Distributed, Heterogeneous Scheduling Techniques
Motivated by Production Geophysical Applications

Max Grossman
Dept. of Computer Science - MS 132
Rice University, P.O. Box 1892
Houston, TX 77251, USA
jmg3@rice.edu

ABSTRACT

When developing applications on distributed, heterogeneous
platforms in high-performance computing (HPC) we iden-
tify two common options software engineers choose between
when designing the parallelism and resource management of
their application.

On the one hand, an application can spawn one process
per core and statically assign accelerators evenly across those
processes. Using separate processes enables isolation from
soft errors in other processes, but also makes coordination
and resource management between different processes more
difficult. This may reduce the efficiency or system utilization
of the application.

On the other hand, creating a single process per socket
with one thread per core improves coordination, decreases
overhead, and makes it possible to dynamically schedule
work across multiple accelerators and cores. However, it
reduces isolation and may lead to underutilized resources if
the granularity of tasks is too fine-grained to use all available
hardware.

That is not to say these are the only two choices. Indeed,
a full spectrum of options lies between these two extremes.
In this paper, we explore the application of various schedul-
ing techniques that lie along this spectrum on distributed,
heterogeneous systems. We introduce a novel intra-process
load-balancing technique for accelerators named donation,
which follows a push model. We also describe a greedy host-
device task scheduler. We focus our investigation on a two-
stage production hydrocarbon exploration application with
different scheduling requirements in each stage. Our explo-
ration covers different granularity levels and characteristics
of the target application, identifies the benefit of techniques
described here, and measures the overall performance im-
provement. This work results in a 2.69x speedup for the
first stage of the target application and a 9.31x speedup
for the second stage, relative to an equivalent homogeneous,
production implementation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Mauricio Araya-Polo
Repsol USA (now at Shell Intl. E&P Inc.)
2455 Technology Forest Blvd
The Woodlands, TX 77381

1. INTRODUCTION

General-purpose computing on GPUs has moved from be-
ing a specialized field to one that is both applicable to a
wide range of applications[10][6][4][1] and accessible to pro-
grammers with a range of backgrounds. In particular, it
has gained a strong foothold in the high-performance com-
puting (HPC) community. In HPC, heterogeneous systems
have been deployed to successfully accelerate computation-
ally heavy workloads at widely varied granularities, from
shared memory machines up to thousands of heterogeneous
nodes in a single distributed system.

This increasing prevalence is a result of the performance
and energy improvements possible with heterogeneous sys-
tems[10], in which specialized architectures trade some gen-
erality for other improvements. Adding multiple architec-
tures to a single system increases programming complex-
ity, increases peak power consumption, and increases cost-
of-purchase/maintenance. To offset these costs, the perfor-
mance benefits of porting a legacy application to heteroge-
neous systems must be significant. Fortunately, expert im-
plementation and optimization of hybrid software can lead
to a magnitude of performance improvement, relative to
legacy homogeneous implementations. However, as the ar-
chitectural complexity of shared-memory systems increases,
it becomes more challenging to keep all computational re-
sources well utilized.

This paper describes novel scheduling techniques used in
the development of an architecturally heterogeneous imple-
mentation of Kirchhoff Migration (KM) [12], an important
workload in the Oil & Gas exploration. We focus on achiev-
ing high utilization of computational resources to gain per-
formance improvement relative to a legacy, distributed, multi-
threaded, CPU-only implementation. For the remainder of
this paper the legacy KM implementation will be referred
to as KM-L. The architecturally heterogeneous implemen-
tation developed as part of this work will be referred to as
KM-H. The main contributions of this work include:

e Dynamic scheduling of KM computation in a distributed
system across multiple architectures in each node.

e Combining task and data parallelism in a single appli-
cation at multiple levels.

e Techniques in automatic resource detection and man-
agement, used to maximize hardware utilization.

Section 2 will summarize related work in this area and
describe how our work differs. Section 3 will briefly de-
scribe the legacy Kirchhoff Migration implementation that

this work builds on. Section 4 will describe the modifica-
tions to the legacy system made as part of this work. Sec-
tion 5 will present the resulting performance improvements
achieved and analyze any remaining bottlenecks. Section 6
will conclude with a summary of our contributions and re-
sults.

