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Abstract—Modern agent-based models (ABMs) that can simu-
late large populations are increasingly used to answer important
questions in a variety of topic areas. For these models to
serve as useful electronic laboratories, they require a battery
of experimental analyses, including calibration and validation,
sensitivity analysis, optimization, data assimilation, and multi-
model integration. These analyses are typically run as workflows
that coordinate ensembles of simulations on open science high-
performance computing (HPC) systems, enabling large num-
bers of concurrent simulations. The execution model of these
workflows is driven by the algorithmic logic, which can involve
arbitrary loops and recursive behavior in pursuit of model
convergence. In this paper, we describe a many resident task
computing framework that coordinates ABM ensembles on open
science HPC systems, driven by a pluggable, stateful optimization
engine. While this model challenges conventional notions about
workflows consisting of many run-to-completion tasks, we show
how it enables rapid prototyping of many parameter search
and optimization strategies. Our focus here is on ABMs and
optimization, but these techniques are more widely applicable
to any black-box scientific code and adaptive parameter space
characterization. Ultimately, the goal is to democratize the use
of HPC resources by enabling non-expert researchers to take
advantage of the extreme scale systems that will be available in
the next few years.

I. INTRODUCTION

High-performance agent-based models (ABMs) are a
promising method to simulate a variety of complex systems,
including the spread of infectious diseases and community-
based healthcare interventions [1], [2], critical materials supply
chains [3], and land-use and resource management [4], [5]. Re-
alistic ABMs can include large numbers of parameters (>100)
that govern the structural (e.g., social networks), behavioral,
and other dynamical elements of the systems being modeled.
In a real system, these parameters are not immediately known
but may be derived from an inverse modeling process. In this
approach, approximate parameters are applied to a simulated
model and model outputs are compared with empirical real-
world outcomes. Then, the parameters are iteratively refined
according to one of many possible algorithms.

The highly non-linear relationship between ABM input
parameters and model outputs prevent the use of many math-
ematical optimization techniques. These relatively efficient
methods cannot be applied due to the complex interactions
among the parameters, as well as feedback loops and emergent
behaviors. Consequently, a more flexible approach is required
in which workflows of large numbers (“ensembles”) of simu-
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Figure 1: Overview of ABM ensemble framework in Swift/T.

lations need to be run. Also needed are sophisticated statistical
algorithms, which adaptively refine model parameters through
the analysis of recently generated simulation results and launch
new simulations, are needed. These simulation ensemble work-
flows do not fit the MapReduce model or simple directed
acyclic graph (DAG) specifications.

In this work, we present a general pattern for solving
these problems using the Swift/T dataflow language [6]. We
demonstrate the use of the third-party Distributed Evolutionary
Algorithms in Python (DEAP) toolkit [7] to implement an
evolutionary algorithm (EA) that controls the dynamic work-
flow logic. We show how this was implemented with the use
of resident Python tasks in Swift/T and simple queue-based
interfaces for passing parameters and simulation results.

Our framework, shown in Figure 1, enables the user to plug
in parameter exploration algorithms and scientific applications
(e.g., ABMs). Thus, researchers in various fields who may
not be parallel programming experts can simply select from
a variety of previously developed search algorithms and run
computational experiments on their scientific application with-
out explicitly performing parallel programming. A key feature
of this approach is that neither the search algorithm nor the
scientific application is modified to fit our framework. Rather,
the overall parameter search task is initiated by Swift and
does not exit until search completion. This is implemented
in a reusable way by connecting the parameter generation
and output registration methods to interprocess communication
(IPC) mechanisms that allow these values to be exchanged
with Swift/T.
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This mechanism is a novel form of inversion of control
(IoC). Swift/T instantiates the search algorithm, which then
provides simulation parameters back to Swift/T (over IPC,
without returning). These parameters are distributed to worker
processes for execution. Upon completion, the model outputs
are registered back to the search algorithm, which provides
more parameters until a convergence criterion is satisfied.

