theorem 2
such cycles "have non- negative cost, us1ng the fact that f;_q is
a min-cost flow in Gzijl), or it has the arc s’s;, which has cost

0, plus a path from s; to s’ in G}*}l ; this path has non-negative
cost since P is a shortest path and ¢(P) > 0.

In the second case, ¢(P) < 0. In this case f; is obtained
from f;_; by pushing one unit of flow on P in Gl ! and
adding one unit of flow on the arc s's;. Let C' be an arbrtrary
cycle in GZ We will prove next that c(C) > 0, from which
Theorem 2 allows us to conclude that f; is indeed a min-cost
flow in G°.

Indeed, consider the flow f’ that has one unit of flow on

C and one unit of flow on P; we ignore capacities here, while
costs are as in any residual network: forward arcs have the
cost in G, and back arcs have the negation of the cost in G,
Thus f’ ships one unit of flow from s; to s'. Also, c(f') =
¢(C) + ¢(P). If there are arcs of G such that f’ uses both
the forward and the back version of the arc (this can happen,
as for arcs in P, the antiparallel arc exists in Gl .) modify
f' to obtain f” such that f” does not use any of these two
versions of the same arc. Then we have that f” also ships one
unit of flow from s; to ¢/, and ¢(f") = ¢(f') = ¢(C) + ¢(P).
Moreover, f”/ does not use any arc antiparallel to an arc of P.

The flow f” is decomposed (as in Lemma 8.3 of [23]) into
one path P” from s; to s/, and a number of cycles C/', with
one unit of flow on P and one each of these cycles If f"
uses the back (non-auxiliary) arc s;s’ (which exists in GZ)
then we can take P" to consists only of this arc; th1s 1mplres
that the arc s;s’ is not in any of the cycles CY’ (as s;s’ is not in
P and appears only once on C). Therefore, ‘all the arcs of cy

are in GZ 11, as any arc other than the back (non- auxrlrary)

arc s;s' that is in Gl but not GZ 11 is the antiparallel arc of
an arc of P, and thrs 'kind of arcs "do not appear in f”, based
on how f” was constructed from f’. By Theorem 2, we have
that ¢(C/') > 0

Now, P’ is either the back (non-auxiliary) arc s;s’, in
which case ¢(P) < 0 = ¢(s;8") = ¢(P"), or P" is a path
in G”f;ll from s; to s’ (we argued earlier that f” does not use
any arc antiparallel to an arc of P, and thus P" cannot have
arcs of sz but not sz 1 other than the back (non- auxiliary)
s;s’), and we have that c(P) < ¢(P") by P being a shortest
paths.

We have that ¢(C) +¢(P) = c¢(P")+>_, ¢(C}'), and using
¢(P) < ¢(P") (from the previous paragraph) and ¢(C}") > 0
(from one paragraph above), we obtain that ¢(C) > 0, as
required. Thus indeed, we have that, by Lipe 16 of the
algorithm, f; is a min-cost flow of value k in G'.

Next we prove that a; as computed in Line 17 is indeed
non-negative; note that th1s not follow directly from d’ berng
a shortest-path vector since d; was computed in G _, and al
We do have, however, that sl reaches
every other vertex in G”f;ll, due to the fact s; can reach s’

and s’ can reach every other vertex using the forward version
of the auxiliary arcs.

is on the arcs of G;

We have two cases, depending on the condition in Line
1. First assume ¢(P) > 0 and thus f; = f;—1. Then G;
has exactly one arc not in G”f;ll the forward version of the

original arc s’s;. For arcs e other than the original arc s's;,
the fact that a}(e) > 0 follows from the argument following

Equation (1). And for the original arc s’s;, we use that this
arc has cost 0, and d;(s") > 0 and df, = 0.

