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ABSTRACT
Spot instance is an auction based Amazon Elastic Compute
Cloud (EC2) instance provided by Amazon Web Service
(AWS). It aims to help users to reduce their resource rent-
ing cost. The price for spot instances sometimes can be as
low as one tenth of the price of the same type on demand
instances. However, while gaining significantly cost savings
on renting resources, users take risks on running instances
without any availability guarantees, i.e. running spot in-
stances can be preempted by Amazon at anytime. Spot
instances that get pre-empted are not charged for their last
hour and some users utilize that feature to run very short
jobs. Different bidding strategies have been proposed to en-
sure the execution performance of tasks submitted to spot
instances. In this paper, we present a full EC2 spot instance
simulator that uses real EC2 spot pricing history to emulate
the spot instance life cycle and expected charges. We re-
view eight of the most popular bidding strategies in both
literature and practice and compare them in terms of cost,
deadline miss rate and task’s execution length for scientific
workflows. Our evaluation provides users a guidance on how
different bidding strategies may impact the execution of sci-
entific workflows.

1. INTRODUCTION
Amazon Web Service (AWS), an infrastructure-as-a-service

(IaaS) cloud provided by Amazon is one of the largest public
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cloud service providers. The increasing popularity of utiliz-
ing cloud computing services is driven by two fundamen-
tal merits provided by cloud services: elastic and economic.
With the elastic IaaS services, users can acquire both com-
puting and storage resources as needed and only need to pay
for the resources when they use the resources. Hence, with
cloud services, users not only save monetary cost but also
save the time and efforts on building computing infrastruc-
tures.

Because of these advantages, increased number of com-
panies and organizations have started migrating their exist-
ing compute infrastructures to computer clouds. Accord-
ing to Google, 95% of web services are now deployed on
cloud [5]. It is estimated that the cloud service market will
grow to $270B by 2020 worldwide [6]. The cloud advan-
tages also attract researchers to utilize cloud for scientific
computing. For instance, large research institutes such as
Fermi National Accelerator Laboratory(Fermilab) [14], Ar-
gonne National Laboratory (ANL) [9], Brookhaven National
Laboratory (BNL) [4], CERN [7] and others have begun ex-
ecuting scientific workflows on computer clouds.

However, there are still challenges yet to be solved for
deploying scientific workflows on computer clouds. Scientific
workflows are distinguished from general purpose workflows
by the large amount of computing resources and execution
time that it takes to complete the scientific workflow, in
addition to the large amounts of data that are processed
by the scientific workflow. Hence, although cloud is cost-
effective in general, it can be costly for large size scientific
workflows.

In later 2009, Amazon provided an auction based instance
type – spot instance which allowed users to bid unused EC2
resources. Spot instances can be available at a cost as low as
one tenth of the regular on-demand prices. Sometimes, users
can even get free instances for short jobs. The essence be-
hind such a huge price difference is that the service provider
(Amazon) is willing to fully utilize their resources by selling
spare unused resources in a relatively low price. However,
while gaining significant cost reduction on renting resources,
users also take risks on running instances without guaran-
tees, i.e. spot instances may be preempted during their ex-
ecution by Amazon at any time. Hence, many researchers
have studied the trade-offs between cost and spot instance
availability. Different bidding strategies have been proposed
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Figure 1: Spot Price Variation for m3.2xlarge Instance
(2015-4-30 15:25 – 2015-4-30 16:40)

to ensure successful execution of submitted tasks and at the
same time minimize of the total execution cost.

However, different bidding strategies have their own as-
sumptions and use cases. Choosing a bidding strategy with
the most balanced performance for scientific workflows is a
challenging task. In this paper, we first develop a full EC2
spot instance simulator that emulates EC2 spot instance
ecosystem based on real EC2 spot price history, i.e. spot in-
stance’s life cycle and charging behaviors. We review eight
of the most popular bidding strategies in the literature and
from practice. We evaluate their performance in terms of
cost, deadline miss rate and task’s execution length through
large numbers of simulations. Our evaluation conclusions
provide users a guidance on how different bidding strategies
may impact the execution of scientific workflows.

The rest of paper is organized as follows: Section 2 de-
scribes the EC2 spot instance ecosystem. Different bidding
strategies are reviewed in Section 3. Detailed design of our
evaluation is presented in Section 4. Section 5 shows the
evaluation results. At last, we conclude our work in Sec-
tion 6

2. AWS SPOT INSTANCE
The AWS Elastic Compute Cloud (EC2) spot instance

allows users to bid their own price to rent the instance. If a
user wins the bid (larger or equal to market price), the user’s
spot instances will be instantiated. If the user loses the bid
(bid price is lower than market price), the user’s running
spot instances are terminated by Amazon automatically.