2. RELATED WORK

One of the primary challenges addressed in this paper is
efficient scheduling of unbalanced and complex workloads
across a heterogeneous system. While the techniques pre-
sented in this paper are used specifically to accelerate Kirch-
hoff Migration, they are generally applicable. Prior work has
investigated other methods of dynamically scheduling work
on heterogeneous systems.

In [8] and [2] historical performance data is used to predict
future task performance on different architectures. These
performance predictions are then used to make scheduling
decisions. While this approach is generally applicable to a
wide range of computations, it also adds computational over-
head at runtime and assumes the programmer has no knowl-
edge of application or hardware characteristics. As this work
focuses exclusively on accelerating Kirchhoff Migration, we
can take advantage of expert knowledge in the application
and architecture domains to guide efficient scheduling deci-
sions for each task across all architectures without the over-
head of the approaches used in [8, 2].

Hamano et al [11] consider both the performance of tasks
on an accelerator as well as that accelerator’s energy con-
sumption when performing scheduling decisions on a het-
erogeneous system. In this work, we do not optimize our
solution for energy efficiency and exclusively focus on per-
formance. However, future work could include using tech-
niques like the ones described in [11] to improve the energy
efficiency of our Kirchhoff Migration implementation.

The work in [7] proposes a scheduling algorithm for hetero-
geneous and distributed systems using message priorities to
schedule work on different processors by greedily scheduling
high-priority messages immediately on the CPU and buffer-
ing low-priority messages for batched execution on the GPU.
By building this scheduling algorithm on Charm-++-, this
work supports a unified heterogeneous and distributed pro-
gramming model. However, as Section 3 will explain, the
priority or workload of a task in our application is unknown
prior to execution, therefore requiring a more dynamic ap-
proach.

3. BACKGROUND

Kirchhoff Migration (KM)[12] is a commonly used sub-
surface reconstruction technique in geophysical exploration.
KM is a two-step algorithm. First, a large three-dimensional
matrix of traveltimes to points in the subsurface is calculated
using wavefront propagation (through a raytracing approx-
imation). Then, using seismic traces recorded at different
source locations on the surface, the actual subsurface struc-
ture can be reconstructed based on the traveltimes calcu-
lated.

KM is a well studied and optimized application algorith-
mically [5, 3]. In this work we take a legacy, production
implementation of KM and improve performance by adding
support for heterogeneous systems. In this section, we briefly
describe the architecture of the legacy implementation to

provide context for the work described in Section 4.

The original homogeneous application (KM-L) is a multi-
node and multi-threaded application with a classic master-
worker distributed architecture. Intra-node parallelization
is performed using OpenMP.

KM-L is composed of two sub-applications which form
a two-stage pipeline. The first implements traveltime cal-
culation, and is referred to as TT. The second takes TT’s
output as input and migrates seismic traces to construct
the final output image, and is referred to as MIG. In this
paper, we discuss and accelerate each sub-application indi-
vidually. Though these applications are packaged as a single
executable and share utilities, their computational charac-
teristics are distinct.

At the highest level, a TT or MIG job encapsulates all of
the work to be performed to process a given dataset. Each
job is decomposed into many microjobs, each of which is
scheduled in a single node of a multi-node distributed plat-
form. The work in each microjob is then parallelized across
cores using OpenMP.

KM-L runs on two types of nodes: master nodes and
worker nodes. Each job uses a single master node and one or
more worker nodes which are responsible for the execution
of the majority of a job’s computation.

In KM-L, each worker node contains two processes: a
management process and a compute process. The manage-
ment process in each worker node is responsible for fetching
microjobs from the master node and launching a compute
process in that worker node. That compute process then
executes the retrieved work. Using two processes makes the
system robust against transient faults in the compute pro-
cess.

Each TT microjob propagates multiple wavefronts through
three-dimensional space. Each wavefront is handled by a
separate thread. As a rule of thumb there are approximately
twice as many wavefronts in each microjob as there are CPU
cores in a node. Each wavefront is propagated starting where
a perturbation (or “shot”) was introduced to the subsurface
for thousands of time steps. On each time step, the wave-
front (represented by a list of points) is passed through a
multi-kernel pipeline. Each kernel in the pipeline iterates
over all points in the wavefront. Many of these loops-over-
points have no loop-carried dependencies and can be paral-
lelized.