In the second case, ¢(P) < 0 on Line 11. Recall that one
unit of flow is pushed on P and on the original arc s’s;. As
above, it is enough to prove that aj(e) > 0 for the arcs e that
exist in sz and not in G}_fl These are the back arc of the
original arc s’s;, and the opposite arcs for some of the arcs
of P. The back arc e” of the original arc s’s; gets a}(e) =
ce”)+dl(s;)—di(s") = 0+0—c(P) > 0. Now let us consider
an arbitrary arc e that is the opposite of arc ¢’ on path P. Let u
be the tail of e and v be the head of e. As P is a shortest path
from s; in Glf;ll, we have that d(u) = d.(v) + c(e’). Then
a;(e) = c(e) + dj(u) — dj(v) = —c(€) + dj(u) — di(v) =0
Thus, also in second case, a(e) > 0 for all arcs of G;

With a; being indeed non-negative, we can use Djikstra’s
algorithm in Line 18. As a}(e) = c(e) + d}(u) — d}(v), where
u is the tail of e and v is the head of e, we have that the cost
of s'v-path P w.r.t to a} is a,(P) = ¢(P)+d}(s") —d}(v); thus
c(P) = ai(P) + d(v) — d}(s'). This, together with Lemma
1, shows that d; is correctly recomputefi in Line 19, that is,
d; is a shortest-path vector from s’ in szl Moreover, s’ can

reach every vertex in Gii, due to the existence of the forward
version of all the auxiliary arcs. Therefore the vector d;_1, in
Line 7 of the next iteration, satisfies the induction hypothesis.
This completes the induction step. |

Theorem 3 gives indeed an O(n?) running time, as they are
at most n iterations of the while loop, and each iteration does
linear work (constructing various graphs and distances) and
call Djikstra’s algorithm exactly two times. The next theorem
uses ideas from Srinivas and Modiano [21].

Theorem 4. The Improved Minimum Energy k-Disjoint Paths
Algorithm (detailed in Algorithm 1) returns k disjoint paths of
minimum total power.

Proof: Assume that the optimal solution (power assign-
ment p) has H = H(p) (H is a set of arcs). Make H minimal
while ensuring k£ node-disjoint paths exists from the source
s to the sink ¢ in H. Then every node v # s which has
outgoing arcs in H has exactly one outgoing arc in H. Let
j be largest such that the arc ss; € H. We obtain that
p(H) = ¢cs5; + Z#S Cv,5» Where we make the convention
that v is the arc going out of v in H if such an arc exists, and
v =v and ¢, , = 0 otherwise.

Note that G7 contains H (after its node-disjoint transfor-
mation) and therefore there exists a flow in G’ of value % and
cost D, Cu,p (recall that in G7 the costs of arcs leaving s

is 0). Then GJ also has a flow of value k and cost at most
> uts Co,p < M. From Theorem 3 we get that f; (the variable-

vector of Algorithm 1) is an integral min-cost flow in G7, and
since c(f;) < M we obtain that f; uses no auxiliary arc and
therefore f; is 1 on certain arcs of G7.

Then one possibility for OPT (the variable in Algorithm
1) are the arcs e with f;(e) = 1, including some arcs out of s
(but none of cost more than c; s, as arcs of higher costs are
not in G7). This gives p(OPT) < c(f;)+¢s,s, < p(H). Also,
OPT contains k node-disjoint s — ¢ paths, as the capacity of
every non-auxiliary arc uu’ (for u # s,t) is 1 and therefore
no two paths can use the same vertex u. In other words, an

Fig. 2: A spider with four legs, weight equal to 1 +0+ 1 +
242 =6, and power equal to 5.

optimal power assignment is produced.

Now assume that no feasible solution exists. Then, for all
7 (0 < j < deg(s)), GjAdoes not have a feasible flow with
value k, and thus Then GY must use, in any flow with value
k, at least one unit of flow on an (auxiliary) arc of cost M,
and thus all ¢(f;) > M. The algorithm correctly returns “no
feasible solution”. O

IV. MIN-POWER BROADCAST WITH POWER LEVELS
{0,1}

Phase 1 of the algorithm below resembles the algorithm of
[4], and some definitions are common. The overall structure
of the algorithm is from [14]. The first phase of our algorithm
works in iterations. It starts iteration ¢ with a directed graph
H,_; seen as a set of arcs with vertex set V' (initially, Hy
contains all the arcs of cost 0). The strongly connected com-
ponents of H;_; which do not contain the source s and have
no incoming arc are called unhit components. The algorithm
computes a weighted structure called a spider (details below)
attempting to achieve a reduction in the number of unhit
component. The algorithm then adds the spider (seen as a set
of arcs) to H; ; to obtain H;.