2.1 Bidding
It is not difficult to see that the key behind the spot in-

stance is the bidding. As long as the bid is always above mar-
ket price, user’s spot instances will continue running without
interruption. Although a user can bid at an extremely high
price for spot instances to keep the instances running, once
the market price exceeds the on-demand price, renting spot
instance costs more than renting on-demand instances. In
order to prevent unreasonable bid and extremely high cost,
Amazon allows a maximum bid of ten times the on-demand
price for each instance type [1].

There are two types of spot instances a user can bid. One
is called one time spot instance and the other is persistent
instance. For one time instance, the instance will be instan-
tiated once when the bid exceeds the market price and the
instance will be terminated by Amazon when the bid drops
below market price or terminated by the user. Different
from one time instance, for the persistent bid, spot instances
remains in the system after being terminated by Amazon

and be re-instantiated once the bid surpass the market price
again until they are terminated by users. It is worth noting
that, for both types of spot instances, once a bid is made, it
cannot be changed during the VM instance’s life time.

Amazon also support ”launch group” bid, for which users
can make a single bid for a group of same type spot in-
stances. However, with the group bid, once one member of
the launch group is terminated by Amazon, the entire group
of the instance are terminated. In general case, Amazon only
allows 20 active spot instance bids for each account in each
region. For large amount of spot instance requests, user can
use Spot Fleet [2] to bid spot instances which can get as
much as 1000 spot instance bids per region.

2.2 Market Price
A bid one user made only presents the maximum price

the user is willing to pay rather than the actual price the
user pays for renting spot instances. The actual cost a user
payed for spot instances is determined by market price. The
market price is decided based on the total bids Amazon re-
ceived and the size of the spot pool in a region. Amazon
sorts all received bids in a decreasing order, and use the size
of the spot pool to find the cut-off price. Such cut-off price
is called market price [1]. All the bids above the cut will be
granted spot instances. Once a new bid received, Amazon
re-sorts the bids and then a new market price is determined.

Amazon keeps the records for all the market prices within
the latest ninety days so that users are aware of recent price
changes for spot instances. Such record is called Spot Pric-
ing History, and can be retrieved from both AWS manage-
ment console and APIs. Figure 1 illustrates a spot pricing
history from 2015-04-30 15:25:00 to 2015-04-30 16:40:00 for
m3.2xlarge instances in us-west-2a region. As shown in the
figure, within the 2 hour window, the market price changed
four times.

2.3 Charging
Amazon charges spot instance in integral hours starting

from the time instance that a user’s spot instance is granted.
For each integral hour, Amazon charges market spot price
at the beginning of that integral hour. If the spot instance
is terminated by Amazon, there is no cost for that integral
hour. However, if the spot instance is terminated by user,
Amazon charges the entire integral hour. Take Fig. 1 as an
example. If a user bids one dollar at time 15:25, because
the bid is larger than the market price (53 cents), the spot
instance is granted and will start running. When the market
price drops to 17 cents at 15:45, as the bid is still larger than
the market price, the instance keeps running. As the price
change occurs within one hour after the bid is granted, the
first hour cost is based on the market price at the beginning
of that hour which is 53 cents. When the instance is running
for the second hour, the market price changes to 90 cents at
the beginning of the second hour. Hence, the cost for the
second hour is charged at 90 cents.

2.4 Preemption Notification
Starting from early year 2015, Amazon provides a new ser-

vice to notify users the termination of their spot instances [8].
However, the notification is only available two minutes be-
fore the termination and only can be retrieved from inside
the spot instance. We have not yet implemented a way to
respond to the notification within the 2-minute time win-
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3. BIDDING STRATEGIES OVERVIEW
Based on the spot instance ecosystem, it is not difficult

for us to find out that different bidding strategies can result
in different costs on renting spot instances. For instance, if a
user bids at a low price, it is guaranteed low cost for running
spot instances. However, the availability of the spot instance
is not guaranteed. Many bidding strategies are proposed
in the literature to balance the trade-offs between cost and
availability. They can be categorized in two classes: static
bidding and dynamic bidding.