The control flow of a MIG microjob is shown in Algo-
rithm 1. MIG microjobs operate on “traces”, which represent
the recorded echoes (reflections) at receivers on the surface
from perturbations introduced into the ground. Each MIG
microjob is given a collection of traces to process. Rather
than processing traces one at a time, MIG chunks traces
together at multiple granularities to minimize disk I/O.

As shown in Algorithm 1, at the finest granularity of trace
chunking a triply-nested, many-iteration loop iterates over a
physical three-dimensional space. The innermost loop across
the z-axis is not parallelizable, but the outer two are.

4. METHODOLOGY

This section describes the approach taken to maximize
hardware utilization and performance of the Kirchhoff Mi-
gration application on a heterogeneous platform using dy-
namic scheduling. The legacy architecture was described

Algorithm 1: Pseudo-code for the migration computa-
tion step of Kirchhoff Migration

while traces remain in microjob do
segment = read_trace_segment_from_disk()
while traces remain in segment do
chunk = 0
curr_tables = segment.head().table_deps()
while segment.head().table_deps() == curr_tables
do
| chunk.append(segment.pop())
end
for each trace in chunk do
for each x in trace do
for each y in trace do
for each z in trace do

end
end
end
end
end
end

in Section 3. This section focuses on the changes made to
the legacy architecture to efficiently execute across all CPU
cores and GPUs in a platform.

4.1 TT Device Donation Algorithm

In TT, we continue to rely on the OpenMP runtime to
distribute the many T'T tasks in a single T'T microjob across
all of the CPU cores in a single node. We add an inter-thread
device assignment algorithm which assigns GPUs to CPU
threads. Past work has statically assigned GPUs to CPU
threads and moved tasks that are to be run on GPUs to the
appropriate CPU thread [9]. However, in TT the workload
and internal parallelism of a task can not be known prior
to its launch. Therefore, we must both dynamically assign
tasks to CPU threads as a means of load balancing across the
host, and dynamically associate GPUs with different CPU
threads as the workload of their currently executing task
changes.

Our approach uses a push-based model that has any thread
which owns a GPU but has a light computational workload
donate its GPU to a thread with a greater computational
load. For the remainder of this paper we refer to this al-
gorithm as the device donation algorithm. This approach
relies on:

e A compact way of representing the workload on a thread.
e Shared data structures for arbitrating GPU ownership.

e The ability to dynamically transition per-thread state
from the CPU to the GPU and back.

The inter-thread device donation algorithm works as fol-
lows. Each thread in a microjob which is not currently ex-
ecuting on a GPU is responsible for periodically broadcast-
ing information on its current computational workload to all
threads. Threads that currently own a GPU are responsible
for periodically checking that their computational workload
is greater than that of any thread which does not own a
GPU. If a GPU thread finds that a non-GPU thread has
surpassed it in computational workload, it donates the de-
vice it currently owns to that thread and switches to CPU

execution. Non-GPU threads must also periodically check
for a donated device, and switch to GPU execution if one is
found. Non-GPU threads also check for unclaimed devices,
e.g. at the start of microjob execution when no GPUs are
owned. This design is non-blocking, avoiding wasted cycles
waiting on a resource to become available.

In TT, the workload of a thread can be represented by a
single integer: the length of the wavefront being propagated
for the current shot. Using this length, each thread can
efficiently communicate its computational workload relative
to the others.

Because inter-thread communication is required for device
donation, inter-thread synchronization must be added. This
adds overhead that would not be present if static scheduling
were used. By 1) only reading shared state periodically, and
2) setting tolerances to avoid ping-ponging of GPUs between
threads with similar workloads, the overhead of dynamic de-
vice assignment is minimized. In practice, we found these
techniques were sufficient. Future work could investigate us-
ing the current pattern of a thread’s workload (i.e. increas-
ing or decreasing parallelism) to predict whether acquiring
a GPU would be beneficial in the long run.