The mechanism also relies on new “many resident task
computing” (MRTC) capabilities that extend the notion of
many-task computing (MTC). This allows running tasks to
effectively suspend, waiting for queries. Mixing resident tasks
with traditional run-to-completion tasks is a powerful program-
ming model that supports the development of calibrated and
validated realistic ABMs that can be used as electronic labo-
ratories to answer important research and policy questions.

The remainder of this paper is organized as follows. In §II
we describe the ABM and adaptive parameter search applica-
tion area, including related methods. In §III we describe our
programming model and its implementation. In §IV we report
performance numbers for the complete application workflow.
In §V we summarize our contributions and outline future work.

II. AGENT-BASED MODELS

Agent-based modeling and simulation (ABMS) is a method
of computing the potential system-level consequences of the
behaviors of sets of individuals [8]. ABMS allows modelers
to specify the individual behavioral rules for each agent; to
describe the circumstances in which the individuals reside; and
then to execute the rules in order to determine possible system-
level results. Agents themselves are individually identifiable
components that usually represent decision makers at some
level. Agents often are capable of some level of learning or
adaptation ranging from simple parameter adjustment to the
use of neural networks, evolutionary algorithms, and market
models.

As more complicated models of larger complex systems
are developed, HPC resources are increasingly used to run
the variety of computational experiments needed to develop
validated models that support decision-making. ABMS studies
typically require the execution of many model runs to account
for stochastic variation in model outputs as well as to explore
the possible range of parameter dependent outcomes, making
them well suited to running on HPC resources. For example,
ABMs of infectious diseases have included large numbers of
individuals and households to create detailed activity-based
models of the propagation of different diseases, including
influenza [1], and community associated MRSA [2]. Various
scientific workflows are required to calibrate and analyze
these large-scale models: adaptive parametric studies; large-
scale sensitivity analyses and scaling studies; optimization and
metaheuristics; inverse modeling; uncertainty quantification;
and data assimilation.

A. ABM ensembles

While statistical adaptive parameter search techniques have
been a generally fruitful approach for combining ensemble

mathematical (e.g., compartmental) models and empirical ob-
servations, for example in infectious disease modeling [9],
[10], [11], we also see that the recent Ebola outbreak has
exposed some limits to the predictive power of this com-
bination of ensemble modeling [12]. The possible reasons
for this are many, but some of the simplifying assumptions
inherent in the compartmental models that are used for these
infectious disease studies might be at issue. Compartmental
models use differential equations relating aggregate variables
(e.g., the fractions of the population that are susceptible,
infected, or recovered/removed) to derive the dynamics of
disease progression in a population. But such models are
not able to capture “complex social networks and the direct
contacts between individuals, who adapt their behaviors.” [13].
By developing more realistic models in the form of ABMs,
the complexity, for example of the inter-agent and biological-
social interactions inherent in many infectious diseases, can
be encapsulated in the specification of processes such as
agent activities and decision-making, agent interactions over
social networks, demographic and geographic heterogeneity,
and agent adaptation and learning.

As such, statistical adaptive parameter search techniques
that had been applied to simpler modeling paradigms are
increasingly being used with ABMs [14]. With the large
number of simulation runs required and the use of realistic
ABMs, these analyses will need to be run as workflows that
coordinate ensembles of simulations on open science HPC
systems, where the execution logic of the workflows will
be defined by the specifics of the chosen adaptive parameter
search algorithm.

B. Related adaptive parameter search techniques

Depending on the aims of a computational experiment,
different adaptive parameter search techniques are appropri-
ate.1 For stochastic optimization of an objective function,
techniques such as simulated annealing [18] and adaptive
mesh techniques [19] can be used. Alternatively, when the
goal of model evaluation is to explore and identify important
regions of parameter space, as opposed to finding only a
global optimum, evolutionary algorithms, such as genetic
algorithms [20], can be used to iteratively “grow” such a
collection of parameters. Similarly, approximate Bayesian
computation [21], [22] techniques can be used to generate
distributions of parameter values consistent with observations.