3.1 Static Bidding Strategy
Static bidding strategy is to bid a constant price. It does

not change as the market price changes. The advantage of
static bid is it is simple to implement. The drawback of
the static bid is also obvious: it may not obtain any spot
instance.

One typical example of using static bidding strategy is
ATLAS team in BNL which always bid with one quarter of
the on-demand price [10]. In this paper, we also examine
other static bidding strategies such as bid with on-demand
price, bid with the maximum price in the spot pricing his-
tory, bid with the absolute maximum price (ten times of
on-demand price), bid with the minimum price in the spot
pricing history, bid with 25% more of the minimum price in
the spot pricing history.

3.2 Dynamic Bidding Strategy
Different from static bidding strategy, dynamic bidding

strategy dynamically adjusts bid prices according to appli-
cation’s execution requirements and market prices.

In 2012, Song et al. proposed an optimal bidding strat-
egy for cloud service broker [12]. They first deconstruct the
spot pricing history data and model the market prices us-
ing semi-Markovian chain, and formulate the problem as a
cloud service broker profit maximization problem. To solve
the problem, they design a profit aware dynamic bidding
algorithm to calculate the optimal bid that maximizes the
profit for cloud service brokers.

Song et al. also proposed an optimal bidding strategy for
deadline constrained jobs [15]. The optimal bidding strat-
egy calculates the bid according to the probability distri-
bution of all the market prices existed in the spot pricing
history and the remaining deadline at the beginning of each
instance hour. In their paper, the authors assume that mar-
ket prices are uniformly distributed. In order to meet appli-
cation’s deadline, once the remaining execution time equals
to the deadline, the application is immediately migrated to
on-demand instance.

Tang et al. also proposed an optimal bidding strategy for
deadline constrained jobs [13]. The authors first theoreti-
cally proved that the optimal bidding strategy can be cov-
ered by a dual-option strategy: either bid with the maximum
price or with zero. Then authors build a Price Transition
Probability Matrix (PTPM) that records the probability of
price changes from one to another in the spot pricing his-
tory. Based on the PTPM, they formulate the problem of
minimizing the cost under required reliability level as a Con-
strained Markov Decision Process (CMDP). An optimal bid
that minimizes the cost is obtained by solving the problem
through linear programming, .

Recently, Bogumil et al. proposed an adaptive bidding
strategy that minimizes the cost for renting spot instances [11].
They first find the minimal price per ECU across all in-
stance types and availability zones from the spot pricing
history. Their adaptive bidding algorithm is to find the cur-
rent cheapest per ECU instances across all the instance types
and availability zones. If the current lowest price is above a
predefined threshold, the algorithm withdraws the bid. Oth-
erwise, it bids with the lowest price. In addition to find the
lowest bid, the adaptive algorithm also calculate the check-
pointing frequency for the application.

Although some bidding strategies are claimed as optimal
bidding strategies, their conclusions are based on their spe-
cific assumptions and application scenarios. In this paper,
we investigate the applicability of these strategies in scien-
tific workflow settings. In particular, we compare a set of
static and dynamic bidding strategies through simulation us-
ing real Amazon spot pricing history data and real Fermilab
scientific workflow requirements settings. The comparisons
are performed against different evaluation criteria. The de-
tailed simulation design and evaluation criteria are presented
in next section.

4. AWS SPOT INSTANCE SIMULATOR DE-
SIGN

In order to evaluate the performance of different bidding
strategies, we implement a EC2 spot instance simulator that
can fully emulate AWS spot instance running status and
charging behavior based on real spot pricing history. The
simulator is able to automatically retrieve spot pricing his-
tory from Amazon and store the data in a local database.
In this manner, we can keep more than 90 days of real spot
pricing data. The simulator supports both one time and
persistent spot instances. The inputs of the simulator are
user’s bid price and bid time. The simulator calculates the
instance start time, running duration and total cost. The
simulator is written in Python.

4.1 Simulation Design
We first give definitions for the terminologies used in the

simulation design.

Job: we model a job as a two-tuple j(e,D) , where e is
the execution time demand and D is the deadline of
the job, respectively. Both execution time demand and
deadline are in instance hours.

Success Bid: if a bid is higher or equal to the market
price, it is a successful bid. Otherwise it is an unsuc-
cessful bid. A successful bid doesn’t guarantee success-
ful execution of a task.

Failed Execution: if with a successful bid, a job cannot
finish its execution (preempted by AWS due to price
change), it is counted towards a failed execution. If
with a successful bid, a job can finish its execution,
but its finish time exceeds deadline, it is also counted
towards a failed execution.

