
Evaluating Storage Systems for

Scientific Data in the Cloud

Ketan Maheshwari, Justin M. Wozniak, Hao Yang,

Daniel S. Katz, Matei Ripeanu, Victor Zavala, Michael Wilde

Argonne National Laboratory

University of Chicago

University of British Columbia

Introduction

 Clouds offer ad-hoc clusters with computation,
storage and networking resources to carry out
distributed application execution

 To effectively utilize these resources, additional
setup and systems are required

 Goals of the current work:

– Characterize IaaS clouds for data oriented applications

– Evaluation of contemporary storage solutions on clouds

– Combine Many-Task execution systems with backend
storage solution providers to obtain an operational
environment for application execution and report on
performance

Maheshwari et. al., swift-lang.org

2

Motivation

 According to a 2013 XSEDE cloud survey report, a majority of
users have difficulty in managing data in clouds. About 27% of
the users use the Amazon S3 storage system for their data
needs.

 A quote from a 2011 report on Magellan experience:

 Big Data and increasingly I/O intensive workflows

 Different application requirements: read, write, read-after-
write

 Availability: In clouds, node-local storage is available during
the life of a VM instance and can be effectively utilized

Maheshwari et. al., swift-lang.org

3

Tools [are needed] to simplify using cloud environments ... and
enhancements to Map Reduce models to better fit scientific data and
workflows [are needed] for scientific applications.

Overview

 Introduction

 Motivation

 The Nature of the cloud
– Network characteristics between cloud regions

 Storage systems
– MosaStore, Chirp/Parrot

– Amazon S3, HDFS

 Swift

 Experiments
– Raw Performance

– Real-World Applications

– Application Results

 Summary
Maheshwari et. al., swift-lang.org

4

The Nature of the Cloud

 Physically, cloud systems comprise of geographically
distributed resources.

 Unlike traditional clusters, these resources are non-uniformly
distributed with irregular connectivity

 Crucial to understand the network connectivity for data
oriented distributed applications in the clouds

 We perform two experiments on Amazon AWS cloud:
– Measure bandwidths between instances of each of the eight global

regions

– Measure latencies between instances of each of the eight global
regions

 We chose a representative 20 instances from each region
resulting in a 160X160 matrix

Maheshwari et. al., swift-lang.org

5

Cloud Regions Bandwidths: Some Observations

Maheshwari et. al., swift-lang.org

6

 North American
regions well-connected

 EU well-connected to
US-east

 Aus well-connected to
US-west and Japan,
Singapore

 Japan and Singapore
well-connected among
themselves but poorly
connected with rest of
the world

Cloud Connectivity: Latencies

Maheshwari et. al., swift-lang.org

7

 Similar pattern as
bandwidths (lower the
better)

 More symmetrical and
islands

 Fast connections
between US regions

 Fast connections
between Aus-
Singapore-Japan

Conclusions from Cloud Network Analysis

 Want to answer: How much data can we move in cloud and
how fast?

 Resources from global cloud must be chosen carefully to
improve performance versus cost

 For instance, a cluster of 1000 nodes between Japan and
Singapore might be faster than the one between US-east and
US-west

 Isolated regions such as South America and EU with one
datacenter each may not be combined with other regions for
distributed computing

 Smart storage strategies are very relevant in this scenario:
exploit locality, replication, caching

 Carefully chosen storage servers can benefit cloud executions

Maheshwari et. al., swift-lang.org

8

Overview

 Introduction

 Motivation

 The Nature of the cloud
– Network characteristics between cloud regions

 Storage systems
– MosaStore, Chirp/Parrot

– Amazon S3, HDFS

 Swift

 Experiments
– Raw Performance

– Real-World Applications

– Application Results

 Summary
Maheshwari et. al., swift-lang.org

9

Storage Systems

 Clouds offer different storage solutions: node-local, extended,
remote, long-term (Amazon example here)

Maheshwari et. al., swift-lang.org

10

Cold Storage, largest, cheapest, offline, e.g. Glacier

Live Storage, large online, remote, e.g. S3

Block storage, persistent, e.g. EBS
(Elastic Block Storage)

Node-local,
volatile, e.g. ephemeral

cost
access
speed

Storage Systems

 Clouds offer different storage solutions: node-local, extended,
remote, long-term

 Modern performance oriented storage systems

 Widely used in modern cloud applications: e.g., Google Drive

 Why are they important?
– Gives unified view of distributed physical systems

– Fast, synchronous, consistent

– Enables implicit data movement across shared-nothing nodes

 Example systems: Distributed File systems, Key-Value stores

 Here we evaluate:
– Research storage systems: Mosastore, Chirp/Parrot

– Commercial storage systems: Hadoop HDFS, Amazon S3

Maheshwari et. al., swift-lang.org

11

Research Storage Systems: Chirp and MosaStore

Chirp

 A user-level storage system that provides a virtualized, unified view of
data over multiple real file systems (e.g., over file systems deployed over
independent clusters)

 Parrot is an interceptor layer that traps an application's POSIX file system
calls and redirects them to Chirp

 A combination of Parrot and Chirp can thus provide a POSIX-accessible
storage environment