For systems where periodic data are expected, Bayesian data
assimilation approaches can be used. These include methods
such as ensemble Kalman filtering [23] and particle filters [24],
[25]. Data assimilation allows for the periodic combination of
ensembles of model outputs and observations to give the best
current estimate, along with estimates of uncertainties, for a

1We note that there exist static parameter search techniques (e.g., full
factorial design [15], Latin hypercube sampling [16], Morris method [17])
that a priori determine the sampling from a parameter space. While these
can be useful for some purposes, they are not adaptive and do not require
complex workflow logic and hence are not the focus of this paper.
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system under study. This enables back-casting and forecasting
of model results.

Many of these techniques are being actively developed
and are implemented as free and open source libraries in
popular programming languages. As indicated earlier, rather
than requiring the reimplementation of these algorithms in
Swift/T, the goal of our framework is to be able to have these
libraries directly control large-scale HPC workflows, thereby
making them more accessible to a wider range of researchers
and, at the same time, enable them to run at HPC scales.

III. PROGRAMMING MODEL

Our programming model is designed to satisfy the require-
ments described in §II. We desire a high-level programming
model that allows us to coordinate calls to ABMs as well as
various control and analysis scripts over a scalable, MPI-based
computing infrastructure. For this more basic aspect, we use
Swift/T (although other workflow systems could suffice). The
key aspect of this work is the need for additional features
to support the adaptive parameter search techniques. These
features include location-aware scheduling, resident tasks,
and non-trivial IPC. We then present an application of our
framework that uses DEAP to drive an EA over ABMs built
with the Java-based Repast Simphony [26] toolkit.

A. Location-aware many-task scheduling

MTC workloads, on the one hand, generally allow the
scheduler a great deal of leeway in determining where tasks
will execute. Bag-of-tasks workloads, for example, are the
most lenient, allowing tasks to execute anywhere in any order.
Programming models such as MPI, on the other hand, give
the programmer total control over execution locality.

Swift/T strikes a balance between these two extremes with
its location annotation. By default, tasks can execute on
any worker process, but the programmer has the option of
specifying the annotation with @location=L f(), where
f() is the task and L is a location value. A location value
is constructed from an MPI rank r with optional accuracy
and strictness qualifiers. (Swift/T features allow a hostname
to be translated to one or more MPI ranks.) The accuracy
may be RANK, specifying the process with rank r, or NODE,
specifying any process that shares the same network host with
r. The strictness may be SOFT, allowing the task to run
anywhere in the system if there is nothing else to do at a
given point in time, or HARD, specifying that the scheduler
should wait until the location constraint can be satisfied (even
at the expense of maintaining idle processors).

The location features in Swift/T were originally added for
data-intensive workloads [27]. These provide a novel model
for best effort, data-aware scheduling, when data is stored
on the compute nodes. Compute node-resident storage sys-
tems that advertise data locations can be exploited by these
programming features. In this work, we extend the utility of
this feature by using it to target program state instead of bulk
data. By keeping program state resident, we avoid any cost
associated with approaches that depend on data serialization.
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Figure 2: MRTC ensemble framework in Swift/T.

More important, we can more easily leverage third party
libraries as resident programs without extensively modifying
them to fit a data serialization based scheme.

B. Resident tasks for ensemble control

Previous uses of workflow languages to control parameter
searches typically take one of two approaches. In the first
approach, the search is encoded in the workflow language.
While some workflow languages provide rich support for
arithmetic operations (Swift/T is notable in this regard), many
do not. Even so, this approach requires that such algorithms
be coded from scratch in the workflow language, and it
may be impossible to reuse code in other languages. In the
second approach, the algorithm is provided as a built-in feature
of the workflow system. This approach has been taken by
Nimrod/O [28], among others. It does not allow the end users
much control over the search algorithm used, unless they can
modify the source code of the workflow system itself.