Successful Execution: if with a successful bid, a job fin-
ishes its execution before deadline, it is counted to-
wards a successful execution.



An Execution: an execution E is represented as a 3-tuple
(b, p, d), where b is the bid price, p is market price of
the time the bid is made and d is instance running
duration with the bid. The duration d is in integral
instance hours. If d < e, then E is a failed execution.
If d ≥ e, then E is a successful execution.

Simulation (s): one simulation s is to bid spot instance
to finish a job j within the job’s deadline D. In one
simulation, the simulator always tries to bid for in-
stances after unsuccessful bids or failed executions.
The simulation terminates when a job is successfully
executed or it fails by missing deadline. The bid fre-
quency after unsuccessful bids and failed executions is
one hour.

Failed Execution Set (F (s)): the failed execution set of
one simulation is defined as F (s) = {E1, . . . , En}.

Successful Execution Set (S(s)): the successful execution
set of one simulation is either an empty set or a set only
contains one element(a successful execution).

Deadline Miss(d(s)): if the successful execution set of one
simulation is empty, then we say the job misses its
deadline. Hence, d(s) = 1 if S(s) = ∅. Otherwise,
d(s) = 0.

Immediate Start (IS(s)) : if the first bid is a success bid,
IS(s) = 1, otherwise, IS(s) = 0.

Cost (C(s)): the total cost to execute a job includes all
the cost of failed executions and the successful execu-
tion. Hence, the total cost is defined as:

C(s) =

|F (s)|∑
i=1

(pi×di|bi ∈ F (s))+

|S(s)|∑
i=1

(pi×di|bi ∈ S(s))

(1)

4.2 Evaluation Criteria
For one instance type on one U.S. availability zone, we

run the single simulation every one hour based on the spot
pricing history data. To evaluate the performance of differ-
ent bidding strategies, we compare statistics of simulation
results from two aspects. One is whether jobs finish execu-
tion within their deadlines. The other is the cost to execute
the jobs. To be more specific, we define Sim = {s1, . . . , sn}
as the set of simulations performed in one availability zone
for a given instance type.

Immediate Start Rate (ISR) measures the possibility that
a spot instance can be granted with the first bid:

ISR =

n∑
i=1

IS(si)

n
(2)

Deadline Miss Rate (DMR) measures the possibility that
a job misses its deadline:

DMR =

n∑
i=1

d(si)

n
(3)

Average Cost to Demand Rate (ACDR) measures the av-
erage cost on executing a job using spot instance compared

with the cost on executing a job using on-demand instance.
It is defined as follow:

ACDR =

n∑
i=1

C(si)

n× e× pd
(4)

where pd is the on-demand price for the given instance type.
Expected Execution Length to complete a job (EEL) es-

timates the average total execution time required to finish a
job. It is defined as follow:

EEL =

n∑
i=1

(E(si)× (1− d(si))

n∑
i=1

(1− d(si))
× 1

1−D(Sim)
(5)

where E(si) is the execution length of ith simulation.

5. EVALUATION RESULTS
The evaluation results are based on the simulation on al-

most four months real EC2 spot pricing history data from
2015-04-03 to 2015-07-29. We run simulations for all the m3
and c3 instances across all the U.S. regions and availability
zones. We evaluate the performance of bidding strategies on
four different jobs settings, i.e. j1(5, 168), j2(10, 168), j3(24, 168)
and j4(100, 168). In total, we total run 324 sets of simula-
tions. On average, each set of simulations contains more
than 2000 distinguished single simulations. We evaluate
eight different bidding strategies, i.e. bidding the mini-
mum price in the spot pricing history (MinPrice), bidding
25% more of the minimum price in the spot pricing his-
tory (Min+25), bidding the maximum price in the spot
pricing history (MaxPrice), bidding the on-demand price
(DemandPrice), bidding the absolute maximum price (De-
mandx10), bidding quarter of the on-demand price (De-
mandx.25), bidding with adaptive bidding strategy (Adap-
tiveBid) [11] and bidding with the optimal bidding strategy
(OptimalBid) [15].

Due to the page limit, we only illustrate the evaluation
results for m3.2xlarge instances on us-west-2a availability
zone.

