A Cloud Computing Approach to On-Demand and Scalable CyberGIS Analytics

Pierre Riteau (UChicago), Myunghwa Hwang (UIUC), Anand Padmanabhan (UIUC), Yizhao Gao (UIUC), Yan Liu (UIUC), Kate Keahey (Argonne), Shaowen Wang (UIUC)

Presented by Kate Keahey

Geographic Information Systems (GIS)

• "Geographic Information Systems (GIS) are simultaneously the telescope, the microscope, the computer, and the Xerox machine of regional analysis and synthesis of spatial data." (Abler 1988)

CyberGIS

Wang, S. 2010. "A CyberGIS Framework for the Synthesis of Cyberinfrastructure, GIS, and Spatial Analysis." *Annals of the Association of American Geographers*, 100(3): 535-557

www.nimbusproject.org www.cybergis.org

The Problem

- Consistent response time in peak demand
 - Example: online education
 - Demand from many users varies over time and across tasks
 - Response time has critical impact on user experience
- Adaptation to varying sizes of analytical problems
 - Example: Problem Solving Environments
 - Real-time interaction, requests with potentially large spatial data

Using Cloud Resources

Potential

- On-demand provisioning of resources
- Pay-as-you-go cost model

Challenges

- Deploying spatial analytics modules on cloud resources
- Integrating cloud resources with existing CyberGIS infrastructure and middleware
- Balancing computational workload across resources
- Scaling resources dynamically so that acceptable quality of service can be maintained

PySAL on CyberGIS Gateway

CyberGIS: Current Architecture

CyberGIS: Original Architecture (cntd)

- Users submit jobs through the Gateway
- Input data uploaded to the Data Store
- GISolve middleware distributes requests in round robin to a static cluster of VMs with PySAL installed
- No queuing: extra requests rejected
- Output downloaded directly from VM
 - Assumes static deployment

Moving CyberGIS to a Cloud Platform

- Need to add/remove instances on the fly
- Our solution:
 - Add queuing load balancer behind GISolve
 - No need to modify GISolve middleware code
 - Use Nimbus Phantom and the load balancer information to implement auto-scaling

Nimbus Phantom

CyberGIS: Modified Architecture

Dynamically-scaled virtual cluster

Implementation

- HAProxy as load balancer
 - Metrics extracted using haproxyctl
- Custom Phantom decision engine
 - Tracks the number of connections to HAProxy
 - Requests changes in number of instances
- Policy
 - Requests new instances when VMs fill to capacity
 - "Lazy termination" based on history to avoid thrashing
- Instances are integrated in HAProxy when booted and removed when terminated
- Output files stored on data store
 - Instances can be terminated any time

Experimental Platform

- Used OpenStack Alamo on FutureGrid
- Dedicated instances for:
 - HAProxy (m1.tiny)
 - Data Store (m1.small)
 - Regression service (m1.small)
- Comparison of:
 - Static cluster (original architecture)
 - Static cluster + dynamically added instances

Experiments

- Two use cases scenarios
- Scenario 1
 - Small number of users
 - Large data files
 - Example: scientists conducting a study
- Scenario 2
 - Large number of users
 - Smaller data files
 - Example: labs conducted as part of a class
- Generated load with Apache JMeter

Scenario 1 (Large Requests)

- Number of users varies from 4 to 16
- 5 requests per user
- 10 second pause between requests
- Static cluster of 5 VMs
- Maximum of 10 dynamic cloud instances
- 2 minutes auto-scaling history buffer
- Single request per VM (no concurrency)

Scenario 1 (cntd)

Auto-scaling with 16 users

Impact of concurrent requests

Auto-scaling with 16 users (cntd)

Impact of dynamic cloud instances over response time

Scenario 2 (Small Requests)

- Number of users from 32 to 64
- 5 requests per user
- 10 second pause between requests
- Single static VM
- Maximum of 10 dynamic cloud instances
- 2 minutes auto-scaling history buffer
- 8 concurrent requests per VM

Scenario 2 (cntd)

Summary

- Response time is critical for CyberGIS users
- Requirement for a system that can react to changes in demand
- Integrated Nimbus Phantom auto-scaling
- Maintains low response time
- Future work:
 - Better request management
 - Scaling policy improvements
 - Data storage scalability