MosaStore

 A low-overhead, user-level distributed storage system based on FUSE

 Optimize data distribution under-the-hood via striping and replication

 Can expose the details of data location for workflow level optimization

Maheshwari et. al., swift-lang.org

12

Commercial Storage Systems: Amazon S3 and

Hadoop HDFS

Amazon S3

 A remote object storage system provided by Amazon

 Access via a get/put API or FUSE-enabled mount

 Preconfigured and ready-to-use but a paid service

Hadoop HDFS

 A High-throughput filesystem designed to store data on
share-nothing cluster of machines

 Well-suited to node-local computational models such as
MapReduce but can be used with workflow models via
external APIs

 Maheshwari et. al., swift-lang.org

13

Overview

 Introduction

 Motivation

 The Nature of the cloud
– Network characteristics between cloud regions

 Storage systems
– MosaStore, Chirp/Parrot

– Amazon S3, HDFS

 Swift

 Experiments
– Raw Performance

– Real-World Applications

– Application Results

 Summary
Maheshwari et. al., swift-lang.org

14

Swift

 A parallel scripting framework with many-task dataflow
execution system

 Swift composed workflows drives the execution and data
movements concurrently in conjunction with application logic
thus stressing the underlying storage systems

 Two implementations
– Classic Swift/K (Karajan), mostly HTC oriented, single task store

(submit host), uses explicit data movement on non-storage enabled,
non-shared filesystems, has some optimizations for collective data
movement

– New Swift/T (Turbine), more HPC focused, distributed task store,
much faster task dispatching rates, requires shared storage systems
(either physical, e.g. HPC, or via software, e.g. w/ Mosa on clouds)

Maheshwari et. al., swift-lang.org

15

Overview

 Introduction

 Motivation

 The Nature of the cloud
– Network characteristics between cloud regions

 Storage systems
– MosaStore, Chirp/Parrot

– Amazon S3, HDFS

 Swift

 Experiments
– Raw Performance

– Real-World Applications

– Application Results

 Summary
Maheshwari et. al., swift-lang.org

16

Experiments

 Workflow-driven raw I/O performance benchmarks:
– Concurrent reads from storage system to local file system

– Concurrent writes to storage systems from cloud nodes

– Read-after-Write

 Used 40 “m1.large” (2-cores, 8G memory) Amazon instances
spread between two regions: US-east and US-west

 Measure bandwidths for data sizes: Between 50 and 1000 MB

 Mosa, Chirp and HDFS use node-local storage to aggregate
space

 S3 use remote S3 object store via FUSE-mounted S3FS and
remote get-put operations on named S3 bucket

Maheshwari et. al., swift-lang.org

17

Raw performance benchmarks

• HDFS and MosaStore leads the performance
• In the crucial read-after-write benchmarks, both

MosaStore and HDFS performs closely with
MosaStore outperforming HDFS for large data sizes

• Amazon S3 remote storage significantly slower than
MosaStore and HDFS

• We chose MosaStore for further application
execution

Maheshwari et. al., swift-lang.org

18

read

write
read-

after-write

Real-World Applications (1) : Parallel BLAST

 A protein alignment search tool, BLAST performs searches
from a given protein database.

 Parallel BLAST splits the protein database into fragments and
runs many instances of BLAST simultaneously over the split
database.

 The results from each of the fragment search are merged to
give the final result.

Maheshwari et. al., swift-lang.org

19

Application results: Swift running Parallel BLAST on

Amazon with MosaStore

Maheshwari et. al., swift-lang.org

20

Implicit data movement by Mosastore
using Swift/T

44% faster than explicit movement

Explicit data movement between cloud
instances with Swift/K

Real-World Applications (2) : EnergyPlus

 A suite of energy analysis and thermal load simulation
programs for buildings.

 Takes an ensemble of climate, historical and structural
parameters as input and projects the future energy
requirements

 Two steps: run ensemble and do results formatting as post-
process.

Maheshwari et. al., swift-lang.org

21

Maheshwari et. al., swift-lang.org

22

Implicit data movement by Mosastore
using Swift/T

59% faster than explicit data movement

Application results: Swift running EnergyPlus on

Amazon with MosaStore

Explicit data movement between cloud
instances with Swift/K

Summary

 Globally implemented clouds rely heavily on Internet
backbone, resulting in non-uniform and variable network
characteristics, which application deployments must take into
account

 Applications with medium immediate storage requirements
can run effectively by aggregating the cloud node-local space
with the help of storage solutions; these solutions almost
always perform better that the dedicated object store
provided by clouds such as Amazon S3

 Swift has been shown to perform better on clouds with
implicit files systems (e.g. MosaStore), but can fall back to
explicit data movement if needed

Maheshwari et. al., swift-lang.org

23

Acknowledgements

 Swift is supported in part by NSF grants OCI-1148443 and PHY-636265, NIH
DC08638, DOE Office of Science ASCR Division, and the UChicago SCI
Program

 Swift Team:

– Tim Armstrong, Ian Foster, Mihael Hategan, Daniel S. Katz, David Kelly,
Justin Wozniak, Mike Wilde, Justin Wozniak, Zhao Zhang

 Science application collaborators discussed in the paper:

– Argonne Power grid simulation project: V. Zavala, M. Hereld

 Some work by DSK was supported by the National Science Foundation,
while working at the Foundation. Any opinion, finding, and conclusions or
recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the National Science Foundation.

Maheshwari et. al., swift-lang.org

24