Figure 2 depicts the evaluation results for executing 5-
hour jobs using m3.2xlarge instance on us-west-2a availabil-
ity zone. The figure shows that no job is able to finish its
execution when bidding with the minimum price in the spot
pricing history. However, if we raise the bid to 25% more
of the minimum price, the performance is significantly im-
proved. Almost 75% of the jobs are able to finish before their
deadlines. Bidding with quarter of on-demand price results
in the similar performance as the Min+25 strategy as they
result in almost at the same bidding price. If we raise the
bid to the on-demand price, the job success execution rate
can reach 90%. However, it will cost 9% more on all jobs’
execution and 7% more on all success jobs’ execution.

Since the absolute maximum bidding price is larger or
equal to the maximum price exists in spot pricing history,
both of them guarantee immediate start of spot instances
and all the jobs finish their execution within the deadlines.
However, the average cost for completing all jobs reaches
35% of the on-demand prices which is almost the double of
the cost when bidding with on-demand price.

Surprisingly, the adaptive bidding strategy performs not
as well as we would have expected. Almost half of the jobs



Figure 2: Performance Comparison for 5-Hour Job Figure 3: Performance Comparison for 10-Hour Job

Figure 4: Performance Comparison for 24-Hour Job Figure 5: Performance Comparison for 100-Hour Job

Figure 6: Average EEL for 5-Hour Jobs

failed execution with adaptive bidding. The reason that
adaptive bidding strategy has such a high deadline miss
rate is that the adaptive bidding algorithm withdraws its
bid when the calculated bid exceeds the predefined thresh-
old. Since the adaptive bidding algorithm seeks the cheapest
instance, it withdraws many bids and leads to high deadline
miss rate.

With the optimal bid, all jobs are able to finish within
deadline. However, if we look into the details of optimal
bid, we find that the optimal bid strategy can hardly get
spot instances and all the jobs are actually executed us-
ing on-demand instances. The major reason that optimal
bid cannot obtain any spot instance is that the optimal bid
assumes all prices in the price history are follow uniform
distribution which is apparently not the case in practice.

Figure 7: Average EEL for 10-Hour Jobs

Fig. 3, Fig. 4 and Fig. 5 show the evaluation results for ex-
ecuting 10-hour jobs, 24-hour jobs and 100-hour jobs using
m3.2xlarge instance, respectively. As the execution demand
increases, both deadline miss rate and the average cost for
executing jobs increases. Figure 6, Fig. 7, Fig. 8 and Fig. 9
depict the average expected execution length for 5-hour jobs,
10-hour jobs, 24-hour jobs and 100-hour jobs, respectively.
Since when bidding with minimum price can never get jobs
to finish, we eliminate the minimum bid from the figures.
By reviewing all the evaluation results, we can conclude
that bidding with quarter of on-demand price gives most
balanced performance in terms of cost, deadline miss rate
and expected job execution length for scientific workflows.

The complete evaluation results for all m3 and c3 in-
stances on all U.S. availability zones can be found in our



Figure 8: Average EEL for 24-Hour Jobs

Figure 9: Average EEL for 100-Hour Jobs

website [3].

6. DISCUSSION AND CONCLUSION
In this paper, we study the Amazon EC2 spot instance

ecosystem and experimentally evaluated eight most popular
bidding strategies in the literature. We develop a simula-
tor that can fully emulate the spot instance running status
and charging behavior. We use the simulator to evaluate
the eight different bidding strategies in terms of job execu-
tion cost, job deadline miss rate and expected job execution
length through large simulation runs. Through the evalua-
tion, we conclude that bidding with 25% of on-demand price
give most balanced performance for scientific workflows.

In addition, we also find that all the dynamic bidding al-
gorithms do not perform as well as we would have expected.
Our study reveals that these dynamic strategies are based on
some assumptions which do not hold in reality. For instance
the assumptions that a bid can be changed after the bid is
made [15]; checkpointing can be perfectly performed before
spot instances get preempted by Amazon [13]; are not valid
in practice.

Another assumption that is made by all the literature [15,
13, 11] is that a single bid will not affect the spot pricing.
However, as previously mentioned, scientific workflows re-
quire large amounts of resources which makes the assump-
tion invalid. Large amount of spot instance requests can
have significant impact on the entire spot market. Hence, it
is possible that none of the current bidding strategies works

well for large amount spot instance biddings. One of our
future work is to study the impact of large scale bids and
the performance of different bidding strategies on large scale
bids. Since we only evaluate performance of bidding strate-
gies on single instance types in single availability zone in our
current work, another future work is to explore the bidding
strategies for finding the cheapest spot instances and that
are least likely to be pre-empted across multiple availability
zones.
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