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Introduction 

 Clouds offer ad-hoc clusters with computation, 
storage and networking resources to carry out 
distributed application execution 

 To effectively utilize these resources, additional 
setup and systems are required  

 Goals of the current work: 

– Characterize IaaS clouds for data oriented applications 

– Evaluation of contemporary storage solutions on clouds  

– Combine Many-Task execution systems with backend 
storage solution providers to obtain an operational 
environment for application execution and report on 
performance 
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Motivation 

 According to a 2013 XSEDE cloud survey report, a majority of 
users have difficulty in managing data in clouds. About 27% of 
the users use the Amazon S3 storage system for their data 
needs. 

 A quote from a 2011 report on Magellan experience: 

 

 

 Big Data and increasingly I/O intensive workflows 

 Different application requirements: read, write, read-after-
write 

 Availability: In clouds, node-local storage is available during 
the life of a VM instance and can be effectively utilized 
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Tools [are needed] to simplify using cloud environments ... and 
enhancements to Map Reduce models to better fit scientific data and 
workflows [are needed] for scientific applications.  



Overview 

 Introduction 

 Motivation 

 The Nature of the cloud 
– Network characteristics between cloud regions 

 Storage systems 
– MosaStore, Chirp/Parrot 

– Amazon S3, HDFS 

 Swift 

 Experiments 
– Raw Performance 

– Real-World Applications 

– Application Results 

 Summary 
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The Nature of the Cloud 

 Physically, cloud systems comprise of geographically 
distributed resources. 

 Unlike traditional clusters, these resources are non-uniformly 
distributed with irregular connectivity 

 Crucial to understand the network connectivity for data 
oriented distributed applications in the clouds 

 We perform two experiments on Amazon AWS cloud: 
– Measure bandwidths between instances of each of the eight global 

regions 

– Measure latencies between instances of each of the eight global 
regions 

 We chose a representative 20 instances from each region 
resulting in a 160X160 matrix 
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Cloud Regions Bandwidths: Some Observations 
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 North American 
regions well-connected 

 EU well-connected to 
US-east 

 Aus well-connected to 
US-west and Japan, 
Singapore 

 Japan and Singapore 
well-connected among 
themselves but poorly 
connected with rest of 
the world 



Cloud Connectivity: Latencies 
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 Similar pattern as 
bandwidths (lower the 
better) 

 More symmetrical and 
islands 

 Fast connections 
between US regions 

 Fast connections 
between Aus-
Singapore-Japan 



Conclusions from Cloud Network Analysis 

 Want to answer: How much data can we move in cloud and 
how fast? 

 Resources from global cloud must be chosen carefully to 
improve performance versus cost 

 For instance, a cluster of 1000 nodes between Japan and 
Singapore might be faster than the one between US-east and 
US-west 

 Isolated regions such as South America and EU with one 
datacenter each may not be combined with other regions for 
distributed computing 

 Smart storage strategies are very relevant in this scenario: 
exploit locality, replication, caching 

 Carefully chosen storage servers can benefit cloud executions 
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Storage Systems 

 Clouds offer different storage solutions: node-local, extended, 
remote, long-term   (Amazon example here) 
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Cold Storage, largest, cheapest, offline, e.g. Glacier 

Live Storage, large online, remote, e.g. S3 

Block storage, persistent, e.g. EBS  
(Elastic Block Storage) 

Node-local, 
volatile, e.g. ephemeral 

cost 
access  
speed 



Storage Systems 

 Clouds offer different storage solutions: node-local, extended, 
remote, long-term 

 

 Modern performance oriented storage systems 

 Widely used in modern cloud applications: e.g., Google Drive 

 Why are they important? 
– Gives unified view of distributed physical systems 

– Fast, synchronous, consistent 

– Enables implicit data movement across shared-nothing nodes 

 Example systems: Distributed File systems, Key-Value stores 

 Here we evaluate: 
– Research storage systems: Mosastore, Chirp/Parrot 

– Commercial storage systems: Hadoop HDFS, Amazon S3 
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Research Storage Systems: Chirp and MosaStore 