Definition 1. A spider is a directed graph consisting of one
vertex called head and a set of directed paths (called legs),
each of them from the head to a (vertex called) foot of the
spider. The weight of the spider S, denoted by w(S), is the
maximum cost of the arcs leaving the head plus the sum of
costs of the legs, where the cost of a leg is the sum of the
costs of its arcs without the arc leaving the head.

See Figure 2 for an illustration of a spider and its weight.
The weight of the spider .S can be higher than p(S) (here we
assume S is a set of arcs), as the legs of the spider can share
vertices, and for those vertices the sum (as opposed to the
maximum) of the costs of outgoing arcs contributes to w(S).
From every unhit component of H; we arbitrarily pick a vertex
and we call it a representative. Let r(S) be the number of
representatives among the feet of the spider S. Call a spider
invalid if r(S) = 1 and the only representative among the feet
of the spider is in the same component of H; as the head; if
not invalid, a spider is valid.

Define u(H) as the number of unhit components of digraph
H (with vertex set V), and a; as u(H;) (therefore ap < n).

Finding the valid spider S; that minimizes w(S)/r(S) with
respect to H;_; (in Phase 1) is achieved by the following

Algorithm 3 3-phase algorithm

Initialize Hy = {uv|cy,» = 0}.

Phase 1: In each iteration i, greedily pick the valid spider

S; that mmlmlzes w(S)/r(S) with respect to H;_1, until
E; 1 w(

a; < S=— + 1.

Phase 2: Assume after iteration t, let the current |a;| repre-

sentatives and the source be the terminals of a (undirected)

Steiner tree instance on the graph G. Run an edge-weighted

Steiner tree algorithm to obtain set of edges A, and then for

every edge of A keep one arc in one direction, such that the

source s can reach all the |a;| representatives using the arcs

chosen

Phase 3: Let [be the union of the arcs of the spiders

S1....S; and the arcs chosen in Phase 2. For every v, assign

and output p(v) = pg(v).

method (a simplification of the method of described in [4]).
We try all possible heads h, and both possible discrete power
for the head (0 and 1). Define the children of the head to
be the vertices within its power value - where the head is
also considered a child. For each representative r;, compute
the shortest path P; from a child of A to r;. Let R be the
list of representatives sorted such that such that the lengths of
the paths P; are in nondecreasing order. Then the best valid
spider with head h and the given power value can be obtained
by trying all integers j (1 < j < |R|), and taking the paths
P; leading to the first j representatives of R, but ignoring the
case j = 1 if the corresponding spider is invalid. (A faster
methods was described in [5].) We omit for lack of space the
argument that this procedure indeed produces a valid spider

Lemma 5. For every v € V, H (as obtained in Phase 3 of
Algorithm 3) contains a path from the source s to v.

We omit the straightforward proof. Let OPT be an optimal
solution, seen as a set of arcs that contain a path from the
source s to every vertex of G, and let opt = p(OPT). The
following lemma is implicit in the proof of Lemma 2 of [4].

Lemma 6. Given any graph H; and set of representatives
obtained from H,;, there is a valid spider S such that

w(S) < opt
r(S) T u(H;)
Also in [4], the shrink factor s f(S) of a spider S is defined,

of
and the definition implies that sf(S) >
of [4] states:

r(S) — 1. Lemma 1

Lemma 7. For a spider S (seen as a set of arcs), u(H;US) <

u(H;) — sf(9).

Based on this we conclude:
a; < a;—1 —

r(S;) + 1. ()

Lemma 8. Phase one stops. When Phase 1 stops at iteration t,
we have Z;’:l w(S;) < (1+Inn)opt, and moreover a; < opt.

Proof: Since we only add valid spiders, each iteration
adds some arcs: those entering the unhit components of the
representatives among the feet of the spider, except maybe for
the unhit component that contains the head of the spider (but
then, the spider is valid, so we cannot have only this except
case).

In iteration ¢, S; is defined to be the spider that minimizes
w(S)/r(S) with respect to H;_y, Thus r(S;) > a;_1 25,
We have the following relations:

a1§ao(1—%>+1
w(51) w(S2) w(S2)
az < ap(l - ot)1 - opt)+1+(1—W)
) i w(S;) - L
a; < aplll_; (1 — i)+ ;(1 - @)J 3)

The second term of the RHS of this equation is strictly less
than opt.

