

Exploring Software Defined Federated Infrastructures for Science

Manish Parashar

NSF Cloud and Autonomic Computing Center (CAC)
Rutgers Discovery Informatics Institute (RDI²)
Rutgers, The State University of New Jersey
http://parashar.rutgers.edu/

RUTGERS

CometCloud

Outline

- Clouds, federated computing, software defined systems, and Science
- Initial explorations with dynamic federation using CometCloud
- Towards a software-defined federated infrastructure for science
- Summary / Conclusion

CLOUDS, FEDERATED COMPUTING, SOFTWARE DEFINED SYSTEMS

RUTGERS

The Lure of Clouds

- Cloud services provide an attractive platform for supporting the computational and data needs of academic and business application workflows
- Cloud paradigm:
 - "Rent" resources as cloud services on-demand and pay for what you use
 - Potential for scaling-up, scaling-down and scaling-out, as well as for IT outsourcing and automation
- Landscape of heterogeneous cloud services spans private clouds, public clouds, data centers, etc.
 - Heterogeneous offering with different QoS, pricing models, availability, capabilities, and capacities
 - Hybrid cloud infrastructures could integrate private clouds, public clouds, and data centers
- Novel dynamic market-places where users can take advantage of different types of resources, quality of service (QoS), geographical locations, and pricing models
- Cloud federations extend as-a-service models to virtualized data-centers federations

Clouds as Enablers of Science

- Clouds are rapidly joining traditional CI as viable platforms for scientific exploration and discovery
- · Possible usage modes:
 - Clouds can simplify the deployment of applications and the management of their execution, improve their efficiency, effectiveness and/or productivity, and provide more attractive cost/performance ratios
 - Cloud support the democratization
 - Cloud abstractions can support new classes of algorithms and enable new applications formulations
 - Application driven by the science, not available resources -- Cloud abstractions for science?
- · Many challenges
 - Application types and capabilities that can be supported by clouds?
 - Can the addition of clouds enable scientific applications and usage modes that are not possible otherwise?
 - What abstractions and systems are essential to support these advanced applications on different hybrid platforms?

RUTGERS

Cloud Usage Modes for Science

- HPC in the Cloud outsource entire applications to current public and/or private Cloud platforms
- HPC plus Cloud Clouds complement HPC/Grid resources with Cloud services to support science and engineering application workflows, for example, to support heterogeneous requirements, unexpected spikes in demand, etc.
- HPC as a Cloud expose HPC/Grid resources using elastic on-demand Cloud abstractions

Federated Computing for Science (I/II)

- Scientific applications can have large and diverse compute and data requirements
- Federated computing is a viable model for effectively harnessing the power offered by distributed resources
 - Combine capacity, capabilities
- HPC Grid Computing monolithic access to powerful resources shared by a virtual organization
 - Lacks the flexibility of aggregating resources on demand (without complex infrastructure reconfiguration)
- Volunteer Computing harvests donated, idle cycles from numerous distributed workstations
 - Best suited for lightweight independent tasks, rather than for traditional parallel computations

RUTGERS

Federated Computing for Science (II/II)

- Current/emerging science and engineering application workflow exhibit heterogeneous and dynamic workloads, and highly dynamic demands for resources
 - Various and dynamic QoS requirements
 - · Throughput, budget, time
 - Unprecedented amounts of data
 - · Large size, heterogeneous nature, geographic location
- Such workloads are hard to be efficiently supported on classic federation models
 - Rigid infrastructure with fixed set of resources
- Can we combine the best features of each model to support varying application requirements and resources' dynamicity?
 - Provisioning and federating an appropriate mix of resources on-thefly is essential and non-trivial

Software Defined

- Software Defined Networks
 - An approach to building computer networks that separates and abstracts elements of these systems (Wikipedia)
 - E.g., separation of control and data plane
- Software Defined Systems
 - Based on software defined networking (SDN) concepts
 - Allow business users to describe expectations from their IT in a systematic way to support automation
 - Enable the infrastructure to understand application's needs through defined policies that control the configuration of compute, storage, and networking, and it optimizes application execution
 - Open virtualization, Policy driven optimization and elasticity autonomics, Application awareness
- · See also software defined data centers,

RUTGERS

EXPLORING FEDERATED INFRASTRUCTURE FOR SCIENCE USING COMETCLOUD

CometCloud

- Enable applications on dynamically federated, hybrid infrastructure exposed using Cloud abstractions
 - Services: discovery, associative object store, messaging, coordination
 - Cloud-bursting: dynamic application scale-out/ up to address dynamic workloads, spikes in demand, and extreme requirements
 - Cloud-bridging: on-the-fly integration of different resource classes (public & private clouds, data-centers and HPC Grids)
- High-level programming abstractions & autonomic mechanisms
 - Cross-layer Autonomics: Application layer;
 Service layer; Infrastructure layer
- Diverse applications
 - Business intelligence, financial analytics, oil reservoir simulations, medical informatics, document management, etc.

http://cometcloud.org

RUTGERS

Autonomics in CometCloud

- Autonomic manager manages workflows, benchmarks application and provision resources.
- Adaptivity manager monitors application performance and adjusts resource provisioning.
- Resource agent manages local cloud resources, accesses task tuples from CometCloud and gathers results from local workers so as to send them to the workflow (or application) manager.