Chirp 

 A user-level storage system that provides a virtualized, unified view of 
data over multiple real file systems (e.g., over file systems deployed over 
independent clusters) 

 Parrot is an interceptor layer that traps an application's POSIX file system 
calls and redirects them to Chirp 

 A combination of Parrot and Chirp can thus provide a POSIX-accessible 
storage environment 

 

MosaStore 

 A low-overhead, user-level distributed storage system based on FUSE 

 Optimize data distribution under-the-hood via striping and replication 

 Can expose the details of data location for workflow level optimization 
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Commercial Storage Systems: Amazon S3 and 

Hadoop HDFS 

Amazon S3 

 A remote object storage system provided by Amazon 

 Access via a get/put API or FUSE-enabled mount 

 Preconfigured and ready-to-use but a paid service 

 

Hadoop HDFS 

 A High-throughput filesystem designed to store data on 
share-nothing cluster of machines 

 Well-suited to node-local computational models such as 
MapReduce but can be used with workflow models via 
external APIs 
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Swift 

 A parallel scripting framework with many-task dataflow 
execution system 

 Swift composed workflows drives the execution and data 
movements concurrently in conjunction with application logic 
thus stressing the underlying storage systems 

 Two implementations 
– Classic Swift/K (Karajan), mostly HTC oriented, single task store 

(submit host), uses explicit data movement on non-storage enabled, 
non-shared filesystems, has some optimizations for collective data 
movement 

– New Swift/T (Turbine), more HPC focused, distributed task store, 
much faster task dispatching rates, requires shared storage systems 
(either physical, e.g. HPC, or via software, e.g. w/ Mosa on clouds) 
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Experiments 

 Workflow-driven raw I/O performance benchmarks: 
– Concurrent reads from storage system to local file system 

– Concurrent writes to storage systems from cloud nodes 

– Read-after-Write 

 Used 40 “m1.large” (2-cores, 8G memory) Amazon instances 
spread between two regions: US-east and US-west 

 Measure bandwidths for data sizes: Between 50 and 1000 MB 

 Mosa, Chirp and HDFS use node-local storage to aggregate 
space 

 S3 use remote S3 object store via FUSE-mounted S3FS and 
remote get-put operations on named S3 bucket 
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Raw performance benchmarks 

• HDFS and MosaStore leads the performance 
• In the crucial read-after-write benchmarks, both 

MosaStore and HDFS performs closely with 
MosaStore outperforming HDFS for large data sizes 

• Amazon S3 remote storage significantly slower than 
MosaStore and HDFS 

• We chose MosaStore for further application 
execution 
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Real-World Applications (1) : Parallel BLAST 

 A protein alignment search tool, BLAST performs searches 
from a given protein database. 

 Parallel BLAST splits the protein database into fragments and 
runs many instances of BLAST simultaneously over the split 
database. 

 The results from each of the fragment search are merged to 
give the final result. 
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Application results: Swift running Parallel BLAST on 

Amazon with MosaStore 
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Implicit data movement by Mosastore 
using Swift/T 

44% faster than explicit movement 

Explicit data movement between cloud 
instances with Swift/K 



Real-World Applications (2) : EnergyPlus 

 A suite of energy analysis and thermal load simulation 
programs for buildings. 

 Takes an ensemble of climate, historical and structural 
parameters as input and projects the future energy 
requirements 

 Two steps: run ensemble and do results formatting as post-
process. 
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Implicit data movement by Mosastore 
using Swift/T 

59% faster than explicit data movement 

Application results: Swift running EnergyPlus on 

Amazon with MosaStore 

Explicit data movement between cloud 
instances with Swift/K 



Summary 

 Globally implemented clouds rely heavily on Internet 
backbone, resulting in non-uniform and variable network 
characteristics, which application deployments must take into 
account 

 Applications with medium immediate storage requirements 
can run effectively by aggregating the cloud node-local space 
with the help of storage solutions; these solutions almost 
always perform better that the dedicated object store 
provided by clouds such as Amazon S3 

 Swift has been shown to perform better on clouds with 
implicit files systems (e.g. MosaStore), but can fall back to 
explicit data movement if needed 
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