Assume we run the Phase 1 until after ¢ iterations,

I w(S;) > (Inn)opt and Y217 w(S;) < (Inn)opt. In
a ﬁrst case, the condition a; < W + 1 was met at

iteration ¢ < ¢g. We have that 23:1 w(S;) <

we also deduce that a; < % + 1 = opt + 1; as a; and
opt are integers, we conclude that a; < opt.

(Inn)opt, and

In the second case, iteration ¢ is executed. The first term
of the RHS of Equation (3) for ¢ = ¢ is at most age~ "
% < 1. Combined with the second term, we obtain that a, <
14 opt; as a4 and opt are integers, we conclude that a, < opt.
Moreover, >, w(S;) > (Inn)opt and therefore ag < 1+

W This means that ¢ is the last iteration. We know
that the ¢ spider we pick has w(S,) < opt (by Lemma 6

and 7(S,) < a4-1). Therefore we have > 7, w(S;) <
Inn)opt.

(1+

O

Lemma 9. The edge-weighted Steiner tree instance from
Phase 2 admits a solution T' of cost at most opt + a.

Proof: Let T be an s-rooted outgoing arborescence inside
OPT; the p(T") < opt. Prune T” such that all its leafs are
representatives of the unhit components of H;; note that there
are at most a; leafs. For every node of w that is either a leaf
of T” or an internal node 7" that has pr/(u) = 1, associate
to u the arc vv’ of T” such that ¢, = 1 and there is a path
(that can be trivial) from v’ to w in 7" such that all the arcs
of this path have cost 0, assuming such arc vv’ exists. Then
every arc of T” that has cost 1 is associated to such a vertex
u. This shows that ¢(T") < p(T’) + a¢. T is the undirected
version of T”. O

Theorem 10. The algorithm have approximation ratio Inn +
14 2\, where X is the approximation ratio of edge weighted
undirected Steiner tree.

Proof: With t denoting the last iteration of Phase 1, we
have that the power of the output satisfies

) < Z)

as indeed, if w is such that pH() = Cy,u, then either vu € A
(and wv is not put in H because of A, since A was oriented
away from the roof, and therefore each edge of the undirected
A is counted at most once) or vu is one arc of a spider and
Cv,u 1s counted in the weight of that spider.

After the first phase, Lemma 8 gives that the total spiders’
weight is at most (1 + Inn)opt. In the second phase, we add
the arc cost of at most A x (opt + a;) < 2Aopt. In total, the
ratio is at most Inn + 1 4+ 2. (|

The current best A = In4 [2], and therefore we obtain an
approximation ratio of at most 4 + Inn.

V. CONCLUSIONS AND FUTURE WORK

Compared to previous work, we improved the running time
of MIN-POWER k-UNICAST by a factor of £ and the ap-
proximation ratio of MIN-POWER BROADCAST WITH POWER
LEVELS {0, 1} by a constant factor (and within a additive term
of the best possible ratio).

For MIN-POWER BROADCAST WITH TWO POWER LEVELS
in an Euclidean setting, a constant approximation ratio may be
achievable, as it is known since [24] for the Euclidean setting
when the power levels are completely adjustable.

Acknowledgment. The work of Gruia Calinescu, Samuel
Baugh, and David Rincon-Cruz was supported in part by NSF
grant REU Site: BigDataX: From Theory to Practice in Big
Data Computing at Extreme Scales. The work of Kan Qiao
was performed while at Illinois Institute of Technology.

REFERENCES

[1] E. Althaus, G. Calinescu, I. Mandoiu, S. Prasad,
N.Tchervenski, and A. Zelikovsky. Power efficient range
assignment for symmetric connectivity in static ad hoc
wireless networks. Wireless Networks, 12(3):287-299,
2006.

[2] Jaroslaw Byrka, Fabrizio Grandoni, Thomas Rothvoss,
and Laura Sanita. Steiner tree approximation via iterative
randomized rounding. J. ACM, 60(1):6:1-6:33, February
2013.

[3] Mario Cagalj, Jean-Pierre Hubaux, and Christian Enz.
Minimum-energy broadcast in all-wireless networks: NP-
completeness and distribution issues. In ACM Mobicom,
pages 172-182, 2002.

[4] G. Calinescu, S. Kapoor, A. Olshevsky, and A. Ze-
likovsky. Network lifetime and power assignment in
ad-hoc wireless networks. In Proc. 11th European
Symphosium on Algorithms, pages 114-126, 2003.