As part of this work, oversubscribing GPUs with more
than one thread was beneficial to overall performance. As
this is a real world application with significant time spent in
I/0 and sequential code regions on the host, over-subscription
allows one thread to be using a GPU while other threads as-
signed to the same GPU perform other operations. We do
not implement any custom logic to prevent multiple threads
from contending for the GPU at the same time. While a
single GPU may be used by multiple threads, each thread
can only use one GPU. For the performance evaluation in
Section 5 we empirically chose to share each GPU between
two threads.

4.2 MIG Microjob Scheduling

In contrast to the scheduling techniques used for TT, the
scheduling techniques used for MIG modify both the inter-
node microjob scheduling framework and intra-node GPU
management.

For MIG, the management process in each worker node
was modified to support the execution of multiple micro-
jobs concurrently in a single node. With this change, mul-
tiple compute processes running different microjobs can be
created in each node by a single worker node management
process. Each microjob in a node is now assigned a subset
of the GPUs in that node. The number of GPUs assigned
to each microjob is configurable in a job parameter file, and
defaults to one. For our experiments, we assign two GPUs
to each microjob. The number of concurrent microjobs, M,
in each node is defined as M = ceil(G/P), where G is the
number of GPUs in a node and P is the number of GPUs
assigned to each microjob.

Supporting multiple concurrent microjobs per node means
that smaller microjobs which may not have sufficient paral-
lelism to occupy the CPU and GPU resources of a whole
node now cause less hardware under-utilization. For work-
loads where the microjobs are already large enough to utilize
a full node, we can limit the number of concurrent microjobs
using a job parameter to prevent out-of-memory failures.
Running multiple microjobs in a single node does increase
the fragility of the system to hardware errors: a single error
can now affect multiple microjobs.

Table 1: Compute node configuration. Each computing
node sports 3 accelerators, and 2 host processors. GDDR5
is a variant of DDR3. Each K10 card sports two GK104
processors

Item Host Processor Accelerator
Machine Type x86_64 GPGPU
Model Intel Xeon E5-2670 NVIDIA K10
Cores 16 1536x2
Frequency 2.60 GHz 745 MHz
Memory Total 64 GB DDR3 (4x2) GB GDDR5

4.3 MIG GPU Management

In addition to the changes to the inter-node microjob
scheduler, MIG also changes how work is scheduled across
CPU cores and GPUs within a node.

Recall from the discussion of the MIG pseudocode in Al-
gorithm 1 that traces in MIG are grouped at multiple gran-
ularities. At the finest granularity, traces are grouped into
trace chunks based on the traveltime tables they access.

In this work, we dynamically batch trace chunks together
to be processed in a single GPU kernel launch. These larger
trace batches increase the amount of parallelism exposed to
the GPU. Multiple trace batches can be in-flight on the GPU
at once.

The number of trace chunks that can be grouped into
a single trace batch is artificially limited to ensure that
multiple trace batches are in flight at once, encouraging
computation-communication overlap.

The MIG intra-microjob scheduling policy greedily pop-
ulates the GPU with as many trace batches as device re-
sources will allow. If device resources are exhausted, the
host processes a single trace chunk with the legacy OpenMP
implementation on a subset of the CPU cores in a node be-
fore again trying to create trace batches for the GPU. This
strategy keeps GPUs busy by maintaining a deep queue of
trace batches to be processed. The host is kept busy either
preparing new trace batches for GPU execution or process-
ing trace chunks while waiting for GPU kernels to complete.

S. EXPERIMENTAL RESULTS

This section introduces the performance improvements
that resulted from the implementation of the techniques de-
scribed in Section 4. The measurements below were taken
under production conditions, i.e. using real three-dimensional
input data sets acquired in exploration fields and processed
in a cluster shared with exploration geophysicists, which
does not affect the results since multiple repetitions were
carried out to discard spurious effects. We analyze the appli-
cation performance from all relevant perspectives and reason
about observed bottlenecks and improvements.

5.1 Experimental Setup

5.1.1 Experimental Platform Description

The tests described below were performed on 1, 2, 4, 8, or
16 nodes. The number of nodes used is limited by resource
availability on the production cluster. Table 1 presents the
hardware resources available in each node. Compute nodes
are connected by 10 Gbit/s Ethernet and share access to a
Panasas parallel filesystem.