This work defines and uses resident tasks as a building block
to implement user-defined workflow parameter searches. The
key technological feature is the ability to launch a task in a
background process or thread. Background indicates that the
foreground process or thread returns control to Swift/T after
execution (as a normal task would), but the background task is
still running. It retains state and potentially performs ongoing
computation. For the current example, the background task
maintains the state of the EA. The overarching workflow must
simply query this task for instruction on what tasks to execute
next. To do so, a task is issued to the same location as the
resident task, which communicates with it over IPC.

C. Queue-based task IPC

To query the state of the EA, we designate one worker on
location L for exclusive use by DEAP. Interaction with this
worker is shown in Figure 2. The tasks running on this worker
use the embedded Swift/T Python interpreter [29], internally
controlled by Swift/T through its C interface, to instantiate a
Python subthread connected to the parent Python process with
two queues, IN and OUT. The Python task then returns control
to Swift/T but does not deallocate the Python interpreter at
the C level. Thus, when subsequent Python tasks execute
on location L, they have access to IN and OUT. The Swift
function get_params_from_deap(), for example, reads
from OUT and returns the DEAP-generated parameter sets
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to the Swift level. The user Swift script can iterate over these
parameters, passing them to Repast tasks (repast(param))
that are load balanced across workers.

We note how IPC is used in this model. Swift/T processes
(workers and the load balancer) communicate over MPI and
thus may be distributed across nodes. This communication
is automated by the Swift/T system to implement the Swift
script. Communication on worker L between the embedded
Python interpreter and its Python subthread is performed over
Python Queues.

D. Evolutionary algorithms and ABM

The adaptive parameter search algorithm we used was a
simple EA, built by using the DEAP toolkit. The EA creates an
initial population p0 of parameter combinations, or individuals,
of size pop and proceeds to iteratively generate populations
pi, for each generation i, based on the evaluated performance
of individuals in the previous population pi−1. Each new
population pi is created by first selecting with replacement
pop individuals from pi−1 using a stochastic selection method
(tournament selection with size 3 here). This biases pi to
higher performing individuals. Then the population members
are mated and mutated to create a new generation of pop
offspring, where both mating and mutation probabilities are set
through user defined parameters. A useful EA in epidemiology,
for example, could help select parameters for a contagious
disease response strategy.

In this example, we adapted the simple JZombies demon-
stration model distributed with Repast Simphony. The JZom-
bies model involves two agent types, Zombies and Humans,
where the Zombies chase after Humans, seeking to infect
the Humans. Once a Human agent is infected it is (mono-
tonically) transformed into a Zombie agent. Thus, each sim-
ulation run will eventually see all agents become Zombies.
The parameters in the model are the integer type parameters
zombie_count and human_count, the initial number of
Zombies and Humans, respectively. To this base model we
introduced a varying step size for each of the agent types.
The original model had Zombies move in steps of length 1
(in units of the model space) and Humans in steps of length
2. The present model encapsulates these two values into two
float type parameters zombieStep and humanStep. Thus,
each EA population member is a tuple (zombie_count,
human_count, zombieStep, humanStep).

The fitness metric in this example was the remaining
number of Humans at a specific simulation time tick, where
more surviving Humans corresponds to higher fitness. The
remaining Humans across the stochastic variations for each
parameter combination were averaged to yield the final fitness
value. Figure 3 shows the agent mobility results for a run
with pop = 800. The results confirm the intuition that in a
highly fit model, Humans must move as quickly as possible
and Zombies must shamble as slowly as possible.

Figure 3: Mobility (zombieStep and humanStep) his-
togram for Zombie (blue) and Human (green) agents after 100
generations with an EA using a population of 800.

Figure 4: Average task runtime as function of concurrency.