[5] Gruia Cilinescu and Howard J. Karloff. Sequential
dependency computation via geometric data structures.
Comput. Geom., 47(2):141-148, 2014.

[6] Gruia Cilinescu and Kan Qiao. Minimum power broad-
cast: Fast variants of greedy approximations. In 77th
IEEE International Conference on Mobile Ad Hoc and
Sensor Systems, MASS 2014, Philadelphia, PA, USA,
October 28-30, 2014, pages 479-487. IEEE, 2014.

[7] 1. Caragiannis, M. Flammini, and L. Moscardelli. An
exponential improvement on the mst heuristic for mini-
mum energy broadcasting in ad hoc wireless networks.
Networking, IEEE/ACM Transactions on, 21(4):1322—
1331, Aug 2013.

[8] Ioannis Caragiannis, Christos Kaklamanis, and Panagiotis
Kanellopoulos. New results for energy-efficient broad-
casting in wireless networks. In Prosenjit Bose and Pat
Morin, editors, ISAAC, volume 2518 of Lecture Notes in
Computer Science, pages 332—-343. Springer, 2002.

[9] A. Clementi, P. Crescenzi, P. Penna, G. Rossi, and

P. Vocca. On the Complexity of Computing Minimum
Energy Consumption Broadcast Subgraphs. In /8th
Annual Symposium on Theoretical Aspects of Computer
Science, LNCS 2010, 2001, pages 121-131, 2001.

[10] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein.
Introduction to Algorithms. MIT Press, 2. edition, 2001.

[11] Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. Introduction to Algorithms,
Third Edition. The MIT Press, 3rd edition, 2009.

[12] U. Feige. A threshold of In n for approximating set cover.
JACM, 45:634-652, 1998.

[13] S.K. Ghosh. Energy efficient broadcast in distributed ad
hoc wireless networks. In Computational Science and
Engineering, 2008. CSE ’08. 11th IEEE International
Conference on, pages 394—401, 2008.

[14] Sudipto Guha and Samir Khuller. Improved Methods for
Approximating Node Weighted Steiner Trees and Con-
nected Dominating Sets. Information and Computation,
150:57-74, 1999.

[15] S. Krumke, R. Liu, E. Lloyd, M. Marathe, R. Ra-
manathan, and S.S. Ravi. Topology control problems
under symmetric and asymmetric power thresholds. In
Proc. Ad-Hoc Now, pages 187-198, 2003.

[16] Weifa Liang. Constructing minimum-energy broadcast
trees in wireless ad hoc networks. In Proceedings of
the 3rd ACM international symposium on Mobile ad hoc
networking & computing, pages 112-122. ACM Press,
2002.

[17] Fredrick Mtenzi and Yingyu Wan. The minimum-energy
broadcast problem in symmetric wireless ad hoc net-
works. In Proceedings of the 5th WSEAS international
conference on Applied computer science, ACOS’ 06,
pages 68-76, Stevens Point, Wisconsin, USA, 2006.
World Scientific and Engineering Academy and Society
(WSEAS).

[18] T.S. Rappaport. Wireless Communications: Principles
and Practices. Prentice Hall, 1996.

[19] Paolo Santi. Topology control in wireless ad hoc and
sensor networks. ACM Comput. Surv., 37(2):164-194,
2005.

[20] S. Singh, C.S. Raghavendra, and J. Stepanek. Power-
aware broadcasting in mobile ad hoc networks. In
Proceedings of IEEE PIMRC, 1999.

[21] Anand Srinivas and Eytan Modiano. Finding minimum
energy disjoint paths in wireless ad-hoc networks. Wire-
less Networks, 11(4):401-417, 2005.

[22] J. W. Suurballe. Disjoint paths in a network. Networks,
4:125145, 1974.

[23] R.E. Tarjan. Data Structures and Network Algorithms.
SIAM, 1983.

[24] P.-J. Wan, G. Calinescu, X.-Y. Li, and O. Frieder. Min-
imum energy broadcast routing in static ad hoc wireless
networks. In Proc. IEEE INFOCOM, pages 1162-1171,
2001.

[25] J.E. Wieselthier, G.D. Nguyen, and A. Ephremides. On
the construction of energy-efficient broadcast and mul-
ticast trees in wireless networks. In Proc. IEEE INFO-
COM, pages 585-594, 2000.