5.1.2 Input Datasets Description

Two real-world input datasets are used in the evaluation
of this work, one for TT and one for MIG. Dataset A is
used to test T'T and consists of 20 microjobs, each of which
contains 12, 24, or 36 shots depending on the geographic
coordinates it processes. Within each shot, wavefronts are
limited to a maximum of 200,000 points.

Dataset B is used to test MIG and consists of 96 micro-
jobs, each of which processes 250,000 seismic traces.

5.2 Overall Application Performance

Tables 2 and 3 list the overall performance of KM-L and
KM-H running TT and MIG on a varying number of nodes.
While KM-H outperforms KM-L for both, MIG sees higher
speedup than TT due to more regular computation that is
better suited for GPU execution.

The outlier in these results is KM-H running MIG on 16
nodes, where we observe a speedup of only 5.02x relative to
KM-L and scalability of only 1.26x relative to 8-node KM-H.
The reason behind this is that a single microjob sits on the
critical path of the application, limiting overall speedup.

Table 2: TT Overall performance measurements. Speedup
is computed with respect to KM-L.

Nodes KM-L KM-H Speedup
1 522,683.687 s | 197,304.873 s 2.65x
2 262,785.314 s | 97,675.037 s 2.69x
4 136,127.437 s | 55,244.779 s 2.46x
8 75,380.638 s | 29,965.100 s 2.52x
16 42,170.935 s 17,668.498 s 2.39x

Table 3: MIG Overall performance measurements. Speedup

is computed with respect to KM-L.

Nodes KM-L KM-H Speedup
1 590,894.312 s | 67,738.228 s 8.72x
2 294,213.144 s | 32,060.760 s 9.18x
4 152,519.695 s | 16,381.245 s 9.31x
8 80,803.623 s | 8,755.180 s 9.23x
16 34,937.989 s | 6,960.823 s 5.02x

5.3 TT Performance Analysis

In the following sections, we will focus on an in-depth
performance analysis of TT. Later sections will turn to MIG
and perform a similar analysis.

5.3.1 TT Shot Performance

Shots in T'T are the largest unit of work that is executed
single-threaded on the CPU. Observing shot performance
focuses on computation only, enabling a more direct com-
parison of the performance of CPU and GPU kernels.

Figure 2 plots the per-shot speedup for each shot in dataset
A as a function of the percentage of execution time a shot
spends using a GPU. The positive relationship shown in Fig-
ure 2 demonstrates that threads which had the benefit of a
GPU for a higher percentage of their time steps also achieved
a higher speedup. If networking and disk overheads are dis-
regarded, the hybrid implementation of TT achieves better
than 3.5x speedup per shot on average. Note that for all

shots some amount of computation is still performed on the
CPU because 1) a shot may not own a GPU for the entirety
of its execution, and 2) the processing of a shot includes
work that cannot be parallelized for GPU execution.

5.3.2 Benefits of Dynamic Device Assignment

For TT’s device donation algorithm, we expect a speedup
relative to 1) CPU-only execution, and 2) static assignment
of GPUs to CPU threads.

Figure 1 shows sample task schedules in a single microjob
running on 1) KM-L, 2) static GPU assignment in KM-H,
and 2) the device donation algorithm in KM-H.

Assigning GPUs to threads statically results in a 2.65x
speedup relative to KM-L. This speedup is purely a result
of executing computation on the GPU instead of the CPU.
Dynamically assigning GPUs to threads through the device
donation mechanism improves speedup to 2.84x relative to
KM-L. This speedup is primarily a result of the ability to
dynamically switch straggler shots to GPU execution, which
would not be possible with static GPU assignments.

15§
14)
13
12
1]
10

Threads

001020304 050607 0809 10 11 1.2 13 14 15 1.6 17 1.8 1.9 20 21 2.2 2.3 2.4 2.5 2.6 2.7 2.8 29 30 3.1 32 33 34
Time (ms) 1e7

(a) Scheduling of shots within one T'T microjob in KM-L.

Threads

0 01 02 03 0.4 11 12

(b) Static scheduling of shots on threads and GPUs within one
TT microjob in KM-H.