IV. PERFORMANCE RESULTS

For our performance evaluation, we constructed a test case
with the JZombies model. All tests were performed on the
cluster Midway at the University of Chicago on the “sandyb”
partition using Intel Sandybridge 16x cores running at 2.6 GHz
with 32 GB memory per node.

This case stresses our system well because it uses simulation
tasks that are much shorter than realistic ABMs. Task runtime
averages are shown in Figure 4. A “create parameter file”
task is used to create stochastic variations of the parameters
obtained from the DEAP routine, and these become ABM
inputs. Then the “run simulation” task actually runs the
simulation. Both involve launching a Java virtual machine.
Both take the nominal amount of time, 0.6 seconds and
1.3 seconds, respectively, up to 64 processes. After that, file
system contention adversely affects the task runtime. Although
mitigation strategies could be used, we did not apply any
complex techniques in order to avoid complicating the results
of interest to this work.

A. Evolutionary algorithm behavior

As described in §III-D, EAs run a generation of simulations,
then spend some time determining what to do next. In this
measurement, we treat any time spent outside the ABM as
overhead, and we measure the “load” as the fraction of the
total computing capability being used at a given point in time.
This is illustrated in Figure 5, which shows the load over time.
The system alternates between a compute intensive phase, in
which the ABMs are computed on the workers, and a low-load
phase, in which the system runs out of work to do before the
EA produces additional work.
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Figure 5: System load over time for 254-worker run.
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Figure 6: Gantt chart of workflow states for 30-worker run.

The dips in load are investigated by producing a Gantt chart
of process states over time. An EA generation is captured
from a trace in Figure 6. Each worker process is shown as a
row, transitioning from state to state. Blue indicates the “create
parameter file” task, green indicates the “run simulation” task,
and black is idle time. As shown, the generation begins with
a flurry of parameter file creation. Computation dominates
the time, except at the end of the generation, when the load
balancer runs out of work and an effective barrier waits until
all tasks are complete before calling into DEAP to obtain new
parameters. The time spent in DEAP is short enough to be
invisible on the chart.

To evaluate the scalability of our framework, we measure
the average load over the whole run and divide by the hardware
concurrency (number of cores), producing a utilization statis-
tic. For increasing concurrency and EA population size, we
plot the utilization in Figure 7. As shown, system utilization
is good; our maximum measurement on 510 worker processes
is 88.95%.

Figure 7: Utilization over increasing run size.

V. SUMMARY

In this paper we have presented a general mechanism for
running large ensembles of simulations in which sophisticated
statistical algorithms can iteratively and adaptively refine sim-
ulation parameters through the analysis of recently generated
results and launch new simulations based on the refined param-
eters. The mechanism itself has been implemented by using
the Swift/T dataflow language and exhibits a novel form of
inversion of control using location-aware many task schedul-
ing, resident tasks, and non-trivial IPC over HPC resources.
Using this framework, third-party adaptive parameter search
techniques can be used to quickly and efficiently find global
optima, characterize other important regions of parameter
spaces, generate distributions of parameter values consistent
with observations, and allow the periodic assimilation of real-
world observations, to name a few examples. Performance
results from this reference implementation illustrate the basic
scalability of the framework on a typical cluster.

We intend to develop additional use case examples that
exploit widely available statistical libraries, and to release our
core features as an extensible framework for the community.
Our aim is to make large-scale computing resources far more
usable to more researchers in many more science domains by
providing easy-to-use, integrated ensemble control solutions.
Additionally, we are generalizing the approach to support R
libraries for similar IoC capabilities, opening up a greater
share of the active open source statistical library resources.
Repast HPC [30] is a high-performance computing agent-
based modeling toolkit based on C++ and MPI. We are
developing IoC workflows that will exploit both the speed and
parallelism of distributed Repast HPC ABMs, allowing us to
run ensembles on extreme-scale computers.
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