On-Demand Elastic Federation using CometCloud

- Autonomic cross-layer federation management
 - Resources specified based on availability, capabilities, cost/performance constraints, etc.
 - Dynamically assimilated (or removed)
 - Resources coordinate to:
 - · Identify themselves / verify identity
 - Advertise their resources capabilities, availabilities, constraints
 - · Discover available resources
- Federation coordinated using Comet spaces
- Autonomic resource provisioning, scheduling and runtime adaptations
- Business/social models for resource sharing

RUTGERS

An Initial Experiment: Fluid Flow in Microchannel

- Controlling fluid streams at microscale is of great importance for biological processing, creating structured materials, etc.
- Placing pillars of different dimensions, and at different offsets, allows "sculpting" the fluid flow in microchannels
- Four parameters affect the flow:
 - Microchannel height
 - Pillar location
 - Pillar diameter
 - Reynolds number
- Each point in the parameter space represents simulation using the Navier-Stokes equation (MPI-based software)
- Highly heterogeneous and computational cost is hard to predict a priori
- Global view of the parameter space requires 12,400 simulations (three categories)

Experiment Summary

- 10 different HPC resources from 3 countries federated using CometCloud
- 16 days, 12 hours, 59 minutes and 28 seconds of continuous execution (in spite of failures, etc.)
- 12,845 tasks processed, 2,897,390 CPU-hours consumed, 400 GB of data generated

Science Outcomes

- The most comprehensive data on the effect of pillars on microfluid channel flow
- · Library of flow transformations
- Arranging pillars is possible to perform basic flow transformation
- What is the optimal pillar arrangement to achieve a desired flow output?
- Useful for medical diagnostics, smart materials engineering, and guiding chemical reactions

Other experiments

- Data-Driven Workflows on Federated Clouds [Cloud'14]
- Federating Resources using Social Models [IC2E'14]
- Elastic Federations for Large-scale Scientific Workflows [MTAGS'13]
- HPC plus Cloud Federations [e-Science'10]
- [See cometcloud.org]
- Testbed using resource in US (RU, FutureGrid, XSEDE, IBM), UK (Cardiff), Amazon EC2
- Experiments successful.... but can the model be generalized?

RUTGERS

Software Defined Cyberinfrastructure Federations for Science?

- Combine cloud abstractions with ideas from softwaredefined environments
- Independent control over application and resources
- Living federation that autonomously adapting itself to:
 - Changes in the environment
 - Application requirements

Software-defined ACI: ACI-as-a-Cloud

- Software defined ACI federations exposed using elastic on-demand Cloud abstractions
- Declaratively specified to define availability as well as policies and constraints to regulate their use
 - Use of a resources may only be allowed at certain times of the day, or when they are lightly loaded, or when they have sufficient connectivity, etc.
 - Prefer certain type of resources over others (e.g., HPC versus clouds or "free" HPC systems versus the allocation-based ones)
 - Specify how to react to unexpected changes in the resource availability or performance
 - Use resources only within the US or Europe due to the laws regulating data movement across borders
- Evolve in time and space -- the evaluation of these constraints provides a set of available resources at evaluation time
- Leverage software-defined networks to customize and optimize the communication channels or software-defined storage to improve data access

Software-defined ACI: Platform as a Science

- Platform as a Service to decouple applications from the underlying ACI Cloud
- · Key components
 - 1. An API for building new applications or application workflows
 - Mechanisms for specifying and synthesizing a customized views of the ACI federation that satisfies users' preferences and resource constraints
 - Scalable middleware services that expose resources using Cloud abstractions
 - 4. Elasticity exposed in a semantically meaningful way
 - 5. Autonomics management is critical
- CometCloud provides some of these; currently focusing on 2

RUTGERS

Many technical issues

- Deployability: Must be easy to deploy by a regular user without special privileges
- Standardization/Interoperability: Interact with heterogeneous resources
- Self-discovery: Discovery mechanisms to provide a realistic view of the federation
- Scalability and extended capacity: Scale across geographically distributed resources
- · Elasticity: Ability to scale up, down or out on-demand
- Security, Authentication, Authorization, Accounting.....
-

Some Related Efforts

- FED4FIRE (European Union FP7)
 - A common federation framework for developing, adapting or adopting tools that support experiment lifecycle management, monitoring and trustworthiness
- InterCloud (Univ. of Melbourne, Australia)
 - Utility-oriented federation of cloud computing environments for scaling of application services
- Business Oriented Cloud Federation (Univ. of South Hampton, UK)
 - Cloud federation model via computation migration for real time applications; targets real-time online interactive applications, online games
-

RUTGERS

Summary

- Emerging CDS&E workflows have dynamic and non-trivial computational/data requirements
 - Necessitate dynamically federated platforms that integrate heterogeneous resources / services
 - Provisioning and federating an appropriate mix of resources on-the-fly is essential and non-trivial
- Software-defined Advanced Cyber-Infrastructure for Science
 - Software defined ACI federations exposed using elastic on-demand Cloud abstractions
 - Application access using established programming abstraction/platforms for science
 - Autonomic management is critical
- Many challenges at multiple layers
 - Application formulation, programming systems, middleware services, standardization & interoperability, autonomic engines, etc.

The CometCloud Team

Moustafa AbdelBaky

PhD student, Dept. of Electrical & Computer Engr.

Rutgers University

Email: moustafa@cac.rutgers.edu

Javier Diaz-Montes, Ph.D. Assistant Research Professor,

Dept. of Electrical & Computer Engr. Rutgers University

Email: javidiaz@rdi2.rutgers.edu

Mengsong Zou

PhD Student, Dept. of Computer

Science

Rutgers University

Email: mz228@cac.rutgers.edu

Manish Parashar, Ph.D.

Rutgers Discovery Informatics

Institute (RDI²) Rutgers University

Email: parashar@rutgers.edu

And many collaborators....

CometCloud: http://cometcloud.org

36

RUTGERS

Thank You!

Manish Parashar, Ph.D. Rutgers Discovery Informatics Institute (RDI²) Rutgers, The State University of New Jersey

Email: parashar@rutgers.edu
WWW: http://parashar.rutgers.edu/
CometCloud: http://cometcloud.org