Threads

0 01 02 03 04 05 08 0.9 10 11 12

6 0.7
Time (ms) 17

(c) Dynamic scheduling of shots on threads and GPUs within one
TT microjob in KM-H.

Figure 1: Gray bars mark CPU shot time, black bars mark
GPU shot time, and white space marks idle time between
processing shots or after no shots remain to be processed.
Note the change in time scale along the x axes (from 3.4ms
for a) to 1.3 for b) and c))

5.4 MIG Performance Analysis

The preceding sections analyzed the performance of TT.

T T
Shot Speedup Samples +
Fitted Curve

Shot Speedup Relative to KM-L
w
T
;

0 i i i i i
40 50 60 70 80 90 100
% Shot Computation on the GPU

Figure 2: Per-shot speedup as a function of the percentage
of shot execution time spent on the GPU

In the following sections, we analyze the performance of MIG
using similar techniques.

5.4.1 MIG Trace Performance

Similar to shots in TT, traces in MIG are a small but
relevant unit of work that we can use to measure the rel-
ative performance of KM-L and KM-H without including
1/0. Figure 3 shows the rate at which the legacy and hy-
brid implementations are able to process traces, as well as
the gains made by the hybrid implementation. The bimodal
distribution of trace rates is caused by different sizes of the
main input matrix for each microjob. The earlier micro-
jobs all have an input size of ~1GB while later microjobs
only consume ~1.5MB. Both implementations’ performance
is impacted by the input size, but KM-H achieves higher
speedup when the input matrix is larger. The reasons be-
hind this are:

1. Large input sizes allow better utilization of the GPU
resources both in terms of concurrency and regular
memory access.

2. Using the GPUs allows the preprocessing of each trace
chunk on the CPU to overlap with work being done on
the GPU. This preprocessing consumes more time on
larger inputs. KM-L MIG results improve when there
is more overlap of preprocessing and GPU computa-
tion.

100 L L L L L L L L L 550

[ﬁ n T 500
W\/\/\/ ‘U V\\ _ 1 450

r

Trace Processing Rate (trace/ms)
Hybrid Gains (%)

001 4+

Legacy

Hybrid \
Hybrid Gains
0.001 T T T T T T T T 100

T
0 10 20 30 40 50 60 70 80 90 100

Traces

Figure 3: Trace-level performance improvement

Note that the maximum improvement by KM-H relative
to KM-L in Figure 3 is ~5x, but the overall speedup of MIG
reported in Table 3 is ~9x. This discrepancy is the result
of executing multiple concurrent microjobs in a single node
in KM-H, which increases the parallelism possible at the
microjob level given a constant number of nodes.

5.4.2 Improvement from Hybrid Device Switching

Log analysis shows that 75.90% of all traces in MIG are
processed on GPUs. In this section, we characterize the rel-
ative performance of 1) running 100% of the traces on the
CPU, 2) running 100% of the traces on the GPU, and 3)
dynamically switching between the CPU and GPU. Table 4
lists the processing rates of each of these execution config-
urations. Hybrid execution with dynamic device switching
demonstrates the highest trace processing rate.

Because dynamically switching trace chunk processing be-
tween the CPU and GPU adds overhead, selecting a static
ratio for the number of trace chunks to be scheduled on each
processor could improve performance. However, this would
require re-tweaking that ratio for every new dataset and ev-
ery change to the MIG kernel which would rapidly become
unfeasible in a production setting.

Table 4: System-wide trace processing rate for CPU-only,
GPU-only, and dynamic hybrid switching

Platform | Trace Processing Rate (traces/ms)
CPU-only 1.442E-3
GPU-only 9.070E-3

Hybrid 10.36E-3

6. CONCLUSION

In this paper we describe the techniques used in the port
of a large, production geophysics application to a hetero-
geneous system. In particular, we emphasize an integrated
and hybrid approach in our implementation by considering
all system computational resources as part of our porting
and optimization plan.

We introduce device-sharing techniques and cooperative
execution techniques that focus on effective and efficient
system resource utilization. As a result of the application
of these techniques to a legacy, distributed, homogeneous
Kirchhoff Migration implementation an overall speedup of
~2.5x was achieved for the T'T sub-application, and ~9x for
MIG.

Future work will investigate integrating these techniques
into a more general runtime system. The device donation
technqiues developed for TT require hints from either the
programmer or compiler on the workload of an executing
task, as well as a mechanism for transparently moving tasks
between processors. Device donation is appropriate for long-
running tasks whose internal parallelism changes dynami-
cally. The device switching technique used for MIG requires
the ability to aggregate multiple tasks together for GPU ex-
ecution as well as an estimation of task completion time on
the GPU so that an appropriate amount of work can be
overlapped with it on the host. Device switching is more
useful for fine-grain tasks that must be batched together to
achieve high GPU utilization.

With the focus on dynamic, runtime, adaptive techniques
this implementation is robust to changes to its code, datasets,

and platforms. Furthermore, this work demonstrated signif-
icant performance improvement over a large, production-
ready, legacy implementation without a loss in generality.
Using a hybrid, dynamic approach results in higher system
computational throughput than existing static or homoge-
neous techniques.

Keywords

Distributed, Heterogeneous, GPU, resource management

7. REFERENCES

[1] Catanzaro, Bryan, Narayanan Sundaram, and Kurt
Keutzer. Fast support vector machine training and
classification on graphics processors. In Proceedings of
the 25th international conference on Machine learning,
2008.

[2] Chi-Keung Luk, et al. Qilin: Exploiting Parallelism on
Heterogeneous Multiprocessors with Adaptive
Mapping. In IEEE/ACM International Symposium on
Microarchitecture, 2009.

[3] Docherty, Paul. A brief comparison of some Kirchhoff
integral formulas for migration and inversion. In
Geophysics 56.8 pgs. 1164-1169, 1991.

[4] Fan, Zhe, et al. GPU cluster for high performance
computing. In Proceedings of the 2004 ACM/IEEE
conference on Supercomputing, 2004.

[5] Gray, Samuel H. Efficient traveltime calculations for
Kirchhoff migration. In Geophysics 51.8 pys.
1685-1688, 1986.

[6] KrAijger, Jens, and RAijdiger Westermann. Linear
algebra operators for GPU implementation of
numerical algorithms. In ACM Transactions on
Graphics (TOG), 2003.

[7] J. Liflander, G. Evans, A. Arya, and L. Kale.
Dynamic Scheduling for Work Agglomeration on
Heterogeneous Clusters. In Parallel and Distributed
Processing Symposium Workshops PhD Forum
(IPDPSW), 2012 IEEE 26th International, pages
2404-2413, 2012.

[8] Max Grossman, et al. HadoopCL2: Motivating the
Design of a Distributed, Heterogeneous Programming
System With Machine-Learning Applications. In IEEE
Transactions on Parallel and Distributed Systems,
2015.

[9] A. Sbirlea, Y. Zou, Z. Budimlic, J. Cong, and
V. Sarkar. Mapping a data-flow programming model
onto heterogeneous platforms. In ACM SIGPLAN
Notices, volume 47, pages 61-70. ACM, 2012.

[10] Tian, Xiang, and Khaled Benkrid. High-performance
quasi-monte carlo financial simulation: FPGA vs.
GPP vs. GPU. In ACM Transactions on
Reconfigurable Technology and Systems (TRETS),
2010.

[11] Tomoaki Hamano, et al. Power-Aware Dynamic Task
Scheduling for Heterogeneous Accelerated Clusters. In
IEEFE International Symposium on Parallel and
Distributed Processing, 2009.

[12] Wiggins, J. W. Kirchhoff integral extrapolation and
migration of nonplanar data. In Geophysics, 1984.

	Introduction
	Related Work
	Background
	Methodology
	TT Device Donation Algorithm
	MIG Microjob Scheduling
	MIG GPU Management

	Experimental Results
	Experimental Setup
	Experimental Platform Description
	Input Datasets Description

	Overall Application Performance
	TT Performance Analysis
	TT Shot Performance
	Benefits of Dynamic Device Assignment

	MIG Performance Analysis
	MIG Trace Performance
	Improvement from Hybrid Device Switching

	Conclusion
	References

